Semi-leptonic $B_{(s)}$ decays on the lattice

Justus Tobias Tsang

in collaboration with: J. Flynn, R. Hill, A. Jüttner, A. Soni, O. Witzel

RBC-UKQCD Collaborations

based on arXiv:1903.02100 (publication in preparation)

New physics at the low-energy precision frontier - LPT, Orsay

18 September 2019

THE UNIVERSITY of EDINBURGH

1/33

Outline

Motivation

- 2 Semi-leptonic B_(s) decays
 - $B_s \to K \ell \nu$
 - $B_s \rightarrow D_s \ell \nu$
 - z-expansions
- 3 Related Heavy Quark projects by RBC/UKQCD

4 Summary and Outlook

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

How to find New Physics?

Direct searches:

- ⇒ Bump in the spectrum
 Indirect searches:
 Precision Frontier:
 → Quantum corrections due to new particles modify SM predictions
 → NP shows as discrepancy between experiment and theory
 - \Rightarrow Over-constrain SM

• Huge experimental efforts:

Belle II at SuperKEKB, Tsukuba

First collision on 26/04/2018

LHC at CERN, Geneva

and CLEO-c, BaBar, BESIII, ...

(日)

- Huge experimental efforts: \Rightarrow LHC, Belle II, BESIII, ...
- Less explored than light quark sector

Absolute values (PDG 2018)								
(0.97420(21) 0.218(4) 0.0081(5)	0.2243(5) 0.997(17) 0.0394(23)	0.00394(36) 0.0422(8) 1.019(25))				

Current uncertainties (PDG 2018)
$$\frac{|\delta V_{CKM}|}{|V_{CKM}|} = \begin{pmatrix} 0.02 & 0.22 & 9.1 \\ 1.8 & 1.7 & 1.9 \\ 6.2 & 5.8 & 2.5 \end{pmatrix}\%$$

コン・ハリン・

- Huge experimental efforts:
 ⇒ LHC, Belle II, BESIII, ...
- Less explored than light quark sector
- Over-constrain the same CKM matrix elements from independent processes via (semi-)leptonic decays

- Huge experimental efforts:
 ⇒ LHC, Belle II, BESIII, ...
- Less explored than light quark sector
- Over-constrain the same CKM matrix elements from independent processes via (semi-)leptonic decays
 ⇒ address inclusive vs exclusive

Image: A image: A

- Huge experimental efforts: \Rightarrow LHC. Belle II. BESIII. . . .
- Less explored than light quark sector
- Over-constrain the same CKM matrix elements from independent processes via (semi-)leptonic decays \Rightarrow address inclusive vs exclusive
- Lepton Flavour Universality Violations?

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})} \quad (\ell = e, \mu)$$

Semi-leptonic $B_{(s)}$ decays on the lattice

J Tobias Tsang (University of Edinburgh)

How to extract CKM matrix elements?

experiment $\approx \text{CKM} \times \text{non} - \text{pert.} \times \text{known factors}$

$$\frac{dI\left(P \to D\ell\nu_{\ell}\right)}{dq^2} \approx |V_{q_2q_1}|^2 \times \left[\left|f_+(q^2)\right|^2 \mathcal{K}_1 + \left|f_0(q^2)\right|^2 \mathcal{K}_2\right]$$

Semi-leptonic $B_{(s)}$ decays on the lattice

5/33

Non-Perturbative Physics and Lattice QCD

Source: PDG

 BG/Q in Edinburgh

 \Rightarrow Large scale computing facilities

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- At low energy scales perturbative methods fail
- Lattice QCD simulations provides first principle precision predictions for phenomenology
- Calculations need to be improved for observables where the error is dominated by **non-perturbative physics**...

Lattice QCD methodology

Wick rotate $(t \rightarrow i\tau)$ Path Integral to Euclidean space:

$$\langle \mathcal{O} \rangle_{\mathsf{E}} = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}] \mathcal{D}[U] \mathcal{O}[\psi, \overline{\psi}, U] e^{-S_{\mathsf{E}}[\psi, \overline{\psi}, U]}$$

Introducing lattice renders PI large **but finite** dimensional.

