Neutrinoless double beta decay in effective field theory

with V. Cirigliano, J. de Vries, M.L. Graesser, E. Mereghetti, M. Piarulli, S. Pastore, B. van Kolck, A. Walker-Loud, B. Wiringa

Based on:

arXiv:1907.11254 ,1806.02780, 1710.01729, 1802.10097, 1710.05026, 1708.09390

Introduction

• Violates lepton number, $\Delta L=2$

Introduction

Introduction

Schechter, Valle, `82

Introduction

Schechter, Valle, `82

Introduction

Well-known Majorana mass mechanism

Introduction

•

Well-known Majorana mass mechanism

Heavy BSM mechanisms

- Many possible scenarios
 - Left-right model,
 - R-parity violating SUSY
 - Leptoquarks...

Introduction

•

Well-known Majorana mass mechanism

Heavy BSM mechanisms

- Many possible scenarios
 - Left-right model,
 - R-parity violating SUSY
 - Leptoquarks...
- How to describe all LNV sources systematically?

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	• 12 Δ L=2 operators $\begin{array}{c c} & 1: \psi^2 H^4 + \text{h.c.} \\ \hline \mathcal{O}_{LH} & \epsilon_{ij} \epsilon_{mn} (L^i C L^m) H^j H^n (H^{\dagger} H) \\ \hline & 3: \psi^2 H^3 D + \text{h.c.} \\ \hline \mathcal{O}_{LHDe} & \epsilon_{ij} \epsilon_{mn} (L^i C \gamma_\mu e) H^j H^m D^\mu H^n \\ \hline & 5: \psi^4 D + \text{h.c.} \\ \hline & 5: \psi^4 D + \text{h.c.} \\ \hline & 0_{LL\overline{d}uD} \\ \hline & 0_{LL\overline{d}uD} \\ \hline & 0_{LL\overline{d}uD} \\ \hline & 0_{U\overline{d}}^{(1)} \\ \hline & \epsilon_{ij} (\overline{d} \gamma_\mu u) (L^i C D^\mu L^j) \\ \hline & \epsilon_{ij} (\overline{d} \gamma_\mu u) (L^i C \sigma^{\mu\nu} D_\nu L^j) \\ \hline & (Q C \gamma_\mu d) (\overline{L} D^\mu d) \\ \hline & (\overline{Q} \gamma_\mu Q) (d C D^\mu d) \\ \hline & 0_{dd\overline{e}D} \\ \hline & (\overline{e} \gamma_\mu d) (d C D^\mu d) \\ \hline & (\overline{e} \gamma_\mu d) (d C D^\mu d) \\ \hline & 0_{dd\overline{e}D} \\ \hline \end{array}$	• Subset of operators constructed $LM1 = i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\LM2 = i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\LM3 = (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\LM4 = (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\LM5 = i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\LM6 = i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\LM7 = (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\LM9 = (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\LM10 = (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})$ LM11 = $(\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})$

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	• 12 Δ L=2 operators $\frac{1: \psi^2 H^4 + h.c.}{\mathcal{O}_{LH}} \xrightarrow{ij \epsilon_{mn} (L^i C L^m) H^j H^n (H^{\dagger} H)}$ $3: \psi^2 H^3 D + h.c.$ $\overline{\mathcal{O}_{LHDe}} \xrightarrow{\epsilon_{ij} \epsilon_{mn} (L^i C \gamma_\mu e) H^j H^m D^\mu H^n}$ $5: \psi^4 D + h.c.$ $\frac{\mathcal{O}_{LHDe}}{\mathcal{O}_{LLduD}} \xrightarrow{\epsilon_{ij} (\bar{d} \gamma_\mu u) (L^i C D^\mu L^j)}$ $\mathcal{O}_{LLduD}} \xrightarrow{\epsilon_{ij} (\bar{d} \gamma_\mu u) (L^i C \sigma^{\mu\nu} D_\nu L^j)}$ $\mathcal{O}_{LQdD}} \xrightarrow{(\bar{d} \gamma_\mu Q) (d C D^\mu d)}$ $\mathcal{O}_{dd\bar{e}D} \xrightarrow{(\bar{e} \gamma_\mu d) (d C D^\mu d)}$	• Subset of operators $LM1 = i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})$ $LM2 = i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})$ $LM3 = (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})$ $LM4 = (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})$ $LM5 = i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})$ $LM6 = i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})$ $LM7 = (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C})$ $LM8 = (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}d_{A})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})$ $LM10 = (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})$ $LM11 = (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})$ • But no complete basis

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16

Naive scaling of Dimension 5, 7, 9 operators

 \bullet

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda}\right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda}\right)^4 \frac{c_9}{c_5} \right]$$

 $(v/\Lambda \ll 1)$ So why keep dimension 7 & 9?

