Inclusive radiative and leptonic B decays in the SM

Mikołaj Misiak
University of Warsaw
"New physics at the low-energy precision frontier", LPT Orsay, September 16-20th 2019

1. Introduction
2. Non-perturbative resolved photon effects in $\bar{B} \rightarrow X_{s} \gamma$
3. Status of the perturbative $b \rightarrow X_{s}^{p} \gamma$ calculations
4. Power-enhanced QED corrections to $B_{s, d} \rightarrow \ell^{+} \ell^{-}$
5. Updated SM predictions for $\mathcal{B}\left(B_{s, d} \rightarrow \ell^{+} \ell^{-}\right)$
6. Summary
$\boldsymbol{R}(\boldsymbol{D})$ and $\boldsymbol{R}\left(\boldsymbol{D}^{*}\right)$ "anomalies" [https://hflav.web.cern.ch] (3.1 σ)

$$
R\left(D^{(*)}\right)=\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \mu \bar{\nu}\right)
$$

$b \rightarrow s \ell^{+} \ell^{-}$"anomalies" $(>5 \sigma)$ [see, e.g., J. Aebischer et al., arXiv:1903.10434]

$$
\begin{aligned}
& Q_{9}^{\ell}= \frac{\mathrm{b}_{\mathrm{L}}}{\lambda} \gamma_{\alpha} / \mathrm{s}_{\mathrm{L}} \\
& Q_{10}^{\ell}= \frac{\lambda}{\mathrm{b}_{\mathrm{L}}} \gamma_{\alpha} \gamma_{5} / l \\
& \mathrm{~s}_{\mathrm{L}}
\end{aligned} \quad \begin{aligned}
& \ell=\boldsymbol{e} \text { or } \boldsymbol{\mu}
\end{aligned}
$$

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

$b \in \bar{B} \equiv\left(\bar{B}^{0}\right.$ or $\left.B^{-}\right)$

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

$$
b \in \bar{B} \equiv\left(\bar{B}^{0} \text { or } B^{-}\right)
$$

The inclusive $\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma$ decay rate for $\boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}$ is well approximated by the corresponding perturbative decay rate of the b-quark:

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow \boldsymbol{X}_{s}^{p} \gamma\right)+\binom{\text { non-perturbative effects }}{(5 \pm 3) \%}
$$

[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594]
[M. Benzke, S.J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099]
[A. Gunawardana and G. Paz, arXiv:1908.02812]
provided E_{0} is large ($E_{0} \sim m_{b} / 2$)
but not too close to the endpoint $\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)$.
Conventionally, $E_{0}=1.6 \mathrm{GeV} \simeq m_{b} / 3$ is chosen.

The effective weak interaction Lagrangian for $\bar{B} \rightarrow X_{s} \gamma$

$$
L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}
$$

Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$ when the NLO ${ }^{i}$ EW and/or CKM-suppressed effects are neglected:

The effective weak interaction Lagrangian for $\bar{B} \rightarrow X_{s} \gamma$

$$
L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}
$$

Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO ${ }^{i}$ EW and/or CKM-suppressed effects are neglected:

	photonic dipole	gluonic dipole	

$\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\left|C_{7}\left(\mu_{b}\right)\right|^{2} \Gamma_{77}\left(\boldsymbol{E}_{0}\right)+($ other $) \quad\left(\mu_{b} \sim m_{b} / 2\right)$
Optical theorem:
$\frac{d \Gamma_{77}}{d E_{\gamma}} \sim \operatorname{Im}\{\underbrace{\sim}_{X_{s}}$
J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399.
A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367.
$\underset{\text { the ring }}{\mathrm{OPE} \text { on }} \Rightarrow$ Non-perturbative corrections to $\Gamma_{77}\left(\boldsymbol{E}_{0}\right)$ form a series in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$ and α_{s} that begins with

$$
\frac{\mu_{\pi}^{2}}{m_{b}^{2}}, \frac{\mu_{G}^{2}}{m_{b}^{2}}, \frac{\rho_{D}^{3}}{m_{b}^{3}}, \frac{\rho_{L S}^{3}}{m_{b}^{3}, \ldots ;} \frac{\alpha_{s} \mu_{\pi}^{2}}{\left(m_{b}-2 E_{0}\right)^{2}}, \frac{\alpha_{s} \mu_{G}^{2}}{m_{b}\left(m_{b}-2 E_{0}\right)} ; \ldots,
$$

where $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ are extracted from the semileptonic $\bar{B} \rightarrow X_{c} e \bar{\nu}$ spectra and the $\boldsymbol{B}-\boldsymbol{B}^{\star}$ mass difference.

