

Events (particle collisions) in the ATLAS detector @LHC

The one-million table partitions challenge in an ATLAS DB application

Gancho Dimitrov (CERN)

The Event WhiteBoard (EWB) project @ Oracle 18.3

• EWB concept: logically groups particle collision Events into collections

Collection: events are processed in Event ranges

•Collection removal: once processing of a given collection is finished

•Lifetime of am EWB collection: from week(s) to month(s)

The EWB collections of data

The EWB sponge in action

Quiz

What is the maximum allowed number of partitions in a single table in Oracle RDBMS?

- 1) 100 thousand
- 2) 500 thousand
- 3) 1 million
- 4) More

EWB simplified tables layout (partial)

COLLECTION ID COLLECTION NAME COLLECTION TYPE COLLECTION STATUS CREATION TIME MODIFICATION TIME ... more columns ... COLLECTION **METADATA** JSON block in VARCHAR2(32K)

PRIMARY KEY
UNIQUE KEY

TION_OBJECTS

COLLECTION ID

STORAGE SERVER ID

EVENT RANGE MIN ID

EVENT RANGE MAX ID

EVENT RANGE STATUS

• • •

...

... more columns ...

EVENT RANGE METADATA

PRIMARY KEY

JSON block

How to partition the EWB "collection_objects" child table?

Design approach "1" List partition per COLL_ID single value

Idea: each table partition contains data of a single EWB collection. Removal of any EWB collection data would be straightforward.

List-type partition for each data collection

```
CREATE TABLE COLLECTION_OBJECTS
(
COLL_ID NUMBER(10,0),
...
CONSTRAINT COLLOBJ_PK PRIMARY KEY (...) using index LOCAL
)
PARTITION BY LIST(COLL_ID) -- AUTOMATIC
( PARTITION COLLOBJ_ZERO VALUES(0) );
```

- Partition removal is easy:
 ALTER TABLE COLLECTION_OBJECTS DROP partition FOR (5276);
- •All worked well, but does not seem scalable because of the 1048575 partitions limit per table (error ORA-14299)

Design approach "2" List partition per sequence of COLL_ID values

Idea: Each List-type table partition to host sequence of data collections (e.g. 10, 20, 50 or more collections per table partition).

Automation in List-type partitions creation (COLL_ID set)

•A dedicated List partition per set of collections is created by a <u>BEFORE</u> INSERT trigger on the parent table which calls an in-house created PLSQL procedure.

PARTITION_NAME	₱ PART_POSITION	HIGH_VALUE														
PART_COLL_251701	5036	251701,	251702,	251703,	251704,	251705,	251706,	251707,	251708,	251709,	251710,	251711,	251712,	251713,	251714,	251715
PART_COLL_251651	5035	251651,	251652,	251653,	251654,	251655,	251656,	251657,	251658,	251659,	251660,	251661,	251662,	251663,	251664,	251665,
PART_COLL_251601	5034	251601,	251602,	251603,	251604,	251605,	251606,	251607,	251608,	251609,	251610,	251611,	251612,	251613,	251614,	251615,
PART_COLL_251551	5033	251551,	251552,	251553,	251554,	251555,	251556,	251557,	251558,	251559,	251560,	251561,	251562,	251563,	251564,	251565,
PART_COLL_251501	5032	251501,	251502,	251503,	251504,	251505,	251506,	251507,	251508,	251509,	251510,	251511,	251512,	251513,	251514,	251515,
PART_COLL_251451	5031	251451,	251452,	251453,	251454,	251455,	251456,	251457,	251458,	251459,	251460,	251461,	251462,	251463,	251464,	251465,
PART_COLL_251401	5030	251401,	251402,	251403,	251404,	251405,	251406,	251407,	251408,	251409,	251410,	251411,	251412,	251413,	251414,	251415,
PART_COLL_251351	5029	251351,	251352,	251353,	251354,	251355,	251356,	251357,	251358,	251359,	251360,	251361,	251362,	251363,	251364,	251365,

Interesting finding:

• Achieved flexibility as # sequential collections per partition can be changed by changing a single value in the "before insert" trigger:

Sequence of 10 collections: created 88485 partitions Sequence of 5 collections: created 32745 partitions

•After creation of 121230 partitions:

"Error "ORA-14309: Total count of list values exceeds maximum allowed"

• What is the maximum number of list values in the Oracle DB?

Count on the existing list partition key values showed:

 ${f 1048575}$

Design approach "3" List <u>automatic</u> partitions on virtual column based on COLL_ID

Idea: List partition on virtual column MOD(COLL_ID, nnn). It guarantees maximum "nnn" partitions on the child table (note: "nnn" must be smaller than 1 million)

Avoids the max partitions per table limit (ORA-14299) and the number of list-key values limit (ORA-14309).

List-type <u>automatic</u> table partitioning on virtual column

```
CREATE TABLE COLLECTION_OBJECTS
(

COLL_ID NUMBER(10,0),
COLL_ID_VIRT_GROUP NUMBER(10,0) GENERATED ALWAYS AS (MOD(COLL_ID,500000)) VIRTUAL,
...

CONSTRAINT COLLOBJ_PK PRIMARY KEY (...) using index LOCAL
)

PARTITION BY LIST(COLL_ID_VIRT_GROUP)
AUTOMATIC
( PARTITION COLLOBJ_ZERO VALUES(0) );
```

MOD function returns the remainder of COLL_ID divided by 500000.

→ The table will have max 500K partitions

"List automatic" partitions on virtual column

- •Test: 500000 partitions were automatically created using "INSERT INTO collection_objects ..." statement.
- It took about a week time.

 Over the time, a partition creation was taking more time.

```
Upto 30K partitions: rate of 50-60 partitions/second
After 70K partitions: rate of 3-4 partitions/second
After 80K partitions: rate of 3 partitions/second
After 160K partitions: rate of 1-2 partitions/second
After 180K partitions: rate of 1 partition/second
After 200K partitions: rate of 1 partition/second
Within 200K-400K partitions: rate of 1 partition per 1-2 seconds
Within 400K-500K partitions: rate of 1 partition per 2 seconds
```

Best approach out of the explored five paths?

Detailed presentation (50min)

@BGOUG conference

7th-9th June

Borovets resort (Bulgaria)