Hadronization in Terms of First-Order Phase Transition

> Andrew Koshelkin
> National Research Nuclear University (MEPhI) 11th International Workshop
> on Multiple Partonic Interactions at the LHC 18-22 Nov 2019. Prague, Czech Republic

November 21, 2019

Contents

(1) Introduction
(2) Quark-hadron duality and hadronization
(3) Flux tube (strings)
(9) $Q C D_{4} \rightarrow Q C D_{x y}+Q C D_{z t}$ compactification
(5) Hadron production
(- Probability
(0) Hadron rate
(8) Relation to the experiment
(9) Conclusion

Introduction

Hadronization models:

1) Local parton-hadron duality approach
(i) String model $(1+1)$ tube, Lund model
(ii) Claster model (fragmentation from the colorless clusters) (iii) Glassma (fragmentation from the color condensate)
2) Dynamic approach
(i) Running gluon mass in the pure gluodynamic picture
ii) Renorm. group approach

Quark-hadron duality and hadronization

$$
\begin{gather*}
\mathcal{M}=<\text { out } \mid \text { in }>=<\bar{q}_{H A D}\left|q_{Q G P}>=<\bar{q}_{Q G P}\right| U \mid q_{Q G P}>\text { (1) } \\
 \tag{2}\\
<|\mathcal{M}|^{2}>=\operatorname{Tr}\left|\left(\gamma^{0} U\right) G^{-+}\left(x_{1}, x_{2}\right)\right|^{2} \\
\left.<|\mathcal{M}|^{2}>=-\operatorname{Tr}\left\{G_{21}^{-+} \varrho(1,2) G_{12}^{-+}\right)\right\} ; \tag{3}\\
\varrho(1,2)=\gamma^{0} U_{1} U_{2}^{\dagger} \gamma^{0}
\end{gather*}
$$

Quark-hadron duality and hadronization

When $G_{21}^{-+} ; \varrho(1,2) ; G_{12}^{-+} \rightarrow G^{-+}, \varrho\left(x_{1}-x_{2}\right)$
In the momentum representation

$$
<|\mathcal{M}|^{2}>=-\operatorname{Tr}\left\{\int \frac{d p_{1} d p_{2}}{(2 \pi)^{8}} \bar{G}^{-+}\left(p_{1}\right) \varrho\left(p_{1}, p_{2}\right) G^{-+}\left(p_{2}\right)\right\}
$$

$$
\begin{equation*}
\frac{d<|\mathcal{M}|^{2}>}{d p}= \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
-\operatorname{Tr}\left\{\int \frac{d q}{(2 \pi)^{8}} \bar{G}^{-+}(p+q / 2) \varrho(p+q / 2, p-q / 2) G^{-+}(p-q / 2)\right\} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
p=\frac{p_{1}+p_{2}}{2} ; \quad q=p_{1}-p_{2} \tag{6}
\end{equation*}
$$

Quark-hadron duality and hadronization

Diagramically

$$
\begin{equation*}
\frac{E(\boldsymbol{p}) d N_{h}}{d^{3} p}=\int d p^{0}(E(\boldsymbol{p})) \frac{\left.d<|\mathcal{M}|^{2}\right\rangle}{d p}, \tag{8}
\end{equation*}
$$

Flux tube pictutre

$$
\begin{equation*}
\sqrt{s} \simeq 8-20 \mathrm{GeV} \tag{9}
\end{equation*}
$$

Flux tube pictutre

Flux tube pictutre

Flux tube pictutre

1. Supported in experiments on hadronic, $e^{+} e^{-}$and $p p$ collisions
2. Theoretical background - E.Whitten papeprs

$$
\begin{equation*}
j^{\mu}=-m \varepsilon^{\mu \nu} \partial_{\nu} \phi, \tag{10}
\end{equation*}
$$

Conclusion

I. The longitudinal dominance
II. The transverse confinement

Flux tube pictutre

I,II have taken into account in LUND model.

i) entirely phenomenological;
ii) the rapidity distribution only;
iii) no mechanism of "O-O" states.