For operators other than Q_{7}, we encounter $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$ contributions from resolved photons (created away from the b-quark annihilation vertex):
S.J. Lee, M. Neubert, G. Paz, PRD 75 (2007) 114005, hep-ph/0609224,
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012, A. Gunawardana, G. Paz, arXiv:1908.02812.

For operators other than Q_{7}, we encounter $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$ contributions from resolved photons (created away from the b-quark annihilation vertex):
S.J. Lee, M. Neubert, G. Paz, PRD 75 (2007) 114005, hep-ph/0609224,
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.

Relative contributions to the branching ratio $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$ for $\boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$:

interference	ranges		"TH $1 \sigma "$	
	2010	2019	2010	2019
$Q_{7} Q_{8}$	$[-2.8,-0.3] \%$	$[-0.6,0.9] \%$	$(-1.55 \pm 1.25) \%$	$(0.16 \pm 0.74) \%$
	$[-0.3,1.9] \%$	no change	$(0.80 \pm 1.10) \%$	Belle Δ_{0-} no change $\left[Q_{7}-Q_{1,2}\right]^{\star}$
	$[-1.7,4.0] \%$	$[-0.3,1.6] \%$	$(1.15 \pm 2.85) \%$	

* excluding the leading $\mathcal{O}\left(\frac{\mu_{G}^{2}}{m_{c}^{2}}\right)$ contribution $(\sim+3.2 \%)$ [M.B. Voloshin, hep-ph/9612483], (...),
[G. Buchalla, G. Isidori and S.J. Rey, [hep-ph/9705253].

For operators other than Q_{7}, we encounter $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$ contributions from resolved photons (created away from the b-quark annihilation vertex):
S.J. Lee, M. Neubert, G. Paz, PRD 75 (2007) 114005, hep-ph/0609224,
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.

Relative contributions to the branching ratio $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$ for $\boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$:

interference	ranges		"TH 1 σ "		$\begin{aligned} & \Leftarrow \text { Belle } \Delta_{0-} \\ & \quad \text { arXiv:1807.04236v4 } \\ & \Leftarrow \text { arXiv:1908.02812 } \end{aligned}$
	2010	2019	2010	2019	
$\begin{gathered} Q_{7}-Q_{8} \\ Q_{8}-Q_{8} \\ {\left[Q_{7}-Q_{1,2}\right]^{\star}} \end{gathered}$	$\begin{gathered} {[-2.8,-0.3] \%} \\ {[-0.3,1.9] \%} \\ {[-1.7,4.0] \%} \end{gathered}$	$[-0.6,0.9] \%$ no change $[-0.3,1.6] \%$	$\begin{gathered} (-1.55 \pm 1.25) \% \\ (0.80 \pm 1.10) \% \\ (1.15 \pm 2.85) \% \end{gathered}$	$\begin{gathered} (0.16 \pm 0.74) \% \\ \text { no change } \\ (0.65 \pm 0.95) \% \end{gathered}$	
total	$[-4.8,5.6] \%$	$[-0.6,3.8] \%$	$(0.4 \pm 5.2) \%$	$(1.6 \pm 2.2) \%$	

* excluding the leading $\mathcal{O}\left(\frac{\mu_{G}^{2}}{m_{c}^{2}}\right)$ contribution $(\sim+3.2 \%)$ [M.B. Voloshin, hep-ph/9612483], (...),
[G. Buchalla, G. Isidori and S.J. Rey, [hep-ph/9705253].
2010: Errors added linearly. Vacuum Insertion Approximation (VIA) used for $Q_{7}-Q_{8}$.
2019 (MM): Errors added linearly for $Q_{7}-Q_{1,2}$ and $Q_{8}-Q_{8}$.
Then combined in quadrature with $Q_{7}-Q_{8}$ (uncorrelated).

For operators other than Q_{7}, we encounter $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$ contributions from resolved photons (created away from the b-quark annihilation vertex):
S.J. Lee, M. Neubert, G. Paz, PRD 75 (2007) 114005, hep-ph/0609224,
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.