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda} \right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda} \right)^4 \frac{c_9}{c_5} \right]$$

 $v/\Lambda \ll 1$ So why keep dimension 7 & 9?

$$m_{
u} \sim c_5 v^2 / \Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to

• Happens, for example, in the left-right model (back-up slides)

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda} \right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda} \right)^4 \frac{c_9}{c_5} \right]$$

 $v/\Lambda \ll 1$) So why keep dimension 7 & 9?

$$m_{
u} \sim c_5 v^2 / \Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to

• Happens, for example, in the left-right model (back-up slides)

• However, if $c_5 = \mathcal{O}(1)$, $\Lambda = 10^{15} \,\text{GeV}$ dimension-7, -9 irrelevant in this case

Running/matching at the weak scale

• Mismatch in dimensions due to insertions of the Higgs vacuum expectation value

Induced by dimension-5 SU(2)-invariant operator $m_{etaeta}\sim v^2/\Lambda$

 $\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left\{ C_{\mathrm{VL},ij}^{(7)} \,\bar{u}_L \gamma^{\mu} d_L \,\bar{e}_{L,i} \,C \,i \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T + C_{\mathrm{VR},ij}^{(7)} \,\bar{u}_R \gamma^{\mu} d_R \,\bar{e}_{L,i} \,C \,i \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T \right\} + \mathrm{h.c.}$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \right) \,O_i + C_i^{(9)} \bar{e}\gamma_\mu \gamma_5 C \bar{e}^T \,O_i^\mu \right],$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \bigg[\bigg(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \bigg) O_i + C_i^{(9)} \bar{e}\gamma_\mu \gamma_5 C \bar{e}^T \,O_i^\mu \bigg],$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \right) O_i + C_i^{(9)} \bar{e} \gamma_\mu \gamma_5 C \bar{e}^T O_i^\mu \right],$$

 $C_i^{(9)} \sim v^5 / \Lambda^5$

Low-energy operators Dimension-9

- 3 can be induced by dimension-7 operators $~~C_i^{(9)} \sim v^3/\Lambda^3$

• 19 can be induced by dimension-9 operators

 ${\cal L}^{(9)}_{\Delta L^2}$

Low-energy operators Summary

Low-energy operators Summary

Low-energy operators Summary

Matching to Chiral EFT

 $\frac{M_{QCD}}{1 \, \mathrm{GeV}}$

In terms of nucleons, pions, leptons $\mathcal{L}_{\chi PT}(N,\pi,
u,e)$

Form of operators determined by chiral symmetry

The operators come with unknown constants (LECs)

Need a power-counting scheme

- Start by assuming Naive dimensional analysis (NDA)
- Will come back to whether it breaks down

Matching to Chiral EFT Dimension-3

 M_{QCD} 1 GeV M_{QCD} M_{QCD} M_{QCD} $M_{UL} \rightarrow U_L$ Chiral Effective Theory $M_{DL} \rightarrow U_L$ $M_{B\beta}$

Matching to Chiral EFT Dimension-3

Matching to Chiral EFT Dimension-3

- At LO in Weinberg counting, only need the nucleon one-body currents
 - The needed low-energy constants are the nucleon charges g_V , g_A
 - Known from experiment / Lattice QCD

Matching to Chiral EFT Dimension-6 and -7: vector & scalar

Matching to Chiral EFT Dimension-6 and -7: vector & scalar

- Needed low-energy constants are the (scalar, vector) nucleon charges
 - gV, gA, gS, gM
 - Known from experiment and/or Lattice QCD

Matching to Chiral EFT

Dimension-6: tensor, left-handed vector

dim-6 SM EFT' dU e ν_L M_{QCD} 1 GeV **Chiral Effective Theory** ν_L e p \mathcal{N}

Generate beta-decay like operators ۲

Matching to Chiral EFT

Dimension-6: tensor, left-handed vector

- Generate beta-decay like operators
- Also induce $\pi\pi$, π N, and NN interactions
 - Come with unknown LECs

