

HPC and CephFS at CERN

Pablo Llopis, Dan Van Der Ster

LHC

CMS

[Large Hadron Collider]

ATLAS

CERN ♥ CephFS

CephFS is a popular parallel shared filesystem for clouds.

Parallel, Consistent, Self-healing, Extremely scalable.

Heavily used at CERN (over 16 PB across various clusters), especially for OpenStack.

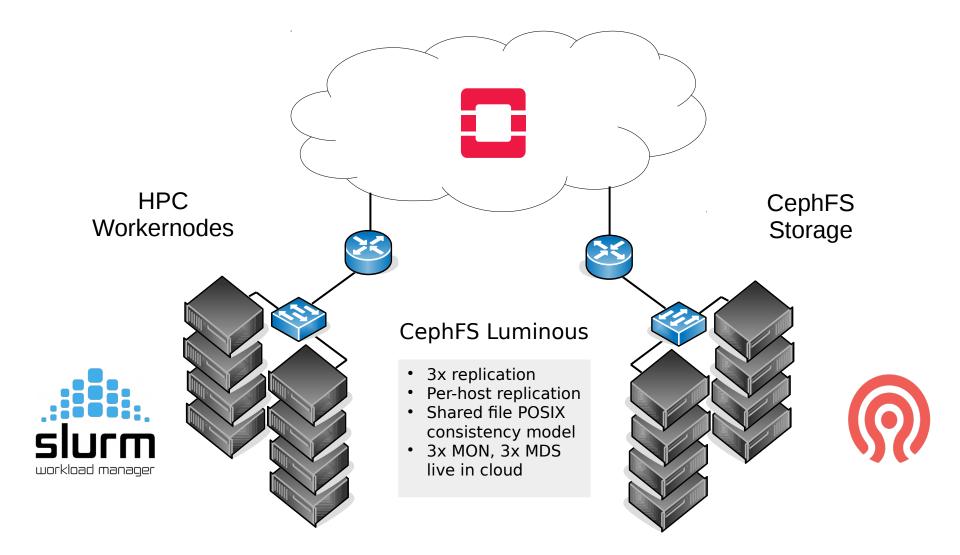
Benchmarking: IO500 score

- IOR easy (throughput; independent parallel file I/O)
- IOR hard (throughput; shared parallel file I/O)
- Mdtest easy (metadata; independent metadata I/O)
- Mdtest hard (metadata, shared directory metadata I/O)

CERN CephFS Overview

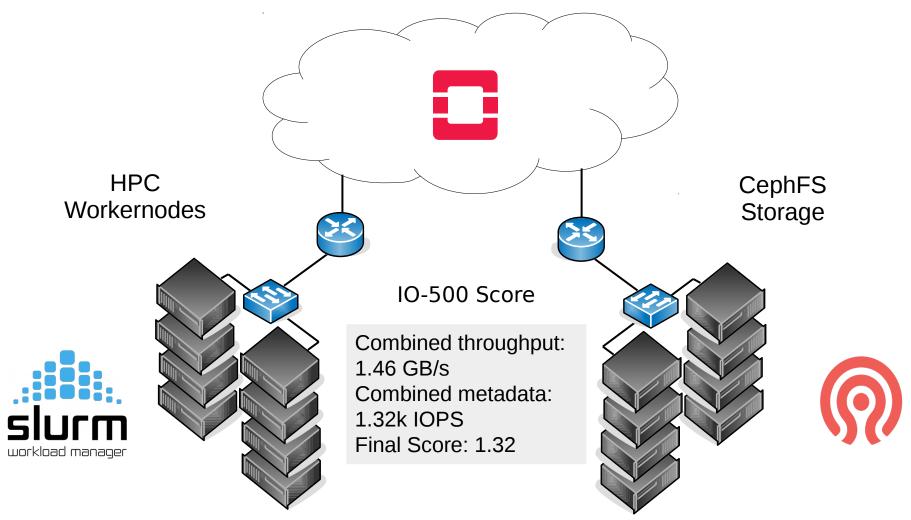
CERN Ceph Clusters		Size	Version
OpenStack Cinder/Glance	Production	5.5PB	luminous
Sate	llite data centre (1000km away)	1.6PB	luminous
	Hyperconverged KVM+Ceph	16TB	luminous
CephFS (HPC+Manila)	Production	0.8PB	luminous
	Client Scale Testing	0.4PB	luminous
	Hyperconverged HPC+Ceph	0.4PB	luminous
CASTOR/XRootD	Production	4.4PB	luminous
	CERN Tape Archive	0.8TB	luminous
S3+SWIFT	Production	2.3PB	luminous