- Finite lattice spacing a ⇒ UV regulator
- Finite Box of length L
 ⇒ IR regulator
- ⇒ Calculate PI explicitly via Monte Carlo sampling:

b-physics on the lattice - disparity of scales

Control IR (Finite Size Effects) and UV (discretisation) effects

$$m_\pi L\gtrsim 4$$

 $a^{-1}\gg$ Mass scale of interest

For $m_{\pi}=m_{\pi}^{\mathrm{phys}}\sim 140\,\mathrm{MeV}$ and $m_bpprox 4.2\,\mathrm{GeV}$:

$$L \gtrsim 5.6 \, {\rm fm}$$

 $a^{-1} \sim 4.2 \, {\rm GeV} \approx (0.05 \, {\rm fm})^{-1}$

Requires $N \equiv L/a \gtrsim 120 \Rightarrow N^3 \times (2N) \gtrsim 4 \times 10^8$ lattice sites.

b-physics on the lattice - disparity of scales

Control IR (Finite Size Effects) and UV (discretisation) effects

$$m_{\pi}L\gtrsim 4$$

 $a^{-1}\gg$ Mass scale of interest

For $m_{\pi}=m_{\pi}^{\mathrm{phys}}\sim 140\,\mathrm{MeV}$ and $m_bpprox 4.2\,\mathrm{GeV}$:

$$L \gtrsim 5.6 \, {\rm fm}$$

 $a^{-1} \sim 4.2 \, {\rm GeV} \approx (0.05 \, {\rm fm})^{-1}$

Requires $N \equiv L/a \gtrsim 120 \Rightarrow N^3 \times (2N) \gtrsim 4 \times 10^8$ lattice sites.

EXPENSIVE to satisfy both constraints simultaneously...

(but we are getting there!)

<u>Alternative</u>: use effective action for the *b*-quark.

A Lattice Computation

tice vs Continuum					
	We want:				
٠	a ightarrow 0				
٠	$L \to \infty$				
L o	continuous momenta \vec{p}				
۲	some continuum scheme				
asses o	$m_l = m_l^{ m phys}$				
٠	$m_s = m_s^{ m phys}$				
۰	$m_h=m_c^{ m phys},m_b^{ m phys}$				

We simulate:

Lat

- at finite lattice spacing a
- in finite volume L^3
- \Rightarrow quantised momenta $2\pi \vec{n}/L$
 - lattice regularised
 - Some bare input quark masses am_l , am_s , am_h In general: $m_\pi \neq m_\pi^{\rm phys}$
- \Rightarrow Need to control all limits!

ightarrow particularly simultaneously control FV and discretisation

 \Rightarrow Decide on a fermion action:

Wilson, Staggered, Twisted Mass, Domain Wall fermions, · · ·

Why B_s decays?

To determine $|V_{ub}|$ and $|V_{cb}|$: interested in $b \rightarrow u$ and $b \rightarrow c$ transitions.

Why B_s decays?

To determine $|V_{ub}|$ and $|V_{cb}|$: interested in $b \rightarrow u$ and $b \rightarrow c$ transitions.

Why B_s decays?

To determine $|V_{ub}|$ and $|V_{cb}|$: interested in $b \rightarrow u$ and $b \rightarrow c$ transitions.

- Only spectator quark differs
 ⇒ complimentary to B decays
 ⇒ R(D_s^(*)) good proxy?
- strange quarks are easier to deal with on the lattice:
 - \Rightarrow statistically cleaner
 - \Rightarrow computationally cheaper
- for B_s → D_s
 ⇒ chiral extrapolation only sea-quark effects:
- Gathering expertise for $B \rightarrow D, B \rightarrow \pi$.