$Q C D_{4} \rightarrow Q C D_{x y}+Q C D_{z t}$ compactification

HOW TO GET IT

1. To start from the exact $(3+1) \mathrm{QCD}$
2. To reduce it up to $(1+1)$ QCD

$Q C D_{4} \rightarrow Q C D_{x y}+Q C D_{z t}$ compactification

$Q C D_{4} \rightarrow Q C D_{x y}+Q C D_{z t}$ compactification
 (A.V.Koshelkin, C.-Y.Wong)

$$
\begin{equation*}
\Psi(x)=\Psi\left(\boldsymbol{r}_{\perp}\right) \psi(z, t) \tag{11}
\end{equation*}
$$

Transverse motion

$$
\begin{align*}
& \left(p_{1}+i p_{2}\right) \Psi_{+}\left(\boldsymbol{r}_{\perp}\right)=\left(m\left(\boldsymbol{r}_{\perp}\right)+E_{\nu}^{2}\right) \Psi_{-}\left(\boldsymbol{r}_{\perp}\right) \\
& \left(p_{1}-i p_{2}\right) \Psi_{-}\left(\boldsymbol{r}_{\perp}\right)=\left(E_{\nu}^{2}-m\left(\boldsymbol{r}_{\perp}\right)\right) \Psi_{+}\left(\boldsymbol{r}_{\perp}\right) \tag{12}
\end{align*}
$$

Longitudinal motion

$$
\begin{equation*}
\partial_{z}^{2} \psi(t, z)-\partial_{t}^{2} \psi(t, z)=m_{q T}^{2} \psi(t, z) \tag{13}
\end{equation*}
$$

$Q C D_{4} \rightarrow Q C D_{x y}+Q C D_{z t}$ compactification

$$
\begin{gather*}
\tau=\sqrt{t^{2}-z^{2}}, \quad \eta=\frac{1}{2} \ln \left(\frac{t+z}{t-z}\right) \tag{14}\\
\tau^{2} \frac{\partial^{2} \psi(\tau, \eta)}{\partial \tau^{2}}+\tau \frac{\partial \psi(\tau, \eta)}{\partial \tau}-\frac{\partial^{2} \psi(\tau, \eta)}{\partial \eta^{2}}=0 \tag{15}\\
\psi_{+}(\tau, \eta)=f\left(\eta-\ln \left(\tau / \tau_{0}\right)\right) ; \quad \psi_{-}(\tau, \eta)=g\left(\eta+\ln \left(\tau / \tau_{0}\right)\right) \\
\psi\left(\tau=\tau_{0}, \eta\right)=\frac{1}{\sqrt{\sigma \pi^{1 / 2}}} \exp \left(-\frac{\eta^{2}}{2 \sigma^{2}}\right) \tag{16}\\
\psi_{ \pm}(\tau, \eta)=\frac{1}{\sqrt{\sigma \pi^{1 / 2}}} \exp \left(-\frac{\left(\eta \mp \ln \left(\tau / \tau_{0}\right)\right)^{2}}{2 \sigma^{2}}\right) \tag{17}
\end{gather*}
$$

Hadron production

$$
\begin{align*}
& \frac{E(\boldsymbol{p}) d N_{h}}{d^{3} p}=-\operatorname{Tr} \int d p^{0}(E(\boldsymbol{p})) \int \frac{d q}{(2 \pi)^{8}} \times \\
& \left\{\bar{G}^{-+}(p+q / 2) \varrho(p+q / 2, p-q / 2) G^{-+}(p-q / 2)\right\} \cdot(18) \\
& \quad G^{-+}(p)=2 \pi i|\Psi(\boldsymbol{p})|^{2} \delta\left(p^{0}-\mu+\varepsilon(\boldsymbol{p})\right) . \tag{19}
\end{align*}
$$

Hadron production

I. The longitudinal dominance
II. The transverse confinement

$$
\begin{align*}
& \frac{E(\boldsymbol{p}) d N_{h}}{d^{3} p}=\sum_{a=1}^{N} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{6}}(E(\boldsymbol{p})) \varrho_{a}(\boldsymbol{p} ; \boldsymbol{q}) \times \\
& \left|\Psi_{\bar{q}_{a}}\left(\boldsymbol{p}_{\perp}+\boldsymbol{q}_{\perp} / 2\right)\right|^{2}\left|\Psi_{q_{a}}\left(\boldsymbol{p}_{\perp}-\boldsymbol{q}_{\perp} / 2\right)\right|^{2} \times \\
& \int d q_{z}\left|\psi_{\bar{q}_{a}}\left(p_{z}+q_{z} / 2\right)\right|^{2}\left|\psi_{q_{a}}\left(p_{z}-q_{z} / 2\right)\right|^{2}, \tag{20}
\end{align*}
$$

Hadron production

$$
\begin{equation*}
\rho_{a}\left(\boldsymbol{p}, q_{z}\right)=\int \frac{d^{2} q_{\perp}}{(2 \pi)^{6}} E(\boldsymbol{p}) \varrho_{a}(\boldsymbol{p} ; \boldsymbol{q})\left|\Psi_{\bar{q}_{a}}\left(\boldsymbol{p}_{\perp}+\frac{\boldsymbol{q}_{\perp}}{2}\right)\right|^{2}\left|\Psi_{q_{a}}\left(\boldsymbol{p}_{\perp}-\frac{\boldsymbol{q}_{\perp}}{2}\right)\right|^{2} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{\mathrm{a}}\left(\boldsymbol{p}, q_{z}\right)=\mathcal{P}_{\mathrm{a}}(\boldsymbol{p}) \delta\left(q_{z}\right) . \tag{22}
\end{equation*}
$$