Relative contributions to the branching ratio $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$ for $\boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$:

interference	ranges		"TH 1 σ "		$\begin{aligned} & \Leftarrow \text { Belle } \Delta_{0-} \\ & \quad \text { arXiv:1807.04236v4 } \\ & \Leftarrow \text { arXiv:1908.02812 } \end{aligned}$
	2010	2019	2010	2019	
$\begin{gathered} Q_{7}-Q_{8} \\ Q_{8}-Q_{8} \\ {\left[Q_{7}-Q_{1,2}\right]^{\star}} \end{gathered}$	$\begin{gathered} {[-2.8,-0.3] \%} \\ {[-0.3,1.9] \%} \\ {[-1.7,4.0] \%} \end{gathered}$	$[-0.6,0.9] \%$ no change $[-0.3,1.6] \%$	$\begin{gathered} (-1.55 \pm 1.25) \% \\ (0.80 \pm 1.10) \% \\ (1.15 \pm 2.85) \% \end{gathered}$	$\begin{gathered} (0.16 \pm 0.74) \% \\ \text { no change } \\ (0.65 \pm 0.95) \% \end{gathered}$	
total	$[-4.8,5.6] \%$	$[-0.6,3.8] \%$	$(0.4 \pm 5.2) \%$	$(1.6 \pm 2.2) \%$	

* excluding the leading $\mathcal{O}\left(\frac{\mu_{G}^{2}}{m_{c}^{2}}\right)$ contribution $(\sim+3.2 \%)$ [M.B. Voloshin, hep-ph/9612483], (..), ,
[G. Buchalla, G. Isidori and S.J. Rey, [hep-ph/9705253].
2010: Errors added linearly. Vacuum Insertion Approximation (VIA) used for $Q_{7}-Q_{8}$.
2019 (MM): Errors added linearly for $Q_{7}-Q_{1,2}$ and $Q_{8}-Q_{8}$.
Then combined in quadrature with $Q_{7}-Q_{8}$ (uncorrelated).
In the 2015 phenomenological update [arXiv:1503.01789, arXiv:1503.01791], $(0 \pm 5 \%)$ of $\mathcal{B}_{s \gamma}^{\text {SM }}$ was used, and combined in quadrature with other uncertainties: parametric ($\pm 2 \%$), higher-order $(\pm 3 \%)$, and m_{c}-interpolation $(\pm 3 \%)$. The current experimental accuracy is $\pm 4.5 \%$ [HFLAV].

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{78 \mathrm{res}}$

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{78 \mathrm{res}}$ Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$

Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{78 \mathrm{res}}$

Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$
$\Rightarrow \frac{\delta \Gamma_{78 \mathrm{res}} / \Gamma}{\Delta_{0-}} \simeq \frac{(B+C)\left(Q_{u}+Q_{d}\right)+2 D Q_{s}}{(C-B)\left(Q_{u}-Q_{d}\right)}=\frac{Q_{u}+Q_{d}}{Q_{d}-Q_{u}}\left[1+2 \frac{D-C}{C-B}\right]$

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{78 \mathrm{res}}$ Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$
$\Rightarrow \frac{\delta \Gamma_{78 \mathrm{res}} / \Gamma}{\Delta_{0-}} \simeq \frac{(B+C)\left(Q_{u}+Q_{d}\right)+2 D Q_{s}}{(C-B)\left(Q_{u}-Q_{d}\right)} \stackrel{Q_{u}+Q_{d}+Q_{s}=0}{\swarrow} \quad \frac{Q_{u}+Q_{d}}{Q_{d}-Q_{u}}[1+\overbrace{2 \frac{D-C}{C-B}}^{S U(3)_{F}}$ violation $\quad \stackrel{\text { MM, }}{\text { arXiv:0911.1651 }}$

The resolved photon contribution to the $Q_{7}-Q_{8}$ interference.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{78 \mathrm{res}}$

Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$
$\Rightarrow \quad \frac{\delta \Gamma_{78 \mathrm{res}} / \Gamma}{\Delta_{0-}} \simeq \frac{(B+C)\left(Q_{u}+Q_{d}\right)+2 D Q_{s}}{(C-B)\left(Q_{u}-Q_{d}\right)} \stackrel{Q_{u}+Q_{d}+Q_{s}=0}{\swarrow} \frac{Q_{u}+Q_{d}}{Q_{d}-Q_{u}}[1+\overbrace{2 \frac{D-C}{C-B}}^{S U(3)_{F} \text { violation }} \quad \begin{array}{l}\text { MM, }, \\ \text { arXiv:0911.1651 }\end{array}$
$\frac{\delta \Gamma_{78 \text { res }}}{\Gamma} \simeq-\frac{1}{3} \Delta_{0-}\left[1+2 \frac{D-C}{C-B}\right]=-\frac{1}{3}(\underbrace{-0.48 \pm 1.49 \pm 0.97 \pm 1.15}) \% \times(1 \pm 0.3)=(0.16 \pm 0.74) \%$ Belle, arXiv:1807.04236, $\boldsymbol{E}_{0}=1.9 \mathrm{GeV}$