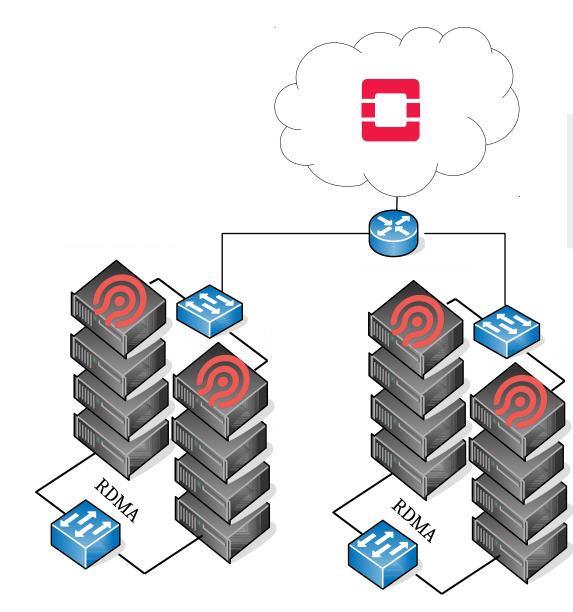
CERN ♥ CephFS


Benchmarking: IO500 score

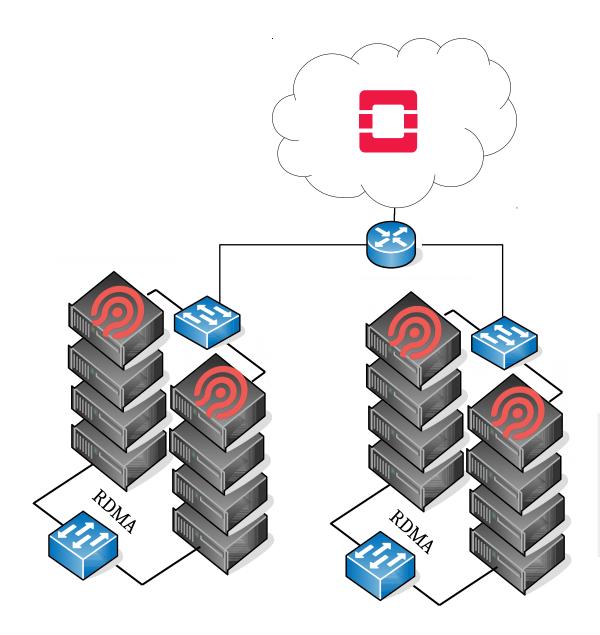
- IOR easy (throughput; independent parallel file I/O)
- IOR hard (throughput; shared parallel file I/O)
- Mdtest easy (metadata; independent metadata I/O)
- Mdtest hard (metadata, shared directory metadata I/O)

Final score is a geometric mean of workload performance results.



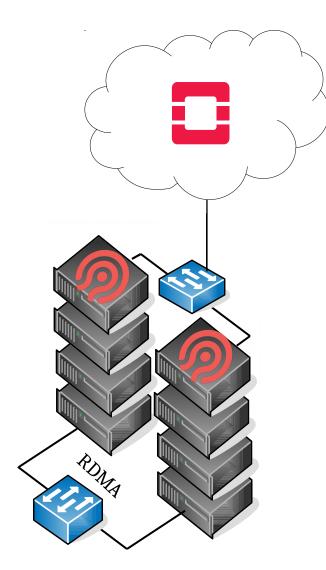

Initial design: Cloud mountpoints

IOR independent I/O 2.5GB/s



Initial design: Cloud mountpoints

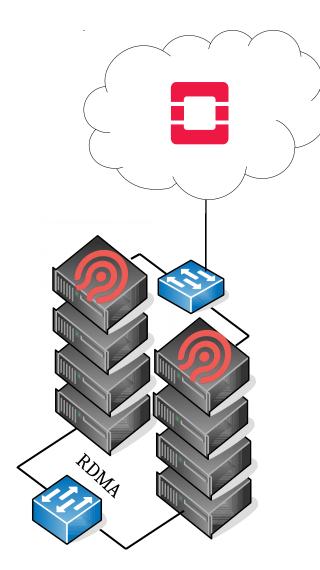
- Shared file POSIX consistency model
- Hyperconverged OSDs
- Hyperconverged MDSs
- 2x replication


