
Awkward plans

Jim Pivarski

Princeton University – IRIS-HEP

July 10, 2019

1 / 12

Context

Awkward-array is the end of a long chain of ideas about columnar analysis:

2016 Femtocode was originally envisioned as a combined language, columnar processor,
and distributed processing system: a full-service package for physics.

• To be more realistic, I separated the language and columnar processing from the
distributed processing, leaving the latter to others.

2017 Shredtypes → Quiver (for Arrow) → OAMap were iterations on expressing an
abstract type system with an internal columnar representation.

• Uproot 2 had a “minimal columnar data type”: a JaggedArray class.

2018 Users found JaggedArrays useful despite the fact that it doesn’t hide the
columnar representation (this was a surprise to me).

• Awkward-array built the abstract type system to columnar representation in the
other direction: bottom-up, from physical arrays to abstract types.

2019 Awkward-array is the first in this series to be widely used; I’m getting a lot of
feedback from Coffea and uproot 3 users.

2 / 12

Up to now: one specification, many implementations

Four of my “ongoing projects” are different implementations of awkward, all to
adhere to the specification.adoc (which is now out of date).

aghast

awkward uproot-methods uproot

awkward-numba

awkward-cpp
Pandas extension
Michael Hedges

histboost-histogram

laurelin

awkward-cuda

Charlie Escott (GSoC)
Duy Nguyen

Hans Dembinski
Henry Schreiner

Henry Schreiner

Rami Kamalieddin?
Joosep Pata?

many

Pratyush Das
(IRIS-HEP fellow)

Andrew Melo

many

SkyHook

Jeff Lefevre

RForest

Jakob Blomer

toy languages

Gordon's group

3 / 12

Just finished a homogenization/documentation campaign

“Homogenization” because a common user
complaint is that methods defined on one class
(e.g. JaggedArray) don’t work on another
class (e.g. MaskedArray of JaggedArray).

While documenting (100 pages of examples), I
ensured that a suite of “high-level” methods
does something meaningful on every array class.

4 / 12

Problems

1. Writing the same method on 14 classes × 4 implementations is a problem
for developer FTEs now and maintainance later.
(Remember, I haven’t touched awkward-numba since February!)

2. Users need a better separation between high-level and low-level.

I Structural classes, such as ChunkedArray of VirtualArrays of X to
make array X lazy-loading, should be hidden.

I Named methods, like x.cross(y) meaning “cross-join,” compete for the
same namespace with column names and domain-specific methods, like
x.cross(y) meaning “3-D cross product.”

3. Too many features are opt-in. Numba integration will fail and Pandas
integration will have a subtle performance bug if the user doesn’t
import awkward.numba and import awkward.pandas first.

5 / 12

Solution to #1: implement at most twice

extern "C" interface

C++ classes Numba models

pybind11 of C++

Single Array class in Python

CPU functions GPU functions

inherits from Pandas's ExtensionDtype
registered as a type in Numba
lazy versions may be wrapped as Dask

operates on CPU pointers operates on GPU pointers
launches kernels internally

Put all CPU implementations behind a
stateless extern "C" interface.

I C++ classes (e.g. JaggedArray)
provide structure and ownership rules.

I Numba (e.g. JaggedArrayModel)
extensions associate Python classes in
@numba.jit functions with the
same implementations.

I Structure classes mirrored between
C++ and Python by pybind11.

I Structure classes hidden inside Array.

Maybe later write extern "C" functions
for GPU as well.

6 / 12

Solution to #2a: separation between high-level and low-level

Single Array class with a high-level type; narrow access to underlying structure.

>>> myarray

<Array [[1.1, 2.2, 3.3], [], [4.4, 5.5]] at 0x7fce7170bcf8>

>>> print(awkward.arraytype(array)) # datashape.readthedocs.io

3 * var * float64

>>> array.struct

JaggedArray([3, 99, 0], [5, 99, 3], [4.4, 5.5, 1.1, 2.2, 3.3])

The user only finds out that it is a JaggedArray, and not a lazy
JaggedArray, by digging into the structure classes provided by pybind11.

This also hides the starts=[3, 99, 0] and stops=[5, 99, 3].

7 / 12

Solution to #2b

It would be easier to implement and a cleaner API to put structure-manipulation
operations in free-standing functions like

awkward.cross([x, y, z]) # size of output known at the beginning

rather than

x.cross(y).cross(z) # have to make intermediate arrays

Apart from a single struct attribute and unnamed magic like __add__,
__array_ufunc__, etc., the Array class can be kept clear for columns and
domain-specific methods:

mydata.btag # field names as attributes
lorentzVectors.boost(others) # physics methods
vector3Ds.cross(others) # reduced ambiguity

In short, everything after the dot would be physics.
8 / 12

Solution to #3

Originally, I didn’t want to automatically register Numba types and automatically
make awkward arrays descend Pandas’s ExtensionDtype because importing
these libraries would add to the startup time, even if not used.

slow computer medium computer fast computer

import pandas 1.5 sec 0.35 sec 0.25 sec

import numba 1.0 sec 0.35 sec 0.20 sec

pandas and numpy 2.0 sec 0.60 sec 0.35 sec

“Slow computer” is 1.1 GHz, “medium” is 2.6 GHz. Most users will be fine.

9 / 12

Drawbacks of this plan

I The original Numpy-based implementation and partial
Numba-based one will have to be scrapped in favor of C++.

It served us well. The feedback we got from getting something
in front of users quickly was invaluable.

I A major change in API, even a good one, will require roll-out:
awkward 0.x → awkward 1.0.

Since we envisioned multiple awkward implementations, uproot
already has hooks for switching between alternatives.

I After Charle Escott’s GSoC ends, I’m the only developer.

It’s my time to learn C++11. :)

I I estimate about 6 months for this transition.

We already know it has a userbase.

10 / 12

Drawbacks of this plan

I The original Numpy-based implementation and partial
Numba-based one will have to be scrapped in favor of C++.
It served us well. The feedback we got from getting something
in front of users quickly was invaluable.

I A major change in API, even a good one, will require roll-out:
awkward 0.x → awkward 1.0.
Since we envisioned multiple awkward implementations, uproot
already has hooks for switching between alternatives.

I After Charle Escott’s GSoC ends, I’m the only developer.
It’s my time to learn C++11. :)

I I estimate about 6 months for this transition.
We already know it has a userbase.

10 / 12

Not-originally-intended advantage

By putting the primary implementation in C++, awkward-array
could be directly used by C++ projects.

I Easier to emit awkward arrays from ATHENA/CMSSW: e.g. for ServiceX.

I Could become a standard way to wrap C++ libraries for Pythonic analysis:
e.g. JaggedArray of 4-vectors → FastJet → JaggedArray of jets.

I Actually write production code with awkward-arrays, to transparently replace
CPUs with GPUs? (Giuseppe Cerati has been looking into this.)

11 / 12

My projected timeline

July: two more tutorials: CoDaS-HEP and DPF (a total of 7 this year!)

August: Charlie’s GSoC project finishes: learn as much as we can about
pybind11’s strengths and weaknesses

August: I finish the prototype SQL-for-events toy language

September: Strange Loop and working on fundamentals of awkward 1.0

October: Still working on awkward 1.0 and maybe go to PyHEP

November: CHEP and should be getting usable prototypes of awkward 1.0 to
Coffea for testing

December: Should be transitioning PyPI packages awkward0 and awkward

— — — then it’s the year 2020 — — —

12 / 12

