Dynamical description of heavy quarks and electromagnetic probes in heavy-ion collisions at ultra-relativistic energies

Taesoo Song

Collaborators: Wolfgang Cassing, Elena Bratkovskaya, Pierre Moreau

contents

- 1. Introduction
- 2. Parton-Hadron-String Dynamics (PHSD)
- 3. Heavy flavor production in HIC
- 4. Dilepton production in HIC
- 5. Summary

1. introduction

Relativistic heavy-ion collisions produce nuclear matter in extreme conditions

Beam Energy Scan, FAIR: baryon rich matter top energies of RHIC, LHC: almost baryon free, hot matter

investigate the properties of the matter through produced particles

investigate the properties of the matter through produced particles

Some characteristics of heavy flavors

- Because they are heavy (m_c~1.5 GeV, m_b~5 GeV),
- large energy-momentum transfer is required for the production
- early produced in Ultra-relativistic heavy-ion collisions (URHIC)
- pQCD is applicable
- incomplete thermalization in URHIC
- ...

Some characteristics of dilepon

- advantages
- 1. no color charge \rightarrow no further interactions in nuclear matter after its production
- 2. one more dimension (invariant mass) compared to real photons Low mass dilepton :

dominated by hadronic sources

One can study the modification of hadron spectral functions in nuclear matter (mass shift and/or width broadening due to chiral symmetry restoration and interactions in the medium)

Intermediate mass dileptons:

dominated by partonic sources & heavy flavor decays One can possibly study QGP matter

- disadvantage
- 1. small yield because of electromagnetic coupling ($\alpha = 1/137$)

One special feature

Dileptons are produced continuously from the initial hard scatterings to the freeze-out in heavy-ion collisions

Therefore, we need a model well describing heavy-ion collisions from beginning to the end.

2. Parton-Hadron-String Dynamics (PHSD)

- String fragmentation (low energy density) (high energy density)
- String melting

A partonic matter is produced through string melting

Partonic matter described by the Dynamical Quasi-Particle Model (DQPM)

quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_q \omega$ gluon self-energy: $\Pi = M_g^2 - i2\Gamma_g \omega$

- the real part of self-energies (Σ_q , Π) describes dynamically generated masses (M_q , M_g)
- the imaginary part describes the interaction width of
- partons (G_q, G_g)
- QGP is composed of strongly interacting Quasi-Particles.

Mass and width from HTL at high T

quarks:

mass:
$$M_{q(\bar{q})}^2(T) = \frac{N_c^2 - 1}{8N_c} g^2 \left(T^2 + \frac{\mu_q^2}{\pi^2}\right)$$

width:
$$\Gamma_{q(\bar{q})}(T) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2 T}{8\pi} \ln\left(\frac{2c}{g^2} + 1\right)$$

gluons:

mass:
$$M_g^2(T) = \frac{g^2}{6} \left(\left(N_c + \frac{N_f}{2} \right) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2} \right)$$

width:
$$\Gamma_g(T) = \frac{1}{3}N_c \frac{g^2T}{8\pi} \ln\left(\frac{2c}{g^2} + 1\right)$$

$$N_c = 3, N_f = 3$$

• g(T) is fitted to the lattice calculations on running coupling and EoS. $\alpha_s(T) = \frac{g^2(T)}{4\pi} = \frac{12\pi}{(11N_c - 2N_f) \ln[\lambda^2 (T/T_c - T_s/T_c)^2]}$

quark/gluon spectral function

mean-field scalar potential

$$U_s(\rho_s) = \frac{dV_p(\rho_s)}{d\rho_s}$$

where ρ_S is scalar density, and V_p is the potential energy density, which stems from the space-like part of parton spectral function.

 U_s increases with ρ_S

→ partons are outwardly accelerated in heavy ion-collisions.

It helps to reproduce experimental data

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Parton scattering in the PHSD

- (quasi-)elastic scattering :
- masses change in scattering

$$q+q \rightarrow q+q$$
 $g+q \rightarrow g+q$
 $q+\overline{q} \rightarrow q+\overline{q}$ $g+\overline{q} \rightarrow g+\overline{q}$
 $\overline{q}+\overline{q} \rightarrow \overline{q}+\overline{q}$ $g+g \rightarrow g+g$

inelastic scattering :

$$q + \overline{q} \rightarrow g$$
 $q + \overline{q} \rightarrow g + g$
 $g \rightarrow q + \overline{q}$ $g \rightarrow g + g$

suppressed due to large gluon mass

Scattering cross sections based on spectral widths

Hadronization in the PHSD

 Massive colored off-shell (anti)quarks are hadronized into colorless off-shell mesons and (anti)baryons.

t = 0.05 fm/c

Au + Au , s_{NN} = 200 GeV b = 2.2 fm - Section view

- Baryons (394)
- Antibaryons (0)
- Mesons (0)
- Quarks (0)
- Gluons (0)