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.
$\langle\overline{\boldsymbol{B}}|{ }_{2}^{\infty} \overbrace{2}|\overline{\boldsymbol{B}}\rangle \quad \frac{\Delta \mathcal{B}_{s \gamma}}{\mathcal{B}_{s \gamma}}=\frac{C_{2}-\frac{1}{6} C_{1}}{C_{7}} \frac{\Lambda_{17}}{m_{b}}$

$$
\Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-\boldsymbol{F}\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] \boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)
$$

$\omega_{1} \leftrightarrow$ gluon momentum, $\quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})$

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.
$\langle\overline{\boldsymbol{B}}| \underbrace{\infty}_{2}|\overline{\boldsymbol{B}}\rangle \quad \frac{\Delta \mathcal{B}_{s \gamma}}{\mathcal{B}_{s \gamma}}=\frac{C_{2}-\frac{1}{6} C_{1}}{C_{7}} \frac{\Lambda_{17}}{m_{b}}$

$$
\begin{aligned}
& \Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right) \\
& \omega_{1} \leftrightarrow \text { gluon momentum, } \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
\end{aligned}
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \ddot{h} i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for $h_{17}: \quad \boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)=e^{-\frac{\omega_{1}^{2}}{2 \sigma^{2}}} \sum_{n} \boldsymbol{a}_{2 n} \boldsymbol{H}_{2 n}\left(\frac{\omega_{1}}{\sigma \sqrt{2}}\right), \quad \sigma<1 \mathrm{GeV}$ Hermite polynomials

Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.
M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008 (2010) 099, arXiv:1003.5012,
A. Gunawardana, G. Paz, arXiv:1908.02812.

$$
\begin{aligned}
& \Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right) \\
& \omega_{1} \leftrightarrow \text { gluon momentum }, \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
\end{aligned}
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \nexists i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for $h_{17}: \quad \boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)=e^{-\frac{\omega_{1}^{2}}{2 \sigma^{2}}} \sum_{n} \boldsymbol{a}_{2 n} \boldsymbol{H}_{2 n}\left(\frac{\omega_{1}}{\sigma \sqrt{2}}\right), \quad \sigma<1 \mathrm{GeV}$ Hermite polynomials

Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity $P\left(E_{0}\right)$:
$\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right] E_{\gamma}>E_{0}}{\Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{u b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) K_{i j}}_{P\left(E_{0}\right)}$

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity $P\left(E_{0}\right)$:

$$
\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{u b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) K_{i j}}_{P\left(E_{0}\right)}
$$

Expansions of the Wilson coefficients and $K_{i j}$ in $\widetilde{\alpha}_{s} \equiv \frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}$:

$$
C_{i}\left(\mu_{b}\right)=C_{i}^{(0)}+\widetilde{\alpha}_{s} C_{i}^{(1)}+\widetilde{\alpha}_{s}^{2} C_{i}^{(2)}+\ldots
$$

$$
K_{i j}=K_{i j}^{(0)}+\widetilde{\alpha}_{s} K_{i j}^{(1)}+\widetilde{\alpha}_{s}^{2} K_{i j}^{(2)}+\ldots
$$

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity $P\left(E_{0}\right)$:

$$
\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{u b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) K_{i j}}_{P\left(E_{0}\right)}
$$

Expansions of the Wilson coefficients and $K_{i j}$ in $\widetilde{\alpha}_{s} \equiv \frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}$:
$C_{i}\left(\mu_{b}\right)=C_{i}^{(0)}+\widetilde{\alpha}_{s} C_{i}^{(1)}+\widetilde{\alpha}_{s}^{2} C_{i}^{(2)}+\ldots$
$K_{i j}=K_{i j}^{(0)}+\widetilde{\alpha}_{s} K_{i j}^{(1)}+\widetilde{\alpha}_{s}^{2} K_{i j}^{(2)}+\ldots$
Most important at the NNLO: $K_{77}^{(2)}, K_{27}^{(2)}$ and $K_{17}^{(2)}$.
They depend on $\frac{\mu_{b}}{m_{b}}, \delta=1-\frac{2 E_{0}}{m_{b}}$ and $z=\frac{m_{c}^{2}}{m_{b}^{2}}$.

Towards complete $K_{17}^{(2)}$ and $\boldsymbol{K}_{27}^{(2)}$ for arbitrary $\boldsymbol{m}_{\boldsymbol{c}} \quad\left[\mathrm{MM}\right.$, A. Rehman, M. Steinhauser, ...] $\left.\begin{array}{c}\text { in progress }\end{array}\right]$

Towards complete $K_{17}^{(2)}$ and $K_{27}^{(2)}$ for arbitrary $\boldsymbol{m}_{c} \quad$ [MM, A. Rehman, M. Steinhauser, ,..] in progress

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).

2. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).
3. Reduction to master integrals with the help of Integration By Parts (IBP).

