Run-II results on minimum bias collisions and underlying event activity from CMS

Ankita Mehta

(on behalf of the CMS Collaboration)

Eötvös Loránd University, Budapest

11th International Workshop on Multiple Partonic Interactions at the LHC Prague, Czech Republic

18.11.2019

Particle production @ LHC

QCD description \rightarrow hard interaction & Underlying event activity (UE)

- Particle production in the central regions \rightarrow pQCD calculations in the framework of collinear factorization
- Soft diffractive processes dominate in forward regions → probed using minimum-bias collisions (MB) → benifits from CMS forward detector system
- **UE** \rightarrow semi-hard/soft interactions (**BBR**, **ISR**, **FSR**, **MPI**) \rightarrow large fraction of σ_{total} @LHC

 $\mathbf{MB} \rightarrow \mathbf{Events}$ with no/zero bias from trigger

Why study MB & UE??

- Hadron collisions dominated by soft partonic interactions
- $\bullet\,$ Important to study MB & transition between the pQCD & soft QCD models
- $\bullet~{\rm UE} \rightarrow {\rm very~important}$ ingredient of MC event generation
- $\bullet\,$ Non-perturbative phenomenological models \rightarrow free parameters tuned to data
- Forward energy drives development of cosmic ray induced air showers
- Calibration of physics tools (pileup, isolation, background estimation...)

- $\bullet~{\rm CMS}~{\rm recorded}~{\sim}135\,{\rm fb}^{-1}$ of "good" pp collisions during Run-II
- Special runs:
 - Low pileup runs ${\sim}273\,{\rm pb^{-1}}$ CMS data during 2015–2018 (includes 85.6 ${\rm nb^{-1}}$ of data @ 0T collected using CASTOR)
 - $6 \,\mathrm{pb^{-1}}$ CMS+TOTEM data collected during 2015–2018

A variety of results from CMS using Run-II pp collisions data

Average very forward energy using CASTOR (EPJC(2019)79:893)

- First correlation study of hadron activity at very forward & central rapidities performed at 13 TeV using CASTOR
- $\bullet~0.22~{\rm nb^{-1}}$ of low-pileup pp data selected using Zerobias triggers @Zero Tesla
- At least one reconstructed track within $|\eta| < 2$
- Tracking efficiency $\sim 76\%$ & misreconstruction probability $\sim 5\%$ for charged particles with $p_{\rm T} > 200 \text{ MeV}$
- Activity in atleast one HF tower
- ► CASTOR energy scale → Dominating source of systematic uncertainty
- Data compared to a variety of models

 $\begin{array}{l} \mbox{Average energy (had. + $$$ em) reconstructed with} $$ CASTOR in 6.6 < $$ \eta < -5.2$ $$ vs $$ $N_{\rm tracks}(|\eta| < 2$) $ \end{array}$

Novel forward folding technique

- Model/theory \rightarrow Detector level
- Particle multiplicity and CASTOR energy are smeared

Energy deposited in CASTOR

- $\langle E_{reco}^{tot} \rangle$ increases with N_{tracks}
- Increase of energy with multiplicity is driven by MPI
- Only SIBYLL 2.X & HERWIG 7.1 describe the relative increase well
- Mismatch strongest for EPOS LHC & PYTHIA8 CP5

Ankita Mehta

MPI@LHC2019

• Sensitive to differences in underlying final state hadron production mechanisms

- Ratio is almost constant over the whole track multiplicity range \rightarrow No dramatic change of the particle production mechanism in forward regions
- All model predictions are lower than the data
- Energy ratio best described by QGSJETII.04, SIBYLL2.1, & HERWIG7.1

Ankita Mehta

MPI@LHC2019

Charged particle spectra in MB events (EPJC(2018)78:697)

- Low pileup data from 2015
- Charged particles with $p_{\rm T} > 0.5 \,{\rm GeV} \& |\eta| < 2.4$
- Activity requirement in HF
- Event categories: Inelastic, NSD-enhanced, SD-enhanced

- SD-One-Side enhanced: PYTHIA8 MBR4C description within uncertainties
- Room for improvement in high multiplicity regions (dominated by MPI)

Results

• Integrated p_T spectrum of charged particles \rightarrow Sensitive to the transition b/w the non-perturbative & perturbative QCD regions

