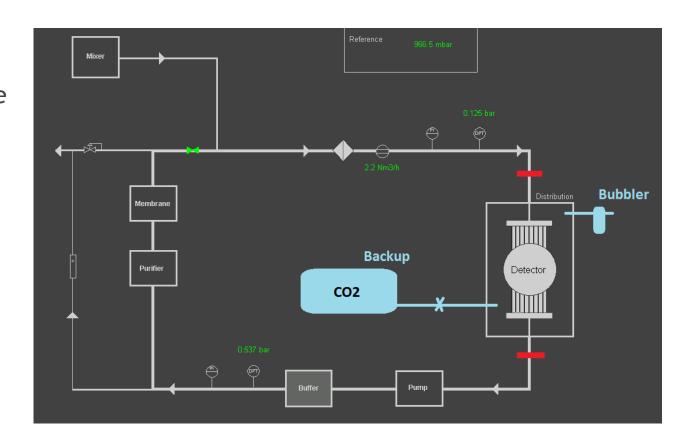
M. Corbetta, EP-DT-FS

LHCB- RICH2 CF4 RECUPERATION

Gas Mixture Status

EFFECTS OF RUNNING WITH BACKUP


RICH2 gas system was stopped in Dec 2018, leaving as safety measure the bubbler and the CO2 backup line

Bubbler:

if Patm decreases, the pressure inside the chamber increases, and gas mixture will exhaust from the bubbler to keep it stable

• CO2 Backup:

if Patm increases, the pressure inside the chamber decreases, CO2 will flow through the valve regulated by pressure difference, filling the chamber up to stable pressure

BACKUP INJECTION DEC2018-MAR2019

Looking at the Patm trend, we can estimate how much CO2 was injected from the backup, taking the positive pressure variations and converting the pressure difference in CO2 volume

Patm increase [mbar] = Injected CO2 [mbar]

Total System Volume = 100'000 liters

 $>> 1 \text{ mbar } \Delta p = 100 \text{ liters CO2}$

Sum of positive ∆p over the period Dec2018 - March2019 gives a total variation of about 400 mbar

= 40'000 liters of CO2 injected

GAS MIXTURE AFTER SYSTEM STOP

40'000 liters of CO2 injected in the system => 40'000 liters of Mixture went out from Bubbler Total volume of RICH2 = 100'000 liters => 40'000 l CO2/100'000 l Volume = 40% Volume is CO2

```
40% CO2 + 60% Mixture = 40% CO2 + 60% (92% CF4 + 8% CO2) = 40% CO2 + 55.2% CF4 + 4.8%CO2 = 44.8% CO2 + 55.2% CF4
```

The calculation is coherent with the data from the IR, that gives CO2 > 35% (saturated)

GC analysis were performed to check the exact composition of the mixture

GAS MIXTURE AFTER SYSTEM STOP


Results of GC Analysis on RICH2 Before Purifier

	area	% Sum	% Calib
Air	105097	0.02	
CF4	3358522	0.65	0.600763
CO2	1741503	0.33	0.37805
sum	5205122		
	area	ppm Calib	
02	6139	3257.83026	
N2	20413	17959.3305	

Calibration	Reference	Factor
CO2	15%	2.17082E-05
CO2	10%	2.15285E-05
CF4	40%	1.78877E-05
CF4	90%	2.07212E-05
N2	1000ppm	0.879798684
O2	50 ppm	0.530677677
O2	10000ppm	1.138161356
	- -	

	24/04/2019	27/11/2018
CF4 %	0.600	0.953
CO2 %	0.378	0.084
O2 [ppm]	3258	5186
N2 [ppm]	17959	15454
Air [ppm]	21217	20641
Air %	0.021	0.021
SUM	0.999	1.058

GAS MIXTURE AFTER SYSTEM STOP

CONCLUSION

Leaving the system in STOP with the Backup for four months cost the loss of about 35'000 liters of CF4!

Now the mixture composition is about 40%CO2 and 60%CF4, with about 2% of Air (the same as it was during the Run)