Peripheral projects with Nuclear Emulsion

O.Sato Nagoya Univ B02 group

「ニュートリノで拓く素粒子と宇宙」 領域研究会2019

Gamma-ray Observation (GeV/sub-GeV region)

	Telescope	Detected sources
1990- 2001	EGRET spark chamber	271
2008-	Fermi-LAT SSD tracker	>3000

All-Sky Map via gamma-ray above 1 GeV

Galactic plane

Galactic center

Samma ^{1GeV} NEWEST DATA)

かに星雲 (M1:SN1054)

Visible ligh

X ray

RADIO

Similar size with moon

Nuclear Emulsion

Gamma-ray

......

Microscopic view 10micron

e+/-

e-/

4

GRAINE Gamma-Ray Astro-Imager with Nuclear Emulsion

Target : 10MeV—100GeV γ-ray Balloon exp.

Emulsion γ ray telescope Angular Resolution (deg) Gamma-ray Fermi-LAT(data) GRAINE(MC) → 1 Film ---- Back 2 Films ---- Total converter 3 Films ---- Front Fermi time stamper calory meter 10⁻¹ GRAINE 10⁻² 10^{3} 10² 10⁴

Angular Resolution of Emulsion telescope

10 mrad @ 100 MeV

1.5 mrad @ 1 GeV

The incident direction of the Converted electron pairs by Emulsion

Energy (Me

Emulsion Gamma-ray Telescope

Flow of experiment

Detector development ← Analysis /preparation ↓ Scanning (2nd data taking) ↑ Observation(balloon flight) several days - 1 week → Recovery of detector 8

GRAINE project

2004- Development on ground

S.Takahashi et al. NIMA 620, 192 (2010) K.Ozaki et al. NIMA 833, 165 (2016)

2011 (Jun.) 1st Balloon-Exp.

Checking Feasibility
 H.Rokujo et al. NIMA 701, 127 (2013).
 S.Takahashi et al. PTEP 2015 043H01

2015(May.) 2nd Balloon-Exp.

- establishment of experimental flow
- imaging demonstration
 K.Ozaki et al., JINST 10, P12018 (2015)
 S.Takahashi et al. PTEP 2016, 073F01
 H,Rokujo et al., PTEP 2018 (accepted)

2018(26th Apr.)3rd Balloon-Exp.

- Celestial source detection
 Demonstration phase w/ 0.4m²
- 2021- Start scientific observation w/10m²

8.Jun. 2011 @TARF,

Japan

GRAINE 2011 Aperture : 0.013m² 1.6 h@35km

GRAINE 2015 Aperture : 0.38m² 11.5 h@36-37km

12. May. 2015 @ABLS, Australia

Cosmic-ray Muon Radiography

Measure the direction of incident CR.

Nuclear Emulsion

 $CR(\mu)$

Projection

Iron Furnace

Possible to measure the material distribution of the object

Atomic Power Plant(F1)

Volcano (showa shinzan)

Scan Pyramids (2015-)

Organization : Egyptian Ministry of Antiquities, Cairo University and HIP institute Participating countries : Egypt, France, Canada and Japan

Non-destractive Imaging Technologies

Cosmic-ray Muon Radiography : Nagoya University, KEK, CEA

Infrared imaging : Laval UniversityLaser 3D reconstruction : Iconem

Targets

- Khufu's Pyramic
- Khafre's Pyramie
- Bent Pyramid
- Red Pyramid

Installation in the Queen's Chamber

Observation from the Queen's Chamber

Nature (2017)24647, doi:10.1038/nature24647, Kunihiro Morishima et al., Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons

Observation from the Descending Corridor

Future prospect of Khufu's Pyramid

ScanPyramids Big Void

Grand Gallery

Multi position measurement

ScanPyramids North Face Corridor

Three dimensional reconstruction (Cosmic-ray Tomography)

summary

- Nuclear Emulsion itself do not need electronic power, it just stay there and accumulate the track information in it !
- Very handy device to accumulate events .
- So Nuclear Emulsion applications is not only neutrino experiments but also astro-physics, geo-physics.
- Very fine position resolution gives good angular resolution and then good for gamma ray telescope. Polarization of gamma also can be measured.
- Nuclear emulsion properties can be tuned to experiment, for example a fine grained emulsion used for Dark Matter search or neutron detector or

High dE/ dX particle such like mono-pole search.

• We will prepare large –scale Nuclear Emulsion production machine and investigate all interesting things what Nuclear Emulsion can detect. 20

Nuclear Emulsion Detectors

Future prospect of Khufu's Pyramid

Multi position measurement

Grand Gallery —

ScanPyramids Big Void

ScanPyramids North Face Corridor

Three dimensional reconstruction (Cosmic-ray Tomography)

なぜ原子核乾板 for ニュートリノ

- チャーム寿命・生成率測定
- タウニュートリノ反応断面積測定 寿命が短い。→高位置分解能。
- 陽子などの短い飛跡 高サンプリングに耐える。陽子同定能。
- ・ 電子ニュートリノ π0→ 2γのバックグランドが問題。
 → 高サンプリング&高位置分解能。

sensitivity 15 grains/44 microns electron ~100 keV

high dE/dx tracks from nuclear evaporation

mip

basic detector: AgBr crystal,

size = 0.2 micron

detection eff.= 0.16/crystal

10¹³ "detectors" per film

Emulsion Layer (44 microns)

Plastic Base (205 microns)

Emulsion Layer

Time Stamp System = Shifter

Directional WIMP detection by Nuclear Emulsion NEWSdm @LNGS Japan Group SP: NAKA T.

Japan – Italy- Russia- Turkey –Korea Collaboration

Nano Imaging Tracker

Dark Matter Wind Earth

太陽

230km/sec

 $V_{\text{recoil}} = 2 \left(V_{\text{sun}} + V_{\text{WIMP}} \right)$

 $= 100 \sim 1000 \text{ km/sec}$

L~200nm

ecoil Atom

Detect the direction of recoil atoms → Dark Matter Telescope

Easy to realize Ton scale detector

チャーム粒子(X particle)は原子核乾板によって発見!

Emulsion Cloud Chamber (ECC)

with "cheap" double coated thin emulsion layer film

1950's Nuclear Emulsion R&D by Fuji photographic film.

Expose to Cosmic-ray at high altitude

Hyper Track Selector

画像処理: 72 GPUs

5000

対物レンズ: FOV 25mm²

カメラ:

2MP 72 sensors