	\sim 100GB nodes	\sim 1TB nodes
FIRE-6, arXiv:1901.07808	-	$-\rightarrow+$
Kira-1.2, arXiv:1812.01491	-	+

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).
2. Reduction to master integrals with the help of Integration By Parts (IBP).

	$\sim 100 \mathrm{~GB}$ nodes	$\sim 1 \mathrm{~TB}$ nodes
FIRE-6, arXiv:1901.07808	-	$-\rightarrow+$
Kira-1.2, arXiv:1812.01491	-	+

3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).
2. Reduction to master integrals with the help of Integration By Parts (IBP).

	$\sim 100 \mathrm{~GB}$ nodes	$\sim 1 \mathrm{~TB}$ nodes
FIRE-6, arXiv:1901.07808	-	$-\rightarrow+$
Kira-1.2, arXiv:1812.01491	-	+

3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $m_{c} \gg m_{b}$.

Towards complete $\boldsymbol{K}_{17}^{(2)}$ and $\boldsymbol{K}_{27}^{(2)}$ for arbitrary $\boldsymbol{m}_{\boldsymbol{c}} \quad$ [MM, A. Rehman, M. Steinhauser, ...] in progress

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).
2. Reduction to master integrals with the help of Integration By Parts (IBP).

	\sim 100GB nodes	~ 1 TB nodes
FIRE-6, arXiv:1901.07808	-	$-\rightarrow+$
Kira-1.2, arXiv:1812.01491	-	+

3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $m_{c} \gg m_{b}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions. Methods ...

Towards complete $\boldsymbol{K}_{17}^{(2)}$ and $\boldsymbol{K}_{27}^{(2)}$ for arbitrary $\boldsymbol{m}_{\boldsymbol{c}} \quad$ [MM, A. Rehman, M. Steinhauser, ...] in progress

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).
2. Reduction to master integrals with the help of Integration By Parts (IBP).

	\sim 100GB nodes	\sim 1TB nodes
FIRE-6, arXiv:1901.07808	-	$-\rightarrow+$
Kira-1.2, arXiv:1812.01491	-	+

3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $m_{c} \gg m_{b}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions. Methods...
6. Solving the system (*) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack] along an ellipse in the complex z plane. Doing so along several different ellipses allows us to estimate the numerical error.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.
As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.
As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.
As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$branching ratios need to be multiplied by

$$
\eta_{\mathrm{QED}}=0.993 \pm 0.004
$$

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.
As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$branching ratios need to be multiplied by

$$
\eta_{\mathrm{QED}}=0.993 \pm 0.004
$$

Thus, despite the $\frac{M_{B_{q}}}{\Lambda}$-enhancement, the effect is well within the previously estimated $\pm 1.5 \%$ non-parametric uncertainty.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.
As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop: https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$branching ratios need to be multiplied by

$$
\eta_{\mathrm{QED}}=0.993 \pm 0.004
$$

Thus, despite the $\frac{M_{B_{q}}}{\Lambda}$-enhancement, the effect is well within the previously estimated $\pm 1.5 \%$ non-parametric uncertainty.

However, it is larger than $\pm 0.3 \%$ due to scale-variation of the Wilson coefficient $C_{A}\left(\mu_{b}\right)$.

SM predictions for all the branching ratios $\overline{\mathcal{B}}_{q \ell} \equiv \overline{\mathcal{B}}\left(B_{q}^{0} \rightarrow \ell^{+} \ell^{-}\right)$ including 2-loop electroweak and 3-loop QCD matching at $\mu_{0} \sim m_{t}$ [C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, PRL 112 (2014) 101801]

$$
\begin{gathered}
\overline{\mathcal{B}}_{s e} \times 10^{14}=\eta_{\text {QED }}(8.54 \pm 0.13) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{s}, \\
\overline{\mathcal{B}}_{s \mu} \times 10^{9}=\eta_{\mathrm{QED}}(3.65 \pm 0.06) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{s}, \\
\overline{\mathcal{B}}_{s \tau} \times 10^{7}=\eta_{\mathrm{QED}}(7.73 \pm 0.12) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{s}, \\
\overline{\mathcal{B}}_{d e} \times 10^{15}=\eta_{\mathrm{QED}}(2.48 \pm 0.04) \boldsymbol{R}_{t \alpha} R_{d}, \\
\overline{\mathcal{B}}_{d \mu} \times 10^{10}=\eta_{\mathrm{QED}}(1.06 \pm 0.02) \boldsymbol{R}_{t \alpha} R_{d}, \\
\overline{\mathcal{B}}_{d \tau} \times 10^{8}=\eta_{\mathrm{QED}}(2.22 \pm 0.04) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{d},
\end{gathered}
$$