- Shared file POSIX consistency model
- Hyperconverged OSDs
- Hyperconverged MDSs
- 2x replication

IO-500 Score

Combined throughput: 2.13 GB/s Combined metadata: 6.52k IOPS Final Score: 3.73

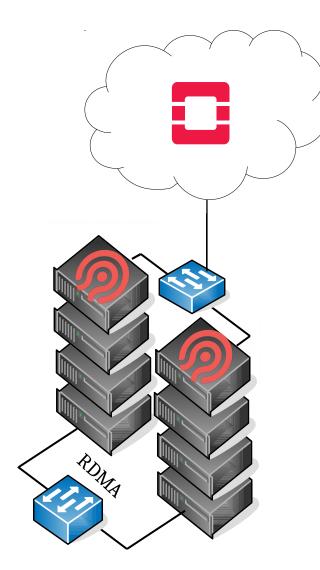
IOR independent I/O 3.7 GB/s


- Hyperconverged OSDs
- Hyperconverged MDSs
- 2x replication
- Shared file POSIX consistency model
- No routing in the data path

IO-500 Score

Combined throughput: 2.54 GB/s Combined metadata: 6.55k IOPS Final Score: 4.08

IOR independent I/O 4.01 GB/s


- Hyperconverged OSDs
- Hyperconverged MDSs
- 2x replication
- Shared file POSIX consistency model
- 3x MON, 3x MDS live in cloud
- No routing in the data path
- MDS pinning

IO-500 Score

Combined throughput: 2.72 GB/s Combined metadata: 8.43k IOPS Final Score: 4.79

mdtest independent I/O went from 12 kIOPS to 26 kIOPS

CephFS Luminous 12.2.9

- Hyperconverged OSDs
- Hyperconverged MDSs
- 2x replication
- Shared file POSIX consistency model
- 3x MON, 3x MDS live in cloud
- No routing in the data path
- 3 local MDSs
- Replace ceph-fuse by kernel client

IO-500 Score

Combined throughput: 2.82 GB/s Combined metadata: 14.49k IOPS Final Score: 6.39

File-level locking during collective I/O operations

[RESULT] BW phase 1 [RESULT] BW phase 2	ior_easy_write ior_hard_write	4.757 GB/s 0.838 GB/s
[RESULT] BW phase 3 seconds	ior_easy_read	7.562 GB/s : time 270.85
[RESULT] BW phase 4 seconds	ior_hard_read	2.104 GB/s : time 43.94
[RESULT] IOPS phase 1 seconds	mdtest_easy_write	9.137 kiops : time 200.90
[RESULT] IOPS phase 2 seconds	mdtest_hard_write	5.709 kiops : time 227.21
[RESULT] IOPS phase 3 seconds	find	146.550 kiops : time 17.47
[RESULT] IOPS phase 4 seconds	mdtest_easy_stat	58.724 kiops : time 25.93
[RESULT] IOPS phase 5 seconds	mdtest_hard_stat	27.526 kiops : time 49.22
[RESULT] IOPS phase 6 seconds	mdtest_easy_delete	5.392 kiops : time 239.88
[RESULT] IOPS phase 7 seconds	mdtest_hard_read	6.330 kiops : time 204.64
[RESULT] IOPS phase 8 seconds	mdtest_hard_delete	4.617 kiops : time 279.74
	GB/s : IOPS 14.4933 kiops : TOTA	L 40.90603

LAZY IO in CephFS is implemented for the FUSE client

In commit *c6d0c0* developed by *ukernel*

Merged in *master* but *master* is very far from what we are running in production

Patch is easily ported across versions

LAZY IO in CephFS is implemented for the FUSE client

In commit # developed by ukernel

Merged in master but master is very far from what we are running in production

Patch is easily ported across versions

[RESULT] BW phase 1	ior_easy_write	4.01 GB/s
[RESULT] BW phase 2	ior_hard_write	3.97 GB/s

Network locality: brought services closer together to reduce latency and increase throughput. Tuned crushmap.

MDS: MDS pinning vs Automatic scale-out and balancing.

Client implementation: Kernel has higher performance, ceph-fuse allows lazy I/O semantics.

Storage and Interconnect: Every workload was running on SATA SSDs and 10GbE.

We would expect a big performance boost from upgrading HW to NVMe and enabling RDMA.

Improve metadata locality: We usually only run 3 MDSs, so we could create a crush rule that moves the metadatapool closer to the MDSs.

System tuning. Kernel parameters, buffer/queue sizes, etc.

Questions and discussion