- NSD-enhanced events: Best described by EPOS LHC with small fluctuations
- \bullet SD-enhanced events: Low \mathbf{p}_{T} region difficult to describe
- \bullet Transition b/w the region dominated by particle production from MPI & hard scattering evident from fast change of slope

Inelastic pp cross section measurement (JHEP07(2018)161)

- Measured inelastic pp cross section in a fiducial region is extrapolated to the full inelastic phase space
- Challenging to measure precisely; extrapolation is purely model-driven
- Important QCD measurement: crucial to model pileup
- Input to improve phenomenological hadronic interaction models

$$\sigma_{tot}(s) = \sigma_{el}(s) + \sigma_{inel}(s).$$

$$\sigma_{inel}(s) = \sigma_{sd}(s) + \sigma_{dd}(s) + \sigma_{cd}(s) + \sigma_{nd}(s).$$

- 2015 data with and without magnetic field collected using zerobias triggers
- Two different event selections in terms of activity requirement in HF & CAS-TOR → Different contribution from low-mass diffractive processes
- Data-driven noise cancellation & bunch-by-bunch pileup correction

MPI@LHC2019

Fully corrected cross section

HF OR $\sigma(\xi > 10^{-6}) = 67.5 \pm 0.8(\text{syst}) \pm 1.6(\text{lumi}) \text{ mb}$

HF OR CASTOR

$$\sigma(\xi_{\rm X} > 10^{-7} \, {\rm or} \, \xi_{\rm Y} > 10^{-6}) = 68.6 \pm 0.6({\rm syst}) \pm 1.3({\rm lumi}) \, {\rm mb}$$

from TOTEM:

$$\sigma_{\rm inel} = (79.5 \pm 1.8) \,\rm mb$$

- Consistent with previous measurement in the same phase space
- Smaller than those predicted by the majority of models for hadron-hadron scattering → Underestimation of predicted cross section for low-mass diffractive processes

UE activity using Z boson events (JHEP07(2018)032)

- UE recoiling against the Z boson events with "standard" phase space cuts
- Experimentally clean signature with $Z \rightarrow \mu \mu \rightarrow Clear$ identificiation of UE activity
- Test for the universality of UE process & jet/tracke-driven UE tunes
- \bullet Observables: Charged-particle density & $\sum p_T$ density

Results

- 60–80% rise from 1.96 TeV to 7 TeV \rightarrow Simulations predict a slower rise with \sqrt{s}
- $\bullet~25\text{--}30\%$ rise from 7 TeV to 13 TeV

- Better description: POWHEG+PYTHIA8
- POWHEG+HERWIG++ overestimates the data

UE activity in $t\bar{t}$ events (EPJC(2019)79:123)

- Ist measurement with UE recoiling against $t\bar{t} \rightarrow WbWb \rightarrow e\mu p_{T}^{miss} + 2bjets$ system
- Test "universality" assumptions at further "higher" scales & input to improve modeling of top quarks
- Direct probe of color reconnection
- Main challange \rightarrow characterize the soft component of $t\bar{t}$ events

Variables to characterize UE

- Multiplicity & momentum flux: N_{ch} , $\sum p_{T}$ or $\sum p_{Z}$, $\bar{p_{T}}$ (or $\bar{p_{Z}}$)
- Event shape observables from linearized sphericity tensor: $S^{\mu\nu} = \frac{\sum_{i=1}^{N_{ch}} p_i^{\mu} p_i^{\nu} / |p_i|}{\sum_{i=1}^{N_{ch}} |p_i|}$
- Evolution of observables in different categories of tt system kinematics → sensitive to the recoil activity

Results

Value of $\alpha_{\rm S}^{\rm FSR}(M_Z) = 0.120 \pm 0.006 < \alpha_{\rm S}^{\rm FSR}(M_Z)$ (LO) New approach: PDF and $\alpha_{\rm S}^{\rm FSR}(M_Z)$ consistency in ME, PS, & MPI

- A set of results based on CMS Run-II data are presented
- Essentially all physics at LHC connected to quark & gluon interactions
- \bullet Hard processes \rightarrow Well described by pQCD while soft interactions require non-perturbative phenomenological models
- \bullet MB collisions \to dominated by soft interactions \to explore fundamental aspects of hadron-hadron collisions
- $\bullet\,$ Energy evolution studies of UE \to Important for model tuning & constraining
- Model parameters tuned to UE data at central rapidities are consistent with the very forward data within experimental uncertainties
- Significant improvement in MC models, though there is still room for improvement

thanks !!!