where

$$
\begin{aligned}
R_{t \alpha} & =\left(\frac{M_{t}}{173.1 \mathrm{GeV}}\right)^{3.06}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.18} \\
R_{s} & =\left(\frac{f_{B_{s}}[\mathrm{MeV}]}{227.7}\right)^{2}\left(\frac{\left|V_{c b}\right|}{0.0424}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t s} / V_{c b}\right|}{0.980}\right)^{2} \frac{\tau_{H}^{s}[\mathrm{ps}]}{1.615} \\
R_{d} & =\left(\frac{f_{B_{d}}[\mathrm{MeV}]}{190.5}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t d}\right|}{0.0088}\right)^{2} \frac{\tau_{d}^{\mathrm{av}}[\mathrm{ps}]}{1.519}
\end{aligned}
$$

Inputs from FLAG, arXiv:1902.08191, Figs. 23 and 33

Inputs from FLAG, arXiv:1902.08191, Figs. 23 and 33

$\longrightarrow 0.04200$ (64) from P. Gambino, K. J. Healey and S. Turczyk, arXiv:1606.06174.

Update of the input parameters

	2014 paper	this talk	source
$M_{t}[\mathrm{GeV}]$	$173.1(9)$	$172.9(4)$	PDG 2019, http://pdglive.lbl.gov
$\alpha_{s}\left(M_{Z}\right)$	$0.1184(7)$	$0.1181(11)$	arXiv:1907.01435
$f_{B_{s}}[\mathrm{GeV}]$	$0.2277(45)$	$0.2303(13)$	FLAG, arXiv:1902.08191
$f_{B_{d}}[\mathrm{GeV}]$	$0.1905(42)$	$0.1900(13)$	FLAG, arXiv:1902.08191
$\left\|V_{c b}\right\| \times 10^{3}$	$42.40(90)$	$42.00(64)$	inclusive, arXiv:1606.06174
$\left\|V_{t b}^{*} V_{t s} / /\left\|V_{c b}\right\|\right.$	$0.9800(10)$	$0.9819(5)$	derived from CKMfitter 2019, http://ckmfitter.in2p3.fr
$\left\|V_{t b}^{*} V_{t d}\right\| \times 10^{4}$	$88(3)$	$87.1_{-2.46}^{+0.86}$	CKMfitter 2019, http://ckmfitter.in2p3.fr
$\tau_{H}^{s}[\mathrm{ps}]$	$1.615(21)$	$1.615(9)$	HFLAV 2019, https://www.slac.stanford.edu/xorg/hflav
$\tau_{H}^{d}[\mathrm{ps}]$	$1.519(7)$	$1.520(4)$	HFLAV 2019, https://www.slac.stanford.edu/xorg/hflav
$\overline{\mathcal{B}}_{s \mu} \times 10^{9}$	$3.65(23)$	$3.64(14)$	
$\overline{\mathcal{B}}_{d \mu} \times 10^{10}$	$1.06(9)$	$1.02_{-0.06}^{+0.03}$	

Sources of uncertainties	$f_{B_{q}}$	CKM	τ_{H}^{q}	M_{t}	α_{s}	other parametric	non- parametric	\sum
$\overline{\mathcal{B}}_{s \ell}$	1.1%	3.1%	0.6%	0.7%	0.2%	$<0.1 \%$	1.5%	3.8%
$\overline{\mathcal{B}}_{d \ell}$	1.4%	$\left({ }_{-5.6}^{+2.0}\right) \%$	0.3%	0.7%	0.2%	$<0.1 \%$	1.5%	$\left({ }_{-5.9}^{+3.0}\right) \%$

LHC measurements of $\overline{\mathcal{B}}_{q \mu}$:

	$\overline{\mathcal{B}}_{s \mu} \times 10^{9}$	$\overline{\mathcal{B}}_{d \mu} \times 10^{10}$
LHCb, PRL $118(2017) 191801$	$3.0 \pm 0.6_{-0.2}^{+0.3}$	$1.5_{-1.0-0.1}^{+1.2+0.2}$
ATLAS, JHEP 1904 (2019) 098	$2.8_{-0.7}^{+0.8}$	-1.9 ± 1.6
CMS, PRL 111 (2013) 101804	$3.0_{-0.9}^{+1.0}$	$3.5_{-1.8}^{+2.1}$
CMS-PAS-BPH-16-004, Aug'19	$2.9_{-0.6}^{+0.7} \pm 0.2$	$0.8_{-1.3}^{+1.4}$

LHC measurements of $\overline{\mathcal{B}}_{q \mu}$:

	$\overline{\mathcal{B}}_{s \mu} \times 10^{9}$	$\overline{\mathcal{B}}_{d \mu} \times 10^{10}$
LHCb, PRL 118 (2017) 191801	$3.0 \pm 0.6_{-0.2}^{+0.3}$	$1.5_{-1.0-0.1}^{+1.2+0.2}$
ATLAS, JHEP 1904 (2019) 098	$2.8_{-0.7}^{+0.8}$	-1.9 ± 1.6
CMS, PRL 111 (2013) 101804	$3.0_{-0.9}^{+1.0}$	$3.5_{-1.8}^{+2.1}$
CMS-PAS-BPH-16-004, Aug'19	$2.9_{-0.6}^{+0.7} \pm 0.2$	$0.8_{-1.3}^{+1.4}$

Combination (with CMS from 2013) in Appendix A of arXiv:1903.10434:

Summary

- The Belle measurement of isospin asymmetry in $\bar{B} \rightarrow X_{s} \gamma$ helps to suppress non-perturbative uncertainties in the theoretical prediction for the branching ratio.

Summary

- The Belle measurement of isospin asymmetry in $\bar{B} \rightarrow X_{s} \gamma$ helps to suppress non-perturbative uncertainties in the theoretical prediction for the branching ratio.
- The very recent reanalysis of resolved photon contributions implies that the resulting uncertainty gets reduced by more than a factor of two.
- The Belle measurement of isospin asymmetry in $\bar{B} \rightarrow X_{s} \gamma$ helps to suppress non-perturbative uncertainties in the theoretical prediction for the branching ratio.
- The very recent reanalysis of resolved photon contributions implies that the resulting uncertainty gets reduced by more than a factor of two.
- Perturbative NNLO calculations of $\bar{B} \rightarrow X_{s} \gamma$ for arbitrary m_{c} are close to the point of completing the IBP reduction.
- The Belle measurement of isospin asymmetry in $\bar{B} \rightarrow X_{s} \gamma$ helps to suppress non-perturbative uncertainties in the theoretical prediction for the branching ratio.
- The very recent reanalysis of resolved photon contributions implies that the resulting uncertainty gets reduced by more than a factor of two.
- Perturbative NNLO calculations of $\bar{B} \rightarrow X_{s} \gamma$ for arbitrary m_{c} are close to the point of completing the IBP reduction.
- The accuracy of SM predictions for $B_{s} \rightarrow \ell^{+} \ell^{-}$has significantly improved, mainly due to more precise lattice determinations of the decay constants. Power-enhanced QED corrections have been identified and included.

BACKUP SLIDES

Goal: calculate the inclusive sum $\left.\sum_{X_{s}}\left|C_{7}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}$
The " 77 " term in this sum is "hard". It is related via the optical theorem to the imaginary part of the elastic forward scattering amplitude $\bar{B}(\vec{p}=0) \gamma(\vec{q}) \rightarrow \bar{B}(\vec{p}=0) \gamma(\vec{q})$:

When the photons are soft enough, $m_{X_{s}}^{2}=\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2} \Rightarrow$ Short-distance dominance \Rightarrow OPE. However, the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum is dominated by hard photons $\boldsymbol{E}_{\gamma} \sim m_{b} / 2$.

Once $\boldsymbol{A}\left(\boldsymbol{E}_{\gamma}\right)$ is considered as a function of arbitrary complex \boldsymbol{E}_{γ}, $\operatorname{Im} A$ turns out to be proportional to the discontinuity of A at the physical cut. Consequently,

$$
\int_{1 \mathrm{GeV}}^{E_{\gamma}^{\max }} d E_{\gamma} \operatorname{Im} A\left(E_{\gamma}\right) \sim \oint_{\text {circle }} d E_{\gamma} A\left(E_{\gamma}\right)
$$

Since the condition $\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2}$ is fulfilled along the circle,
 the OPE coefficients can be calculated perturbatively, which gives

$$
\left.A\left(E_{\gamma}\right)\right|_{\text {circle }} \simeq \sum_{j}\left[\frac{F_{\text {polynomial }}^{(j)}\left(2 E_{\gamma} / m_{b}\right)}{m_{b}^{n_{j}}\left(1-2 E_{\gamma} / m_{b}\right)^{k_{j}}}+\mathcal{O}\left(\alpha_{s}\left(\mu_{\text {hard }}\right)\right)\right]\langle\bar{B}(\vec{p}=0)| Q_{\text {local operator }}^{(j)}|\bar{B}(\vec{p}=0)\rangle
$$