Hadron production

$$
\begin{equation*}
\frac{d N_{h}}{d^{2} p d y}=\sum_{a=1}^{N} \mathcal{P}_{a}\left(\boldsymbol{p}_{\perp}, y\right)\left|\Psi_{\bar{q}_{a}}(y)\right|^{2}\left|\Psi_{q_{a}}(y)\right|^{2} . \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
y=\frac{1}{2} \ln \left(\frac{E(\boldsymbol{p})+p_{z}}{E(\boldsymbol{p})-p_{z}}\right) . \tag{24}
\end{equation*}
$$

Probability

$$
\begin{equation*}
\mathcal{P}_{a}\left(\boldsymbol{p}_{T}\right)=A \exp \left(-\frac{\Delta G_{a}}{T}\right)=A \exp \left(-\frac{E_{a}+\alpha \ln \left(\frac{C_{q h}^{(a)}(P, T)}{C_{q_{q}}^{(a)}(P, T)}\right)}{T}\right) \tag{25}
\end{equation*}
$$

i) no clusters
ii) no interaction in the final state

$$
\begin{equation*}
\Delta G^{(a)}\left(E_{T}\left(p_{T}=0\right)\right)=m_{h} \sqrt{g_{00}}=m_{h} \sqrt{1-v^{2}} \tag{26}
\end{equation*}
$$

where m_{h} is the mass of a hadron, g_{00} is the zeroth component of the metric tensor $g_{\mu \nu}$ for the rotating frame of reference.

Probability

$$
\begin{equation*}
\Delta G^{(a)}\left(E_{T}\left(p_{T}=0\right)\right)=g_{\mu \nu} U^{\mu} p^{\nu} \tag{27}
\end{equation*}
$$

where $p^{\nu}=\left(m_{h}, 0\right), U^{\mu}$ is the hydrodynamic velocity

$$
\begin{equation*}
U^{\mu}=\left(\frac{1}{\sqrt{1-v^{2}}}, \frac{v^{1}}{\sqrt{1-v^{2}}}, \frac{v^{2}}{\sqrt{1-v^{2}}}, 0\right), v^{2}=\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2} \tag{28}
\end{equation*}
$$

Since the created hadrons are assumed to leave instantly the hadronization area, there is no motion of the hadronic matter as a whole in the laboratory frame of reference. Therefore, we have for the hydrodynamic velocity in this frame of reference

$$
\begin{equation*}
U^{\mu}=(1,0,0,0) \tag{29}
\end{equation*}
$$

Probability

Taking into account that $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$ in the laboratory frame of reference we find

$$
\begin{equation*}
\Delta G^{(a)}=E_{T}, \tag{30}
\end{equation*}
$$

where $E_{T}=\sqrt{\boldsymbol{p}_{T}^{2}+m_{h}^{2}}$ is the transverse energy of a hadron, $\boldsymbol{p}_{T}=m_{h} \boldsymbol{v} / \sqrt{1-v^{2}}$.

Probability

When matter moves along the collision axes with a velocity v^{3}, we have in the laboratory frame

$$
\begin{equation*}
p^{\nu}=\left(E_{T} \cosh y_{v^{3}}, 0,0, E_{T} \sinh y_{v^{3}}\right) . \tag{31}
\end{equation*}
$$

However, then

$$
\begin{equation*}
U^{\nu}=\left(\cosh y_{v^{3}}, 0,0, \sinh y_{v^{3}}\right) . \tag{32}
\end{equation*}
$$

Since $g_{\mu \nu}$ still is $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$

$$
\begin{equation*}
\Delta G^{(a)}=g_{\mu \nu} U^{\mu} p^{\nu}=E_{T} \tag{33}
\end{equation*}
$$

where $E_{T}=\sqrt{\boldsymbol{p}_{T}^{2}+m_{h}^{2}}$ is the transverse energy of a hadron, $\boldsymbol{p}_{T}=m_{h} \boldsymbol{v} / \sqrt{1-v^{2}}$.