- 4 同 6 4 日 6 4 日 6

RBC/UKQCD's $N_f = 2 + 1$ ensembles

name	<i>L</i> [fm]	$a^{-1}[{ m GeV}]$	$m_{\pi}[{ m MeV}]$
C 0	5.476	1.73	139
C1	2.653	1.78	340
C2	2.653	1.78	430
M0	5.354	2.36	139
M1	2.649	2.38	300
M2	2.649	2.38	360
M3	2.649	2.38	410
F1	3.414	2.77	235

- Iwasaki gauge action
- Domain Wall Fermion action
- 2 ensembles with physical pion masses [PRD 93 (2016) 074505]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• $a \in 0.07 - 0.11 \,\mathrm{fm}$ third lattice spacing

[JHEP 12 (2017) 008]

RBC/UKQCD's $N_f = 2 + 1$ ensembles

name	<i>L</i> [fm]	$a^{-1}[{ m GeV}]$	$m_{\pi}[{ m MeV}]$
C0	5.476	1.73	139
C1	2.653	1.78	340
C2	2.653	1.78	430
M0	5.354	2.36	139
M1	2.649	2.38	300
M2	2.649	2.38	360
M3	2.649	2.38	410
F1	3.414	2.77	235

- Iwasaki gauge action
- Domain Wall Fermion action
- 2 ensembles with physical pion masses [PRD 93 (2016) 074505]
- $a \in 0.07 0.11 \text{ fm}$ third lattice spacing [JHEP 12 (2017) 008]
- $B_s \rightarrow K$: Update of [PRD 91 074510] (third *a*, updated values of a + RHQ params)

- $\checkmark\,$ Measurements completed on C1, C2, M1, M2, M3, F1
- (\checkmark) Planned to include measurements on C0 in near future

< 回 > < 回 > < 回 >

э

$$\frac{d\Gamma(P \to D l \nu_l)}{dq^2} \approx |V_{q_2 q_1}|^2 \times \left[\left| f_+(q^2) \right|^2 \mathcal{K}_1 + \left| f_0(q^2) \right|^2 \mathcal{K}_2 \right]$$

Semi-leptonic $B_{(s)}$ decays on the lattice

イロト イポト イヨト イヨト

э

J Tobias Tsang (University of Edinburgh)

Semi-leptonic $B_{(s)}$ decays on the lattice

(4 同) (4 日) (4 日)

э

I, s: DWF

• c: Heavy-DWF optimised for charm [JHEP 05 (2015) 072, JHEP 04 (2016) 037]

Similar to [JHEP 12 (2017) 008] Three m_c on Coarse ensemble \Rightarrow extrapolate Two m_c on Medium and Fine ensembles \Rightarrow interpolate

< □ > < □ >

- I, s: DWF
- c: *Heavy*-DWF optimised for charm [JHEP 05 (2015) 072, JHEP 04 (2016) 037] simulate range of $m_c \Rightarrow$ inter/extrapolate to m_c^{phys} [JHEP 12 (2017) 008]
- b: Relativistic Heavy Quark action [PRD 76 074505, PRD 76 074506]
 - based on Fermilab approach [PRD 64 014502]
 - non-perturbatively tune 3 parameters [PRD 86 116003]
 - smooth continuum limit, heavy quark treated to all orders in $(am_b)^n$.

・ 言 ・ ・ ヨ ・ ・ ヨ ・

- I, s: DWF
- c: *Heavy*-DWF optimised for charm [JHEP 05 (2015) 072, JHEP 04 (2016) 037] simulate range of $m_c \Rightarrow$ inter/extrapolate to m_c^{phys} [JHEP 12 (2017) 008]
- b: Relativistic Heavy Quark action [PRD 76 074505, PRD 76 074506]
 - based on Fermilab approach [PRD 64 014502]
 - non-perturbatively tune 3 parameters [PRD 86 116003]
 - smooth continuum limit, heavy quark treated to all orders in $(am_b)^n$.
- renormalisation: "mostly non-perturbative"
- Parent at rest $(\mathbf{p}_i = \mathbf{0})$, Daughter carries momentum:

$$q^2 = m_P^2 + m_D^2 - 2m_P E_D$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