3. Heavy flavor production in HIC

- 3.1. p+p collisions
- 3.2. d+A collisions
- 3.3. A+A collisions

3.1. total cross section for charm production in p+p

generate charm by using PYTHIA tuned to FONLL

Initial heavy flavors are generated by PYTHIA with rapidity and p_T rescaled to produce FONLL-shaped distributions

Rapidity distribution

p_T spectrum

charm quark hadronizes through fragmentation in p+p

- In p+p collisions charm quark is hadronized by emitting soft gluons (fragmentation):
- Peterson's fragmentation
- function for p_T with rapidity
- unchanged

$$D_Q^H(z) \sim \frac{1}{z[1 - 1/z - \epsilon_Q/(1 - z)]^2}$$

3.2. Charm production in p+A collisions (cold nuclear matter effects)

1. Shadowing

: Parton distribution function (PDF) modified in nucleus, for which EPS09 is used.

$$g + g \rightarrow h + \overline{h}, \qquad q + \overline{q} \rightarrow h + \overline{h}$$

2. Cronin effect

: Because of parton+N scattering in A(p)+A collisions, p_T of produced particle is enhanced.

It is controversial whether the Cronin effect is include d in the shadowing effect or not.

Mid-rapidity (e) d+Au @ 200 GeV

Forward/backward-rapidites (μ) d+Au @ 200 GeV

3.3. Charm production in A+A (cold & hot nuclear matter effects)

Heavy-quark scattering in QGP (Dynamical Quasi-Particle Model)

elastic scattering with off-shell massive partons $Q+q(g)\rightarrow Q+q(g)$

- temperature-dependent strong coupling g(T)
- 2. Off-shell mass plays the role of a regulator

Hadronization of heavy quarks

Coalescence probability for $c + \overline{q} \rightarrow D$

$$f(oldsymbol{
ho},\mathbf{k}_
ho)=rac{8g_M}{6^2}\exp\left[-rac{oldsymbol{
ho}^2}{\delta^2}-\mathbf{k}_
ho^2\delta^2
ight]$$

where
$$ho = rac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2), \quad \mathbf{k}_{
ho} = \sqrt{2} \; rac{m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2}{m_1 + m_2}$$

Degeneracy factor: $g_M = 1$ for D, = 3 for $D^*=D^*_0(2400)^0$, $D^*_1(2420)^0$, $D^*_2(2460)^{0\pm}$

Coalescence probability in Pb+Pb at LHC

D-meson scattering in the hadron gas

D-meson scattering with mesons

Calculated in effective Lagrangian with heavyquark spin symmetry

L. M. Abreu, D. Cabrera, F. J. Lla nes-Estrada, J. M. Torres-Rincon , Annals Phys. 326, 2737 (2011)

D-meson scattering with baryons

D meson spectra in Pb+Pb collisions at 2.76 TeV

0-10 % central Pb+Pb @ 2.76 TeV

ALICE

PHSD

15

10

20

 p_{T} (GeV)

25

30

10¹

10⁰

10⁻¹

10⁻⁵ -

10-6 -

 $dN/dp_T (GeV^{-1})$

Nuclear modification factors (R_{AA})

0-10 % Pb+Pb @ 2.76 TeV

30-50 % Pb+Pb @ 2.76 TeV

Elliptic flow (v_2)

0-10 % Pb+Pb @ 2.76 TeV

30-50 % Pb+Pb @ 2.76 TeV

10

$$v_2(p_T) \equiv \frac{\int d\phi \cos 2\phi \left(dN_D^{\text{Pb+Pb}}/dp_T d\phi\right)}{dN_D^{\text{Pb+Pb}}/dp_T},$$

4. Dilepton production in HIC

- 4.1. heavy flavor pair
- 4.2. partonic scattering
- 4.3. hadronic scattering

4.1. dilepton from heavy flavor pair

- $D(B) \rightarrow \overline{K}(\overline{D}) + e^- + \overline{\nu}$,
- $\overline{D}(\overline{B}) \to K(D) + e^+ + \nu$
- Single electrons from heavy flavor in p+p

in A+A collisions

Nuclear modification of dileptons in heavy-ion collisions

Nuclear matter makes invariant mass spectrum of dileptons softer

4.2. partonic scattering

Interactions of massive off-shell partons with a temperature-dependent strong coupling

4.3. hadronic scattering

	Direct	Dalitz	Other
π^0	_	$\pi^0 o \gamma e^+ e^-$	_
η^0	_	$\eta^0 o \gamma e^+ e^-$	
η'	_	$\eta^0 ightarrow \gamma e^+ e^-$	
$ ho^0$	$ ho^0 ightarrow e^+ e^-$	-	_
ω^0	$\omega^0 o e^+ e^-$	$\omega^0 o \pi^0 e^+ e^-$	_
$oldsymbol{\phi}^0$	$\phi^0 o e^+ e^-$		_
			_
			_
D	_	_	$D^{\pm} \rightarrow e^{\pm} v_e + X$
\boldsymbol{B}	_	-	$B^{\pm} \rightarrow e^{\pm} v_e + X$