Matching to Chiral EFT Dimension-9

 $\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \right) O_i + C_i^{(9)} \bar{e} \gamma_\mu \gamma_5 C \bar{e}^T \, O_i^\mu \right],$ Scalar dim-9 SM EFT' 11 U M_{QCD} 1 GeV **Chiral Effective Theory**

Matching to Chiral EFT Dimension-9

 $\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \right) \underbrace{O_i}_{i} C_i^{(9)} \bar{e}_{\gamma_\mu} \gamma_5 C \bar{e}^T \, O_i^\mu \right],$ Scalar dim-9 SM EFT' M_{QCD} 1 GeV **Chiral Effective Theory** Most scalar operators only induce $\pi\pi$ interactions • Known from Lattice QCD / SU(3) chiral symmetry

Nicholson et al.'18; Cirigliano et al. '17

Matching to Chiral EFT **Dimension-9**

 $\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \right) O_i \right] C_i^{(9)} \bar{e} \gamma_\mu \gamma_5 C \bar{e} O_i^\mu ,$ Scalar dim-9 SM EFT' U M_{QCD} 1 GeV **Chiral Effective Theory** nn٠

- Most scalar operators only induce $\pi\pi$ interactions
 - Known from Lattice QCD / SU(3) chiral symmetry
- One scalar structure + vector operators induce $\pi N \& NN$ terms •
 - The low-energy constants for the πN and NN interactions are unknown

Nicholson et al.'18; Cirigliano et al. '17

Kaplan, Savage, Wise, '96; Beane, Bedaque, Savage, van Kolck, '03, Nogga, Timmermans, van Kolck, '05, Long, Yang, '12;

Check that $\mathcal{A}(nn \rightarrow ppee)$ is finite

In MS-bar:

$$n \longrightarrow e^{p} = -\left(\frac{m_N}{4\pi}\right)^2 \left(1 + 2g_A^2\right) \frac{1}{2} \left(\log \frac{\mu^2}{-(|\mathbf{p}| + |\mathbf{p}'|)^2 + i0^+} + 1\right)$$

$$+\text{finite}$$
Regulator dependent

Numerical results

Need for a counter term

• Need a new contact interaction at leading order to get physical amplitudes: $\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \, \bar{p}n \, \bar{e}_L C \bar{e}_L^T$ $V_{NL} = V_{\nu} + V_{\nu} \, cT = v_{\nu}$

Need for a counter term

• Need a new contact interaction at leading order to get physical amplitudes: $\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \, \bar{p}n \, \bar{e}_L C \bar{e}_L^T$

- Finite part of g_{ν}^{NN} is currently unknown, hard to estimate its impact
 - Could be determined from a lattice calculation of $\mathcal{A}(nn \to ppe^-e^-)$
 - Estimate from relation to EM (back-up slides)
 - ~10-30% contribution in $\mathcal{A}(nn \to ppe^-e^-)$
 - ~60% in light nuclei, ${}^{12}\text{Be} \rightarrow {}^{12}\text{C}e^-e^-$

• In the Majorana-mass case, the LNV potential leads to a divergence

• Due to the potential at large momenta $V_{\Delta L=2} \sim 1/ec{q}^2$

• In the Majorana-mass case, the LNV potential leads to a divergence

• Due to the potential at large momenta $V_{\Delta L=2} \sim 1/\vec{q}^2$

In the Majorana-mass case, the LNV potential leads to a divergence

• Due to the potential at large momenta $V_{\Delta L=2} \sim 1/\vec{q}^2$

Dimension-6,7,9

- Several potentials have the same behavior $\begin{array}{ccc} C^{(6)}_{VL,VB} & V_{\Delta L=2} \sim 1/\bar{q}^2 \\ C^{(9)}_{1-9} & V_{\Delta L=2} \sim \frac{1}{\bar{q}^2 + m_\pi^2} \end{array}$
 - The case for the vector operators