 $B_s
ightarrow K$ form factors f_{\parallel} and f_{\perp} : data

(人間) (人) (人) (人) (人) (人)

$B_s ightarrow K$ form factors f_{\parallel} and f_{\perp} : data

J Tobias Tsang (University of Edinburgh)

Semi-leptonic $B_{(s)}$ decays on the lattice

◆ 同 ▶ ◆ 目

$B_s \rightarrow K$ form factors f_0 and f_+

$$f_{+}(E_{K}^{2}) = \frac{1}{\sqrt{2m_{B_{s}}}} \left[f_{\parallel}(E_{K}) + (m_{B_{s}} - E_{K}) f_{\perp}(E_{K}) \right]$$
$$f_{0}(E_{K}^{2}) = \frac{\sqrt{2m_{B_{s}}}}{m_{B_{s}}^{2} - m_{K}^{2}} \left[(m_{B_{s}} - E_{D_{s}}) f_{\parallel}(E_{K}) + (E_{D_{s}}^{2} - m_{K}^{2}) f_{\perp}(E_{K}) \right]$$

Semi-leptonic $B_{(s)}$ decays on the lattice

J Tobias Tsang (University of Edinburgh)

$B_s \rightarrow K$ form factors f_+ and f_0 : Strategy

- Ohiral-continuum limit fit to remove lattice artifacts
- **2** Introduce reference energies $E_{\kappa}^{\text{ref}} \leftrightarrow$ reference q^2 values

$$q_{\rm ref}^2 = m_{B_s}^2 + m_K^2 - 2m_{B_s}E_K^{\rm ref}$$

At these, read off

- central value, statistical errors and statistical correlation
- fit systematic at each reference value and
- estimate remaining systematic errors.

Use statistical correlation matrix to combine the above

Obtain $f_+(q_{
m ref}^2)$ and $f_0(q_{
m ref}^2)$ in the range $q^2/{
m GeV}^2\in[17.2,23.7]$

() Model low- q^2 region to obtain f_0 , f_+ for full range of q^2 .

・ロト ・四ト ・ヨト ・ヨ

$B_s ightarrow K$ form factors: chiral-continuum limit ansatz

We need to

- remove lattice artifacts $(O(a^2))$.
- extrapolate to physical quark masses.
- describe the behaviour with Kaon energy in available range.

$B_s \rightarrow K$ form factors: chiral-continuum limit ansatz

We need to

- remove lattice artifacts $(O(a^2))$.
- extrapolate to physical quark masses.
- describe the behaviour with Kaon energy in available range.

 \Rightarrow Functional ansatz from NLO *SU*(2) χ PT:

$$f^{B_{s} \to K}(m_{\pi}, E_{K}, a^{2}) = \frac{\alpha_{0}}{E_{K} + \Delta} \times \left(1 + \frac{\delta f}{(4\pi f_{\pi})^{2}} + \alpha_{1} \frac{m_{\pi}^{2}}{\Lambda^{2}} + \alpha_{2} \frac{E_{K}}{\Lambda} + \alpha_{3} \frac{E_{K}^{2}}{\Lambda^{2}} + \alpha_{4} (\Lambda a)^{2}\right)$$

with

$$\delta f = \frac{3}{4}m_{\pi}^2 \log\left(\frac{m_{\pi}^2}{\Lambda^2}\right)$$

 $\Delta_{+} = m_{B_s} - m_{B^*} \approx 0.263 \, {
m GeV} \qquad \Delta_0 = m_{B_s} - m_{B^*(0^+)} \approx -0.0416 \, {
m GeV}$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

$B_s \rightarrow K$ form factors f_+ and f_0 : chiral-continuum fit

17 / 33

Semi-leptonic $B_{(s)}$ decays on the lattice

- ● ● ●

$B_s \rightarrow K$ form factors f_+ and f_0 : chiral-continuum fit

- vary pole masses by $\pm 100 \, {\rm MeV}$
- include/exclude terms in the fit function
- include/exclude data points (heaviest pion mass, largest momenta, coarsest ensemble)

$B_s \rightarrow K$: Systematic errors for f_0

$B_s \rightarrow K$: Systematic errors for f_0

$B_s ightarrow K$: Systematic errors for f_+

$B_s \rightarrow K$: Systematic error budget

VERY PRELIMINARY: Error budget still under investigation.