ρ meson spectrum in nuclear matter

Comparison to experimental data (19.6 GeV ~ 2.76 TeV)

Three contributions at RHIC energies

Comparison of contributions from QGP & heavy-flavor pairs

Integrated dielectron yield

(intermediate invariant mass 1.2<M<3 GeV)

In mid-rapidity

10⁻⁷

10

Pb+Pb, b=2 fm, 1.2<M<3 GeV PHSD: 10^{-2} PHSD: 10^{-2} $q+\overline{q} \rightarrow e^+e^-+X$ $q+\overline{q} \rightarrow g+e^+e^ 10^{-4}$ 10^{-4} 10^{-6} 10^{-6}

 $\sqrt{s_{NN}}$ (GeV)

|η^e|<1

100

(a)

All rapidity range

5. Summary

5.1 PHSD

- Relativistic heavy-ion collisions produce strings.
- Strings melt into massive off-shell partons at high energy density according to the Dynamical Quasi-Particle Model where pole mass and spectral width of parton depends on temperature and are fitted to the lattice EoS of QGP.
- Massive off-shell partons interact with each other with the same temperature-dependent strong coupling and propagators down to the critical temperature.
- Massive off-shell partons hadronize into off-shell hadrons.

5.2 heavy flavor production

- Heavy flavor is generated by the PYTHIA event generator in PHSD.
- Rapidity distribution and transverse momentum spectrum are adjusted to be FONLL-like shapes.
- (Anti)shadowing effect is included by using EPS09.
- Heavy quark interacts with partons with the same temperaturedependent strong coupling and propagator mass.
- Heavy quarks hardonize into heavy hadrons through coalescence (at low pT) or through fragmentation (at high pT).
- Heavy mesons interact with light hadrons in according to an effective
- Lagrangian model.

5.3 Dileptons

- Low mass dileptons mainly stem from direct and Dalitz decays of hadrons.
- Intermediate mass dileptons stem from partonic interactions and heavy flavor pairs.
- The interactions of heavy flavor in nuclear matter soften the dilepton mass spectrum.
- Comparing the contribution from partonic interactions and that from heavy flavor pairs, the former is dominant in heavy-ion collisions at low energy (less then 30-40 GeV/nucleon)

Direct decay of vector mesons

$$\Gamma_V^*(M, |\vec{p}|, \rho_N) = \Gamma_V(M) + \Gamma_{coll}(M, |\vec{p}|, \rho_N).$$

$$\begin{split} \Gamma_{\rho}(M) &\simeq \Gamma_{\rho \to \pi\pi}(M) = \Gamma_0 \left(\frac{M_0}{M}\right)^2 \left(\frac{q}{q_0}\right)^3 \, F(M) \\ q &= \frac{(M^2 - 4m_\pi^2)^{1/2}}{2}, \ \ q_0 = \frac{(M_0^2 - 4m_\pi^2)}{2} \end{split} \quad \text{wit}$$

$$F(M) = \left(\frac{2\Lambda^2 + M_0^2}{2\Lambda^2 + M^2}\right)^2$$

with a cut-off parameter $\Lambda = 3.1$ GeV.

$$\Gamma_{coll}(M, |\vec{p}|, \rho_N) = \gamma \ \rho_N < v \ \sigma_{VN}^{tot} > \approx \ \alpha_{coll} \ \frac{\rho_N}{\rho_0}.$$

$$\alpha_{coll} = 0.08$$
 for ρ ; = 0.04 for ϖ

Electromagnetic decay width

$$\frac{dN^{\rho\to e^+e^-}}{dM} = \sum_{t=0}^{t_F} \Gamma^{\rho^0\to e^+e^-}(M) \cdot \frac{\Delta t}{\gamma(\hbar c)} \cdot \frac{1}{\Delta M}$$

$$\Gamma^{\rho^0 \to e^+ e^-}(M) = C_\rho \frac{M_0^{*4}}{M^3},$$

where
$$C_{\rho} = \Gamma^{\rho \to e^+ e^-}(M_0)/M_0$$
.

E.L.Bratkovskaya, W.Cassing, NPA 807 (2008) 214-250

Dalitz decay (3body decay)

$$\frac{d\Gamma(A \to B\ell^+\ell^-) - \alpha}{dq^2 \cdot \Gamma(A \to B\gamma)} = \frac{\alpha}{3\pi} \left[1 - \frac{4m_{\ell}^2}{q^2} \right]^{1/2} \left[1 + 2\frac{m_{\ell}^2}{q^2} \right] \frac{1}{q^2} \\
\times \left[\left(1 + \frac{q^2}{m_A^2 - m_B^2} \right)^2 - \frac{4m_A^2 q^2}{(m_A^2 - m_B^2)^2} \right]^{3/2} \left| \frac{f_{AB}(q^2)}{f_{AB}(0)} \right|^2$$

L.G.Landsberg, PR 128 (1985) 301-376