· In the Majorana-mass case, the LNV potential leads to a divergence

• Due to the potential at large momenta $V_{\Delta L=2} \sim 1/ec{q}^2$

Dimension-6,7,9

- Several potentials have the same behavior
 - The case for the vector operators

$$C_{VL,VR}^{(6)}: \quad V_{\Delta L=2} \sim 1/\bar{q}^2$$

$$C_{1-9}^{(9)}: \quad V_{\Delta L=2} \sim \frac{1}{\bar{q}^2 + m_\pi^2}$$

· In the Majorana-mass case, the LNV potential leads to a divergence

• Due to the potential at large momenta $V_{\Delta L=2} \sim 1/ec{q}^2$

Dimension-6,7,9

- · Several potentials have the same behavior
 - The case for the vector operators

$$C_{VL,VR}^{(6)}: \quad V_{\Delta L=2} \sim 1/\vec{q}^2$$

$$C_{1-9}^{(9)}: \quad V_{\Delta L=2} \sim \frac{1}{\vec{q}^2 + m_\pi^2}$$

- Need to include contact interactions at LO in these cases
 - Often disagrees with the Weinberg / NDA counting

Chiral EFT NDA / Weinberg

Chiral EFT Beyond NDA / Weinberg

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) | 0^+ \rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) | 0^+ \rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) \left| 0^+ \right\rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown
- Phase space factors coming from the leptonic parts
 - Accurately calculated

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) \left| 0^+ \right\rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown
- Phase space factors coming from the leptonic parts
 - Accurately calculated
- Nuclear matrix elements
 - Evaluation requires many-body methods

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) | 0^+ \rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown
- Phase space factors coming from the leptonic parts
 - Accurately calculated
- Nuclear matrix elements
 Evaluation requires many-body methods

Nuclear matrix elements

l	 All NMEs can be obtained from those of light/heavy neutrino exchange

- 9 long-distance & 6 short-distance
- Have been determined in literature
- Follow ChiPT expectations fairly well
 E.g. all O(1) and

$$\begin{split} M_{GT,sd}^{PP} &= -\frac{1}{2} M_{GT,sd}^{AP} - M_{GT}^{PP} , \qquad M_{T,sd}^{PP} = -\frac{1}{2} M_{T,sd}^{AP} - M_{T}^{PP} , \\ M_{GT,sd}^{AP} &= -\frac{2}{3} M_{GT,sd}^{AA} - M_{GT}^{AP} , \qquad M_{GT}^{MM} = \frac{g_M^2 m_\pi^2}{6g_A^2 m_N^2} M_{GT,sd}^{AA} , \end{split}$$

NMEs		⁶ Ge						
	[74]	[31]	[81]	[82, 83]				
M_F	-1.74	-0.67	-0.59	-0.68				
M_{GT}^{AA}	5.48	3.50	3.15	5.06				
M_{GT}^{AP}	-2.02	-0.25	-0.94	NMEs		7	⁶ Ge	
M_{GT}^{PP}	0.66	0.33	0.30	$M_{F, sd}$	-3.46	-1.55	-1.46	-1.1
M_{GT}^{MM}	0.51	0.25	0.22	$M^{AA}_{GT,sd}$	11.1	4.03	4.87	3.62
M_T^{AA}	-	_	-	$M^{AP}_{GT,sd}$	-5.35	-2.37	-2.26	-1.37
M_T^{AP}	-0.35	0.01	-0.01	$M^{PP}_{GT,sd}$	1.99	0.85	0.82	0.42
M_T^{PP}	0.10	0.00	0.00	$M^{AP}_{T,sd}$	-0.85	0.01	-0.05	-0.97
M_T^{MM}	-0.04	0.00	0.00	$M^{PP}_{T,sd}$	0.32	0.00	0.02	0.38

Nuclear matrix elements

- All NMEs can be obtained from those of light/heavy neutrino exchange
 - 9 long-distance & 6 short-distance
 - Have been determined in literature
- Follow ChiPT expectations fairly well
 E.g. all O(1) and

$$\begin{split} M_{GT,sd}^{PP} &= -\frac{1}{2} M_{GT,sd}^{AP} - M_{GT}^{PP} , \qquad M_{T,sd}^{PP} = -\frac{1}{2} M_{T,sd}^{AP} - M_{T}^{PP} , \\ M_{GT,sd}^{AP} &= -\frac{2}{3} M_{GT,sd}^{AA} - M_{GT}^{AP} , \qquad M_{GT}^{MM} = \frac{g_M^2 m_\pi^2}{6g_A^2 m_N^2} M_{GT,sd}^{AA} , \end{split}$$