"Other": Higher order corrections, lattice spacing uncertainties, FV, ... Currently just taken 3% as **placeholder**

 \Rightarrow Read off total uncertainty at reference values $q_{\rm ref}^2$.

$B_s ightarrow D_s$ form factors f_{\parallel} and f_{\perp} : data

Simulate multiple charm masses \Rightarrow range of m_{D_s}

$$q^2 = q^2(m_{B_s}, m_{D_s}, \mathbf{p}_{D_s}) = m_P^2 + m_D^2 - 2m_P E_D$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 \Rightarrow Different masses give different values of $q_{
m max}^2$

$B_s ightarrow D_s$ form factors f_{\parallel} and f_{\perp} : data

J Tobias Tsang (University of Edinburgh)

$B_s \rightarrow D_s$ form factors f_0 and f_+ : data

$B_s \rightarrow D_s$ form factors f_0 and f_+ : fit

$$f(a, m_{\pi}, m_{D_s}, q^2) = \left[\alpha_1 + \alpha_2 m_{\pi}^2 + \alpha_{3,j} \sum_{j=1}^{n_{D_s}} [\Delta m_{D_s}^{-1}]^j + \alpha_4 a^2 \right] P_{a,b} \left(\frac{q^2}{m_{B_s}^2}\right)$$
$$\Delta m_{D_s}^{-1} \equiv \left(\frac{1}{m_{D_s}} - \frac{1}{m_{D_s}^{\text{phys}}}\right), \qquad P_{a,b}(x) = \frac{1 + \sum_{i=1}^{a} a_i x^i}{1 + \sum_{i=1}^{b} b_i x^i}$$

22 / 33

J Tobias Tsang (University of Edinburgh)

$B_s ightarrow D_s$ form factors f_0 and f_+ : fit

- Uncorrelated for illustration (in practice only use two *m_c* on coarse ensembles)
- Projected data points to the physical *m*_{Ds} mass with the fit result overlayed.
- Vary ansatz to assess systematics errors from chiral-CL fit

$B_s \rightarrow D_s$: Systematic errors for f_0

23 / 33

J Tobias Tsang (University of Edinburgh)

$B_s \rightarrow D_s$: Systematic errors for f_+

J Tobias Tsang (University of Edinburgh)

$B_s \rightarrow D_s$: Systematic error budget

VERY PRELIMINARY: Error budget still under investigation.

Currently just taken 3% as **placeholder**

 \Rightarrow Read off total uncertainty at reference values $q_{\rm ref}^2$.

- Completed "lattice analysis" to get form factors for $[q_{\min,sim}^2, q_{\max}^2]$.
- BUT interested in form factors over full range $[0, q_{\max}^2]$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

26 / 33

- Completed "lattice analysis" to get form factors for $[q_{\min,sim}^2, q_{\max}^2]$.
- BUT interested in form factors over full range $[0, q_{\max}^2]$
- Map $q^2 \in [0,q^2_{\max}]$ to $z \in [z_{\min},z_{\max}]$ with |z| < 1

$$z(q^2; t_0) = rac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}}$$

- (同) (回) (回) - 回

- Completed "lattice analysis" to get form factors for $[q_{\min,sim}^2, q_{\max}^2]$.
- BUT interested in form factors over full range $[0, q_{\max}^2]$
- Map $q^2 \in [0,q^2_{\max}]$ to $z \in [z_{\min},z_{\max}]$ with |z| < 1