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ / m_{b}.
At $\left(\Lambda / m_{b}\right)^{0}: \quad\langle\bar{B}(\vec{p})| \bar{b} \gamma^{\mu} b|\bar{B}(\vec{p})\rangle=2 p^{\mu} \quad \Rightarrow \quad \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)+\mathcal{O}\left(\Lambda / m_{b}\right)$.
At $\left(\Lambda / m_{b}\right)^{1}$: Nothing! All the possible operators vanish by the equations of motion.
At $\left(\Lambda / m_{b}\right)^{2}: \quad\langle\bar{B}(\vec{p})| \bar{b}_{v} D^{\mu} D_{\mu} b_{v}|\bar{B}(\vec{p})\rangle \sim m_{B} \mu_{\pi}^{2}$,

$$
\langle\bar{B}(\vec{p})| \bar{b}_{v} g_{s} G_{\mu \nu} \sigma^{\mu \nu} b_{v}|\bar{B}(\vec{p})\rangle \sim m_{B} \mu_{G}^{2},
$$

The HQET heavy-quark field: $b_{v}(x)=\frac{1}{2}(1+\not ้) b(x) \exp \left(i m_{b} v \cdot x\right)$ with $v=p / m_{B}$.

The same method has been applied to the 3-loop counterterm diagrams [MM, A. Rehman, M. Steinhauser, PLB 770 (2017) 431]

Master integrals:

Results for the bare NLO contributions up to $\mathcal{O}(\epsilon)$:

$\hat{G}_{27}^{(1) 2 P}=-\frac{92}{81 \epsilon}+f_{0}(z)+\epsilon f_{1}(z) \xrightarrow{z \rightarrow 0}-\frac{92}{81 \epsilon}-\frac{1942}{243}+\epsilon\left(-\frac{26231}{729}+\frac{259}{243} \pi^{2}\right)$

Dots: solutions to the differential equations and/or the exact $z \rightarrow 0$ limit. Lines: large- and small- z asymptotic expansions

Small-z expansions of $\hat{G}_{27}^{(1) 2 P}$:

f_{0} from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,
A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,
f_{1} from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.

Analogous results for the 3 -body final state contributions $(\delta=1)$:

$$
\hat{G}_{27}^{(1) 3 P}=g_{0}(z)+\epsilon g_{1}(z) \xrightarrow{z \rightarrow 0}-\frac{4}{27}-\frac{106}{81} \epsilon
$$

Dots: solutions to the differential equations and/or the exact $z \rightarrow 0$ limit.
Lines: exact result for g_{0}, as well as large- and small- z asymptotic expansions for g_{1}.
$g_{0}(z)= \begin{cases}-\frac{4}{27}-\frac{14}{9} z+\frac{8}{3} z^{2}+\frac{8}{3} z(1-2 z) s L+\frac{16}{9} z\left(6 z^{2}-4 z+1\right)\left(\frac{\pi^{2}}{4}-L^{2}\right), & \text { for } z \leq \frac{1}{4} \\ -\frac{4}{27}-\frac{14}{9} z+\frac{8}{3} z^{2}+\frac{8}{3} z(1-2 z) t A+\frac{16}{9} z\left(6 z^{2}-4 z+1\right) A^{2}, & \text { for } z>\frac{1}{4}\end{cases}$
where $s=\sqrt{1-4 z}, \quad L=\ln (1+s)-\frac{1}{2} \ln 4 z, \quad t=\sqrt{4 z-1}, \quad$ and $A=\arctan (1 / t)$.

Radiative tail in the dimuon invariant mass spectrum

Green vertical lines - experimental "blinded" windows [CMS and LHCb, Nature 522 (2015) 68] Red line - no real photon and/or radiation only from the muons. It vanishes when $\boldsymbol{m}_{\boldsymbol{\mu}} \boldsymbol{\rightarrow} \mathbf{0}$.
[A.J. Buras, J. Girrbach, D. Guadagnoli, G. Isidori, Eur.Phys.J. C72 (2012) 2172]
[S. Jadach, B.F.L. Ward, Z. Was, Phys.Rev. D63 (2001) 113009], Eq. (204) as in PHOTOS
Blue line - remainder due to radiation from the quarks. IR-safe because \boldsymbol{B}_{s} is neutral.
Phase-space suppressed but survives in the $\boldsymbol{m}_{\boldsymbol{\mu}} \rightarrow \mathbf{0}$ limit.
[Y.G. Aditya, K.J. Healey, A.A. Petrov, Phys.Rev. D87 (2013) 074028]
[D. Melikhov, N. Nikitin, Phys.Rev. D70 (2004) 114028]
Interference between the two contributions is negligible - suppressed both by phase-space and $\boldsymbol{m}_{\mu}^{2} / \boldsymbol{M}_{B_{s}}^{2}$.