NMEs		7	⁶ Ge					
	[74]	[31]	[81]	[82, 83]				
M_F	-1.74	-0.67	-0.59	-0.68				
M_{GT}^{AA}	5.48	3.50	3.15	5.06				1
M_{GT}^{AP}	-2.02	-0.25	-0.94	NMEs		7	⁶ Ge	
M_{GT}^{PP}	0.66	0.33	0.30	$M_{F, sd}$	-3.46	-1.55	-1.46	-1.1
M_{GT}^{MM}	0.51	0.25	0.22	$M^{AA}_{GT,sd}$	11.1	4.03	4.87	3.62
M_T^{AA}	-	-	-	$M^{AP}_{GT,sd}$	-5.35	-2.37	-2.26	-1.37
M_T^{AP}	-0.35	0.01	-0.01	$M^{PP}_{GT,sd}$	1.99	0.85	0.82	0.42
M_T^{PP}	0.10	0.00	0.00	$M^{AP}_{T,sd}$	-0.85	0.01	-0.05	-0.97
M_T^{MM}	-0.04	0.00	0.00	$M^{PP}_{T,sd}$	0.32	0.00	0.02	0.38

- The NMEs differ by a factor 2-3 between methods
 - For Majorana-mass term & other LNV sources

Barea et al. '15; Hyvarinen et al, '15; Horoi et al. '17, Menendez et al, '18

Wouter Dekens, LPT Orsay, 17/9/19

Phenomenology

Current limits

• Assumes $C_i = v^3 / \Lambda^3$

Current limits

• Assumes $C_i = v^5 / \Lambda^5$

•

Current limits

Two-coupling analysis

Summary

Summary

- Matching to chiral EFT involves unknown LECs
 - Several more required by renormalization
 - Can in principle be determined from LQCD
- Needed Nuclear Matrix Elements determined in literature

Summary

- Several more required by renormalization
- Can in principle be determined from LQCD
- Needed Nuclear Matrix Elements determined in literature

- Limits on higher-dimensional operators probe
 - O(1-10) TeV scales for dim-9
 - O(100) TeV scales for dim-7
- Order 1 uncertainties
 - Unknown LECs + NMEs

Wouter Dekens, LPT Orsay, 17/9/19

Back up slides

Wouter Dekens, LPT Orsay, 17/9/19

Low energy constants

Nicholson et al.'18

Wouter Dekens, LPT Orsay, 17/9/19

Disentangling operators

Disentangling operators

What if a $0\nu\beta\beta$ signal is measured?

- Measurement in a single isotope could be due to any operator
- Could measure the rate in several nuclei, however
 - Different isotopes have similar sensitivity to LNV

Disentangling operators What if a $0\nu\beta\beta$ signal is measured?

- Measurement in a single isotope could be due to any operator
- Could measure the rate in several nuclei, however
 - Different isotopes have similar sensitivity to LNV

Instead look at angular & energy distributions of the

Disentangling operators

What if a $0\nu\beta\beta$ signal is measured?

Disentangling operators

What if a $0\nu\beta\beta$ signal is measured?

Why keep Dimension 7 and 9?

Effective Field Theory

Naive scaling of Dimension 5, 7, 9 operators

 \bullet

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda}\right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda}\right)^4 \frac{c_9}{c_5} \right]$$

 $(v/\Lambda \ll 1)$ So why keep dimension 7 & 9?

Effective Field Theory

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda} \right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda} \right)^4 \frac{c_9}{c_5} \right]$$

 $v/\Lambda \ll 1$ So why keep dimension 7 & 9?

$$m_{
u} \sim c_5 v^2 / \Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to

• Happens, for example, in the left-right model

Effective Field Theory

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda} \right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda} \right)^4 \frac{c_9}{c_5} \right]$$

 $v/\Lambda \ll 1$ So why keep dimension 7 & 9?

$$m_{
u} \sim c_5 v^2 / \Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to

$$c_{7,9}/c_5 \gg 1$$

- Happens, for example, in the left-right model
- However, if $c_5 = \mathcal{O}(1)$, $\Lambda = 10^{15} \, \mathrm{GeV}$ dimension-7, -9 irrelevant in this case

Wouter Dekens, LPT Orsay, 17/9/19

Chiral scalings

Chiral EFT The potential

Can finally derive the potential and amplitude

$$\mathcal{A} = \langle 0^+ | \sum_{m,n} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} V(\mathbf{q}^2) | 0^+ \rangle$$

$$V(\mathbf{q}^2) = V_3(\mathbf{q}^2) + V_6(\mathbf{q}^2) + V_7(\mathbf{q}^2) + V_9(\mathbf{q}^2)$$