$$z(q^2; t_0) = rac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}}$$

BGL: Boyd, Grinstein, Lebed [PRL 74 4603]:

$$f_X(q^2) = rac{1}{B_X(q^2)\phi_X(q^2,t_0)}\sum_{n\geq 0}a_n(t_0)z^n$$

- Completed "lattice analysis" to get form factors for $[q_{\min,sim}^2, q_{\max}^2]$.
- BUT interested in form factors over full range $[0, q_{\max}^2]$
- Map $q^2 \in [0,q^2_{\max}]$ to $z \in [z_{\min},z_{\max}]$ with |z| < 1

$$z(q^2; t_0) = rac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}}$$

BGL: Boyd, Grinstein, Lebed [PRL 74 4603]:

$$f_X(q^2) = rac{1}{B_X(q^2)\phi_X(q^2,t_0)}\sum_{n\geq 0}a_n(t_0)z^n$$

BCL: Bourrely, Lellouch, Caprini [PRD 82 099902]:

$$f^{BCL}_+(q^2) = rac{1}{1-q^2/m_{
m pole}^2} \left[\sum_{k=0}^{K-1} b_k(t_0) \left(z^k - rac{k}{K}(-1)^{K+k} z^K
ight)
ight]$$

Individual fit of $f_+^{B_s \to D_s}(q^2)$ for BCL with K = 3

PRELIMINARY: Error budget will still change

z

Individual fit of $f_0^{B_s \to D_s}(q^2)$ for BCL with K = 3

PRELIMINARY: Error budget will still change

 $q^2 \, [\mathrm{GeV}^2]$

Combined fit using $f_0^{B_s \to D_s}(0) = f_+^{B_s \to D_s}(0)$ with BGL $K_+ = 3$, $K_0 = 3$

PRELIMINARY: Error budget will still change

27 / 33

$B_s ightarrow D_s$: z-expansions for different number of $N_{ m ref}$

Stable with respect to K, $N_{\rm ref}$ and BGL vs BCL.

Semi-leptonic $B_{(s)}$ decays on the lattice

聞き くぼき くぼう

$B_s ightarrow D_s$: z-expansions for different number of $N_{ m ref}$

Stable with respect to K, $N_{\rm ref}$ and BGL vs BCL.

Semi-leptonic $B_{(s)}$ decays on the lattice

同 ト イ ヨ ト イ ヨ ト

$B_s ightarrow D_s$: z-expansions for different number of $N_{ m ref}$

Stable with respect to K, $N_{\rm ref}$ and BGL vs BCL.

Semi-leptonic $B_{(s)}$ decays on the lattice

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

J Tobias Tsang (University of Edinburgh)

Individual fit of $f_+^{B_s \to K}(q^2)$ for BGL with K = 2

PRELIMINARY: Error budget will still change

Individual fit of $f_0^{B_s \to K}(q^2)$ for BGL with K = 2

PRELIMINARY: Error budget will still change

29 / 33

J Tobias Tsang (University of Edinburgh) Semi

Combined fit using $f_0^{B_s \to K}(0) = f_+^{B_s \to K}(0)$ with BGL $K_+ = 2$, $K_0 = 2$

PRELIMINARY: Error budget will still change

29 / 33

Combined fit using $f_0^{B_s \to K}(0) = f_+^{B_s \to K}(0)$ with BGL $K_+ = 2$, $K_0 = 2$

PRELIMINARY: Error budget will still change

- Everything looks sensible so far.
- Finalise error budget
- Repeat same analysis as for $B_s
 ightarrow D_s$ and perform stability checks

$B_s ightarrow D_s$ and $B_s ightarrow {\cal K}$: Current status - and to do list

