Status of Merlin++ and 5.02 release

Sam Tygier*, Rob Appleby*
Scott Rowan+, Roger Barlow+

*Manchester Cockcroft Accelerator Group, UK
*Cockcroft Institute, Daresbury, UK
+University of Huddersfield, UK

29 April 2019

sam.tygier@manchester.ac.uk
Merlin++

- Accelerator simulation library
- Modular and extensible C++
 - Class hierarchy:
 - Beam line elements: Drift, Dipole, Quad ...
 - Bunches: Electron, Proton ...
 - Physics processes: Trackers, Collimation, Synchrotron radiation ...
 - easy to add new physics, tracking, element types
- 39,000 Lines of code (+5500 of examples)
- Git revision control (github.com/MERLIN-Collaboration)
- Test suite, nightly tests of range of systems
- New release 5.02 in March
Features

- Standard range accelerator components
- Multiple tracking integrators
- Optics measurements
- Collimation
 - Online aperture checking
 - Advanced proton scattering physics
- Synchrotron radiation
- Hollow electron lens
- MADX lattice import
LHC Squeeze simulations

- Validation for TCT losses during squeeze
 - Run 1 and 2
 - Range of steps in optics
 - Comparison with BLM data
- Predictions for HL-LHC
- Publication:
 - Performance of the Large Hadron Collider cleaning system during the squeeze: simulations and measurements - 10.1103/PhysRevAccelBeams.22.023001
What new in 5.02

● Main focuses:
 – Sustainability
 – Refactoring
 – Cleanup
 – Merging
 – Documentation

● Changes to:
 – Apertures, MADInterface, Bunches, RNG, DataTable, LatticeFunctions, Tests, Tutorials

● Plus:
 – Bug fixes, memory leaks, code formatting, warnings ...

● New website

● DOI: 10.5281/zenodo.2598429
Software sustainability

- We often focus on using a piece of software right now
- Sustainability is about how software will be used in the future

https://software.ac.uk/

- **Community**: There is a community infrastructure with a common investment (required for sustainability)
- **Open**: Software has permissive license (required for modification)
- **Defined**: Accurate metadata defines the software and its functionality, dependencies and constraints (required for preservation)
- **Extensible**: The software is usable, modifiable for different data, pipelines, purposes (required for reproducibility)
- **Runnable**: The software is available and provides the information to operate it (required for publication)

- Sustainability of the Merlin++ particle tracking code – CHEP18
Documentation and tutorials

- New website
 - www.accelerators.manchester.ac.uk/merlin/

- Quickstart guide
 - Installation
 - IDE setup
 - Tutorials

- Doxygen
 - www.accelerators.manchester.ac.uk/merlin/doxygen
 - Full library API

- Examples – distributed with source code
Refactoring

- Reducing complexity
 - Deeply nested branching
 - Long methods
- Reducing propagation cost
 - Additional changes required by amendments
- ‘Code smells’
 - Duplicated code, large switch statements …
- Find worst hotspots to target first
 - Metriculator, ArchDia DV8, Valgrind
- Performance
 - Often cleaner design helps
 - Sometimes need to compromise
Bunch construction

• Previously
 – one large method in ParticleBunchConstructor() - over 200 lines
 – Any new bunch type need to be added to this core code

• Now
 – ParticleBunchConstructor class removed, implementation in ParticleBunch
 – Class for each distribution generator
 – New distributions can be in user or core code
 – Just needs to define method to produce a single particle GenerateFromDistribution()
DataTable

- Class to hold table of data with named columns of mixed types
 - Designed with TFS files in mind
 - Input and output to TFS (other formats can easily be added)
- Replaces TFS parsers in several places in Merlin++
 - Reduce duplication
 - Separate parsing and usage
 - More robust error handling
Random Numbers

• Used:
 - Bunch generation, scattering, element misalignment, ...

• Merlin used to contain a random number implementation

• C++11 standard library now include RNGs
 - Strong Mersenne Twister algorithm
 - Easy to define new distributions

• Switching Merlin++ to stdlib
 - Removed many lines of code
 - Allow multiple random streams
 - Smarter seeding
 - Easier to switch generator in future
Future plans

- Continue making improvements
 - Documentation, code quality, performance
- C++14 and C++17
 - Allows further clean-ups, parallel STL algorithms
- Performance
 - Currently similar to sixtrack
 - Improvements to vectorisation, intra-node concurrency, multi-threading
 - removing some known inefficiencies
- Ion tracking
 - WIP
- Publish Merlin++ paper
 - In progress – Computer Physics Communications
References

- Recent publications

- www.accelerators.manchester.ac.uk/merlin/
- github.com/Merlin-Collaboration/Merlin