Chiral EFT The potential

Can finally derive the potential and amplitude

$$\mathcal{A} = \langle 0^+ | \sum_{m,n} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} V(\mathbf{q}^2) | 0^+ \rangle$$

$$V(\mathbf{q}^2) = V_3(\mathbf{q}^2) + V_6(\mathbf{q}^2) + V_7(\mathbf{q}^2) + V_9(\mathbf{q}^2)$$

- The dimension-seven and -nine operators are suppressed by Λ_χ/v

Chiral EFT The potential

Can finally derive the potential and amplitude

$$\mathcal{A} = \langle 0^+ | \sum_{m,n} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} V(\mathbf{q}^2) | 0^+ \rangle$$

$$V(\mathbf{q}^2) = V_3(\mathbf{q}^2) + V_6(\mathbf{q}^2) + V_7(\mathbf{q}^2) + V_9(\mathbf{q}^2)$$

- The dimension-seven and -nine operators are suppressed by Λ_χ/v

- Several operators are suppressed by two or three powers of $\,\epsilon_\chi = m_\pi/\Lambda_\chi$

Chiral EFT The potential

Can finally derive the potential and amplitude

$$\mathcal{A} = \langle 0^+ | \sum_{m,n} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} V(\mathbf{q}^2) | 0^+ \rangle$$

$$V(\mathbf{q}^2) = V_3(\mathbf{q}^2) + V_6(\mathbf{q}^2) + V_7(\mathbf{q}^2) + V_9(\mathbf{q}^2)$$

- The dimension-seven and -nine operators are suppressed by Λ_{χ}/v

• Several operators are suppressed by two or three powers of $\epsilon_{\chi} = m_{\pi}/\Lambda_{\chi}$

- Scaling of Wilson coefficients needed to see which are important •
 - To be determined in explicit models of new physics

The appearance of the photon propagator allows one to relate the two!

• Only two $\Delta I=2$ operators can be induced $O_1 = \bar{N} Q_L N \bar{N} Q_L N - \frac{\text{Tr } Q_L^2}{6} \bar{N} \vec{\tau} N \bar{N} \vec{\tau} N + (L \to R)$ $\mathcal{Q}_{IL} = u$

$$O_2 = \bar{N}\mathcal{Q}_L N \,\bar{N}\mathcal{Q}_R N - \frac{\operatorname{Tr}\mathcal{Q}_L \mathcal{Q}_R}{6} \bar{N}\vec{\tau}N \,\bar{N}\vec{\tau}N + (L \leftrightarrow R)$$

with spurions $Q_L = u^{\dagger}Q_L u, \ Q_R = uQ_R u^{\dagger},$ $u = \exp(i\pi \cdot \tau/2F_{\pi})$

• Only two $\Delta I=2$ operators can be induced $O_{1} = \bar{N}Q_{L}N\bar{N}Q_{L}N - \frac{\operatorname{Tr}Q_{L}^{2}}{6}\bar{N}\vec{\tau}N\bar{N}\vec{\tau}N + (L \to R)$ $O_{2} = \bar{N}Q_{L}N\bar{N}Q_{R}N - \frac{\operatorname{Tr}Q_{L}Q_{R}}{6}\bar{N}\vec{\tau}N\bar{N}\vec{\tau}N + (L \leftrightarrow R)$ $u = \exp(i\pi \cdot \tau/2F_{\pi})$ with spurions $u = \exp(i\pi \cdot \tau/2F_{\pi})$

EMLNV $\mathcal{L}_{em} = e^2/4 \left(C_1 O_1 + C_2 O_2 \right)$ $\mathcal{L}_{LNV} = g_{\nu}^{NN} G_F^2 m_{\beta\beta} O_1 \bar{e} e^c$ $Q_L = Q_R = \tau^3/2$ $Q_L = \tau^+, \quad Q_R = 0$

• Only two $\Delta I=2$ operators can be induced

$$O_{1} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{L}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}^{2}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \to R)$$

$$O_{2} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{R}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}\mathcal{Q}_{R}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \leftrightarrow R)$$