Hadron rate

$$
\begin{aligned}
& \frac{d N_{h}}{d y d^{2} p_{\perp}}=\frac{N_{f} N_{c}^{2} \theta\left(T_{c}-T\right)}{512 \pi^{8} m_{h} T K_{1}\left(m_{h} / T\right)} \exp \left(-\frac{E_{T}}{T}\right) \\
& \sum_{a=1}^{N} \frac{\Sigma_{a}^{2}}{\sigma_{a}^{2}}\left\{\exp \left(-\frac{2\left(y-y_{a}\right)^{2}}{\sigma_{a}^{2}}\right)+\exp \left(-\frac{2\left(y+y_{a}\right)^{2}}{\sigma_{a}^{2}}\right)\right\}(34)
\end{aligned}
$$

Hadron rate

$$
\begin{aligned}
& \frac{d N_{h}}{d y}=\frac{N_{f} N_{c}^{2} \theta\left(T_{c}-T\right)\left(1+\left(T / m_{h}\right)\right)}{256 \pi^{7} K_{1}\left(m_{h} / T\right) \exp \left(m_{h} / T\right)} \\
& \sum_{a=1}^{N} \frac{1}{\sigma_{a}^{2}}\left\{\exp \left(-\frac{2\left(y-y_{a}\right)^{2}}{\sigma_{a}^{2}}\right)+\exp \left(-\frac{2\left(y+y_{a}\right)^{2}}{\sigma_{a}^{2}}\right)\right\} \text { (35) }
\end{aligned}
$$

Relation to the experiment

N.Abgrall et al, Eur.Phys.J. C74, 2794 (2014).

The yield of the negatively charged pions, arising in the result of inelastic $p p$ interaction of the target protons and the incident protons, having the momenta $20,31,40,80,158 \mathrm{GeV} / \mathrm{c}$ (which are $\sqrt{s}=6.3,7.7,8.8,12.3,17.3 \mathrm{GeV}$), has been measured at the beam rapidities $y_{b}=1.877,2.094,2.223,2.569,2.909$.

Relation to the experiment

$$
\begin{align*}
& \frac{d N_{h}\left(m_{T}, y=0\right)}{d y m_{T} d m_{T}}=\frac{2<N_{c h}(s)>\exp \left(m_{h} / T-\frac{4 y_{0}^{2}}{y_{b}^{2}}\right)}{(2 \pi)^{1 / 2} \sigma m_{h} T\left(1+\left(T / m_{h}\right)\right)} \exp \left(-\frac{m_{T}}{T}\right) \tag{36}\\
& \frac{d N_{h}}{d y}=\frac{\left\langle N_{c h}(s)>\right.}{\pi^{1 / 2} y_{b}}\left\{\exp \left(-\frac{4\left(y-y_{0}\right)^{2}}{y_{b}^{2}}\right)+\exp \left(-\frac{4\left(y+y_{0}\right)^{2}}{y_{b}^{2}}\right)\right\}
\end{align*}
$$

Relation to the experiment

$$
\begin{align*}
& \zeta \sqrt{s}=\int E_{T} \cosh y \frac{d N_{h}}{d y d^{2} p_{\perp}}= \\
& <N_{c h}(s)>m_{h} \cosh \left(y_{0}\right) \exp \left(\frac{\sigma^{2}}{8}\right) \frac{1+2\left(T / m_{h}\right)+2\left(T / m_{h}\right)^{2}}{\left(1+\left(T / m_{h}\right)\right)} \tag{38}
\end{align*}
$$

Figure: 1. Dependence of y_{0} on the energy of a proton beam.

Relation to the experiment

Figure: 2. The lines of various types are the p_{T} distributions of pions which are given by Eq.(11) at $T_{c}=160 \mathrm{MeV}$ and $\kappa=1 \mathrm{Gev} / F$, which are normalized by the experimental value of the pion rate at $\left(m_{T}-m_{\pi}\right)=0.2 \mathrm{GeV} / c$ v.s. the pion rate in $p-p$ collisions(the scattered symbols) at the same projectile energies.

Relation to the experiment

Figure: 3 . The rapidity distributions given by Eq.(12) at $\sqrt{s}=17,3 \mathrm{GeV}$ (solid lines), $\sqrt{s}=12,3 \mathrm{GeV}$ (dashed line), $\sqrt{s}=8,8 \mathrm{GeV}$ (dot-dashed line), and at $T_{c}=160 \mathrm{MeV}$ v.s. the rapidity distributions in $p-p$ collisions

Conclusion

1. Based on the quark-hadron duality concept the new approach to the problem hadronization of the deconfinement is developed.
2. Under the longitudinal dominance and transverse confinement both the rapidity and p_{T} distributions of the hadron created in collisions of high energy particles are explicitly derived when the hadronization is governed by the first order phase transition.
3. The pion production in high energy proton collisions is studied in detail.
4. The derived hadron rate has been compared with the experimental results on pion production in $p p$ collisions. A good relation to the experimental data is found along the whole range of the energies, $\sqrt{s}=6.3-17.3 \mathrm{GeV}$, of the proton projectile used in the experiments.

Acknowledgment

THANK YOU FOR YOUR ATTENTION!!!