- $B_s \to K$ chiral-continuum limit fit \checkmark
- $B_s
 ightarrow D_s$ chiral-continuum-charm inter/extrapolation \checkmark
- Full systematic error (at synthetic data points \checkmark)
 - ullet chiral-continuum fit: cut to data, different fit forms, \cdots \checkmark
 - charm fit: use all m_c or subsets on coarse \checkmark
 - RHQ, FV, HO disc. errors, isospin, quark mass tunings, \cdots (\checkmark)
- z-expansion over full range
 - BGL vs BCL (✓) vs CLN (✗)
 - $\bullet\,$ Vary number of synthetic data points and different truncations $\checkmark\,$
 - inc vs exc $f_+\equiv f_0$ at $q^2=0$ 🗸
- Pheno quantities, e.g. $R(D_s)$
- Comparison to existing literature

 $B_s \rightarrow K$: FNAL/MILC 19, HPQCD 14, RBC/UKQCD 15

- $B_s
 ightarrow D_s$: HPQCD 19 $B_s
 ightarrow D_s$, JLQCD
- Cross checks, completely independent second analysis code ✓

Related HQ projects with DWF by RBC/UKQCD

Edinburgh - Southampton

Peter Boyle, Luigi Del Debbio, Andreas Jüttner, Ava Khamseh, Francesco Sanfilippo, JTT

[JHEP 04 (2016) 037, JHEP 12 (2017) 008]

Edinburgh - Liverpool - Southampton - Boulder - BNL

Peter Boyle, Luigi Del Debbio, Nicolas Garron, Andreas Jüttner, Amarjit Soni, JTT, Oliver Witzel

[1712.00862, 1812.08791]

・ロト ・回ト ・ヨト ・ヨト

RBC-UKQCD's HQ-DWF program I

- Choice of DW parameters for charm [JHEP 05 (2015) 072, JHEP 04 (2016) 037].
- Leptonic decay constants $f_{D_{(s)}}$, f_{D_s}/f_D [JHEP 12 (2017) 008].
- a^{LOHVP;c} [PRL 121 (2018) no.2 022003]
- charm mass m_c ongoing

• □ ▶ • □ ▶ • □ ▶ • □

RBC-UKQCD's HQ-DWF program II

Extrapolation from heavier-than-charm to bottom

- SU(3)-breaking ratios for $D_{(s)}$ and $B_{(s)}$ mesons [arXiv:1812.08791]
 - Ratios of decay constants: f_{D_s}/f_D , f_{B_s}/f_B
 - Ratios of bag parameters, ξ

$$(\Rightarrow |V_{cd}/V_{cs}|) \ (\Rightarrow |V_{td}/V_{ts}|)$$

J Tobias Tsang (University of Edinburgh)

RBC-UKQCD's HQ-DWF program II

Extrapolation from heavier-than-charm to bottom

- SU(3)-breaking ratios for $D_{(s)}$ and $B_{(s)}$ mesons [arXiv:1812.08791]
 - Ratios of decay constants: f_{D_s}/f_D , f_{B_s}/f_B $(\Rightarrow |V_{cd}/V_{cs}|)$ Ratios of hag parameters ξ $(\Rightarrow |V_{td}/V_{tc}|)$ $(\Rightarrow |V_{td}/V_{ts}|)$
 - Ratios of bag parameters, ξ

• Analogous study to $K - \bar{K}$ BSM mixing analysis [1812.04981]

• $D^0 - \overline{D^0}$ (short-distance part) • $B_{(s)}^0 - \overline{B}_{(s)}^0$ (supplement with very fine JLQCD ensembles)

・ 戸 ・ ・ ヨ ・ ・

RBC-UKQCD's HQ-DWF program II

Extrapolation from heavier-than-charm to bottom

- SU(3)-breaking ratios for $D_{(s)}$ and $B_{(s)}$ mesons [arXiv:1812.08791]
 - Ratios of decay constants: f_{D_s}/f_D , f_{B_s}/f_B $(\Rightarrow |V_{cd}/V_{cs}|)$ Ratios of hag parameters ξ $(\Rightarrow |V_{td}/V_{ts}|)$
 - Ratios of bag parameters, ξ $(\Rightarrow |V_{td}/V_{te}|)$
- Analogous study to $K \bar{K}$ BSM mixing analysis [1812.04981]
 - $D^0 \overline{D^0}$ (short-distance part)
 - $B_{(s)}^0 \bar{B}_{(s)}^0$ (supplement with very fine JLQCD ensembles)
- Combined fit of two data-sets for m_c , $a_{\mu}^{LOHVP,c}$
- Individual decay constants, bag parameters (as opposed to ratios)