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$
with spurions

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$

• Only two $\Delta I=2$ operators can be induced

$$O_{1} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{L}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}^{2}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \to R)$$

$$O_{2} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{R}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}\mathcal{Q}_{R}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \leftrightarrow R)$$

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$
with spurions

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$

• $\Delta I=2$ in NN scattering

- Charge-independence breaking $(a_{nn} + a_{pp})/2 a_{np}$
 - From photon exchange & the pion mass difference
 - $C_1 + C_2$ (needed at LO in isospin breaking)

• $\Delta I=2$ in NN scattering

- Charge-independence breaking $(a_{nn} + a_{pp})/2 a_{np}$
 - From photon exchange & the pion mass difference
 - $C_1 + C_2$ (needed at LO in isospin breaking)

- Allows an estimate of g_{ν}^{NN}

- Extract $C_1 + C_2$ from CIB
- Assume $g_{\nu}^{NN}(\mu) = \frac{C_1(\mu) + C_2(\mu)}{2}$
- Roughly 10% effect for Rs = 0.6 fm
- Uncontrolled error

ΔI=2 in NN scattering

- Charge-independence breaking $(a_{nn} + a_{pp})/2 a_{np}$
 - From photon exchange & the pion mass difference
 - $C_1 + C_2$ (needed at LO in isospin breaking)

- Allows an estimate of $g_{
 u}^{NN}$
 - Extract $C_1 + C_2$ from CIB
 - Assume $g_{\nu}^{NN}(\mu) = \frac{C_1(\mu) + C_2(\mu)}{2}$
 - Roughly 10% effect for Rs = 0.6 fm
 - Uncontrolled error

Estimate of impact in light nuclei

Estimate of impact

M. Piarulli, R. Wiringa, S. Pastore

- Combine estimate $g_{\nu} = (C_1 + C_2)/2$
- With wavefunctions:
 - From Chiral potential M. Piarulli et. al. '16
 - Obtained from AV18 potential
 R. Wiringa, Stoks, Schiavilla, '95

Estimate of impact

M. Piarulli, R. Wiringa, S. Pastore

- Combine estimate $g_{\nu} = (C_1 + C_2)/2$
- With wavefunctions:
 - From Chiral potential M. Piarulli et. al. '16
 - Obtained from AV18 potential
 R. Wiringa, Stoks, Schiavilla, '95

- ~10% effect in ⁶He \rightarrow ⁶Be
- ~60% effect in ${}^{12}\text{Be} \rightarrow {}^{12}\text{C}$
 - Due to presence of a node
 - Feature in realistic $0\nu\beta\beta$ candidates

Example: The left-right model

In Left-Right models:

- SM gauge symmetry is extended to $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$
- Allows for parity or charge-conjugation to be restored at high energies
- Explains neutrino masses through the see-saw mechanism (Type-I & Type-II)

In Left-Right models:

- SM gauge symmetry is extended to $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$
- Allows for parity or charge-conjugation to be restored at high energies
- Explains neutrino masses through the see-saw mechanism (Type-I & Type-II)

 New Fields: 	
 Right-handed bosons 	W_R, Z_R
 Right-handed neutrinos 	$ u_R$
 Heavy new scalars 	δ_R^{++}

In Left-Right models:

- SM gauge symmetry is extended to $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$
- Allows for parity or charge-conjugation to be restored at high energies
- Explains neutrino masses through the see-saw mechanism (Type-I & Type-II)

		Violates lepton number		
 New Fields: Right-handed bosons Right-handed neutrinos Heavy new scalars 	$W_R, \\ \nu_R \\ \delta_R^{++}$	Z_R		-

H

 ν_L

H

 u_L

 ν_L

e

$$m_{W_R} = 4.5 \,\text{TeV}, \qquad m_{\nu_R} = 10 \,\text{TeV}, \qquad m_{\delta_R^{++}} = 4 \,\text{TeV}$$

Assume right-handed neutrino mixing follows the PMNS matrix

- Mild effect on NH (due to dim-9)
- Negligible effect in IH case, dim-5 terms dominate
 - Due to chiral suppression of the induced dim-6,7,9 operators

Not excluded by collider

$$m_{W_R} = 4.5 \,\text{TeV}, \qquad m_{\nu_R} = 10 \,\text{GeV}, \qquad m_{\delta_R^{++}} = 4 \,\text{TeV}$$

Assume right-handed neutrino mixing follows the PMNS matrix