• D(s) semi-leptonic runs planned

$B_s ightarrow K$, $B_s ightarrow D_s$ (now)

- Data on 6 ens $(N_f = 2 + 1)$ $a \in 0.07 - 0.11 \, \text{fm}$ $m_{\pi} \in 235 - 430 \, \text{MeV}$ DWF for *I*,*s*,*c*, RHQ for *b*
- "Lattice analysis": Very nearly done ✓
- "Continuum analysis":
 z-expansion for B_s → D_s ✓
 z-expansion for B_s → K (✓)
- draft in preparation

- ∢ ≣ ▶

$B_s ightarrow K$, $B_s ightarrow D_s$ (now)

- Data on 6 ens $(N_f = 2 + 1)$ $a \in 0.07 - 0.11 \, \text{fm}$ $m_{\pi} \in 235 - 430 \, \text{MeV}$ DWF for *I*,*s*,*c*, RHQ for *b*
- "Lattice analysis": Very nearly done ✓
- "Continuum analysis":
 z-expansion for B_s → D_s ✓
 z-expansion for B_s → K (✓)
- draft in preparation

$B_s \rightarrow K$, $B_s \rightarrow D_s$ (future)

• Add $m_{\pi}^{\rm phys}$ ensemble

伺 ト く ヨ ト く ヨ ト

$B_s \rightarrow K$, $B_s \rightarrow D_s$ (now)

- Data on 6 ens $(N_f = 2 + 1)$ $a \in 0.07 - 0.11 \, \text{fm}$ $m_{\pi} \in 235 - 430 \, \text{MeV}$ DWF for *I*,*s*,*c*, RHQ for *b*
- "Lattice analysis": Very nearly done ✓
- "Continuum analysis":
 z-expansion for B_s → D_s ✓
 z-expansion for B_s → K (✓)
- draft in preparation

$B_s \rightarrow K$, $B_s \rightarrow D_s$ (future)

• Add m_{π}^{phys} ensemble

Other processes

ANALYSIS UNDERWAY

- $B \to \pi \ell \nu$
- $B \to D\ell\nu$

MORE DATA ON DISK

• $B \to D^* \ell \nu$

•
$$B_s \to D_s^* \ell \nu$$

Semi-leptonic $B_{(s)}$ decays on the lattice

$B_s \rightarrow K$, $B_s \rightarrow D_s$ (now)

- Data on 6 ens $(N_f = 2 + 1)$ $a \in 0.07 - 0.11 \, \text{fm}$ $m_{\pi} \in 235 - 430 \, \text{MeV}$ DWF for *I*,*s*,*c*, RHQ for *b*
- "Lattice analysis": Very nearly done ✓
- "Continuum analysis": z-expansion for $B_s \rightarrow D_s \checkmark$ z-expansion for $B_s \rightarrow K (\checkmark)$
- draft in preparation

$B_s \rightarrow K, B_s \rightarrow D_s$ (future)

• Add $m_{\pi}^{\rm phys}$ ensemble

Other processes

ANALYSIS UNDERWAY

- $B \to \pi \ell \nu$
- $B \to D\ell\nu$

MORE DATA ON DISK

• $B \to D^* \ell \nu$

•
$$B_s \to D_s^* \ell \nu$$

Complementary DWF program

f_{D(s)}, f_{B(s)}, B_{Bs}/B_{Bd}, ξ
 LOHVP.c

•
$$m_c$$
, a_μ^2

• BSM mixing for $K - \bar{K}$, $D - \bar{D}$, $B_{(s)} - \bar{B}_{(s)}$