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✔ pp collisions: several models that are able to describe qualitatively observed features as a 
function of multiplicity are based on Multiple Parton Interactions (MPI)  

    (1) Initial hard scattering process: relevant for HF quarks production  

    (2) Underlying event (UE):
– semi-hard MPI interactions → still relevant for 
hard processes at LHC energies !
– soft hadronic processes → important for “bulk” 

 particle production (including multiplicity)

Quarkonium production vs multiplicity

F. FiondaMPI@LHC 2019

1



 

✔ pp collisions: several models that are able to describe qualitatively observed features as a 
function of multiplicity are based on Multiple Parton Interactions (MPI)  

    (1) Initial hard scattering process: relevant for HF quarks production  

    (2) Underlying event (UE):
– semi-hard MPI interactions → still relevant for 
hard processes at LHC energies !
– soft hadronic processes → important for “bulk” 

 particle production (including multiplicity)

    – multiplicity dependent measurements of quarkonia in pp allow to        
                      

  study interplay between hard scattering and underlying event

shed light on MPI

✔ p-Pb collisions: similar considerations as in pp hold, but additional complications 
→ p-N geometry + Cold-Nuclear Matter effects

Quarkonium production vs multiplicity

F. FiondaMPI@LHC 2019

1



 

✔ pp collisions: several models that are able to describe qualitatively observed features as a 
function of multiplicity are based on Multiple Parton Interactions (MPI)  

    (1) Initial hard scattering process: relevant for HF quarks production  

    (2) Underlying event (UE):
– semi-hard MPI interactions → still relevant for 
hard processes at LHC energies !
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 particle production (including multiplicity)

    – multiplicity dependent measurements of quarkonia in pp allow to        
                      

  study interplay between hard scattering and underlying event

shed light on MPI

✔ p-Pb collisions: similar considerations as in pp hold, but additional complications 
→ p-N geometry + Cold-Nuclear Matter effects

✔ Intriguing observation: multiplicity-dependent studies in small systems show remarkable 
similarities with AA collisions (e.g. strong hints for collectivity, strangeness enhancement,...) 

                  phenomena considered signatures of deconfinement in heavy-ions observed 
  in high-multiplicity pp !

Quarkonium production vs multiplicity

F. FiondaMPI@LHC 2019

1



 

Where everything started...  ALICE Run-1 
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✔ J/ψ vs multiplicity

– approximately (faster than) linear increase of J/ψ 
yield at (mid-y) forward-y

– measurements extended up to 4 times         
the minimum-bias multiplicity

– PYTHIA6 (Perugia 2011 tune) predicts opposite 
trend vs multiplicity

✔ Several questions triggered:

– dependence on flavour content ? 

– dependence on s ?

– dependence on the hardness of hard probe ?

– importance of -gap ? 

✔ Significant improvement in the last years:

– combination of Run-1 and Run-2 statistics

– Improvement / development of models

 

[Phys. Lett. B 712, 165 (2012)]
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Dependence on flavour content

✔ Similar trend for prompt J/ψ and open 
charm in Run-1

F. FiondaMPI@LHC 2019

✔ Very similar (faster than linear) trend 
observed for open and hidden HF 
measurements observed also in Run-2 
(but significantly higher multiplicity 
reached for J/ψ compared to Run-1)   

Run-1

Run-2

[JHEP 09 (2015) 148] 
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Dependence on flavour content
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✔ Double ratios (1S)/J/ and 2S)/(1S) 
independent on multiplicity

✔ Similar results found for (2S)/(1S) and 
(3S)/(1S) by CMS

✔ -gap present for both ALICE and CMS 
measurements

→ suggests that the multiplicity trend does 
not depend significantly on heavy-quark 
content

CMS, JHEP 04 (2014) 103

(1S)/J/ (2S)/(1S)
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Dependence on center-of-mass energy
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→ suggests that the multiplicity dependence 
is not significantly affected by s 

✔ J/yields in a specific multiplicity event class 
not dependent on s at LHC energies

✔ J/ spectra systematically harder at higher s

✔ Self-normalized p
T
vs multiplicity show 

a similar increasing trend 
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✔ Slope increases with the transverse momentum 
of  J/

✔ Similar behaviour for open charm

 

Hardness of the probe
[JHEP 09 (2015) 148] 
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✔ Slope increases with the transverse momentum 
of  J/

✔ Similar behaviour for open charm

✔ Observed also for J/ at RHIC energies

✔ Similar trend for other hard-processes 
regardless the flavour content 

Hardness of the probe

→ steepness of the multiplicity dependent trends 
increases with the hardness of the probe 

[JHEP 09 (2015) 148] 
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CMS, JHEP 04 (2014) 103

w/o -gapwith -gap

Impact of -gap

w/o -gapw/o -gap

CMS, JHEP 04 (2014) 103

✔ In pp at  
s = 2.76TeV 
higher bottomonium 
states Y(2S) and 
Y(3S) seems 
suppressed at high-
multiplicity when 
there is no -gap  

✔ Confirmed by similar 
results in pp at               
s = 7 TeV, but with 
higher statistics 
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CMS, JHEP 04 (2014) 103

w/o -gapwith -gap

Impact of -gap
CMS, JHEP 04 (2014) 103

✔ Confirmed by similar 
results in pp at               
s = 7 TeV, but with 
higher statistics 

✔ No significant change of 
ratios observed after 
adding a -gap 

✔ Similar evolution also as a 
function of the “sphericity”

✔ In pp at  
s = 2.76TeV 
higher bottomonium 
states Y(2S) and 
Y(3S) seems 
suppressed at high-
multiplicity when 
there is no -gap  
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Impact of -gap
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with -gap w/o -gapw/o -gap

CMS, JHEP 04 (2014) 103

w/o -gapwith -gap

→Fwd-y →Mid-y

w/o -gap

→Fwd-y →Mid-y

✔ Self-normalized 
bottomonium yields 
measured by CMS (mid-y) 

– linear increase with -
gap

 – faster than linear 
increase w/o -gap

– lower multiplicity reach 
when fwd-y estimator is 
used
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Impact of -gap – other hard processes

w/o -gapwith -gap

✔ D-meson yields measured at mid-y exhibit faster than 
linear trend when multiplicity is measured both at mid-y 
and forward-y  

[JHEP 09 (2015) 148] [JHEP 09 (2015) 148] 
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Impact of -gap – other hard processes

w/o -gapwith -gap

[JHEP 09 (2015) 148] [JHEP 09 (2015) 148] 

w/o -gapwith -gap

✔ D-meson yields measured at mid-y exhibit faster than 
linear trend when multiplicity is measured both at mid-y 
and forward-y

✔ Similar trend observed for high-p
T
 (p

T
 > 4 GeV/c) strange 

particles  
10
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Impact of -gap – other hard processes

w/o -gapwith -gap

→ not possible to conclude so far 
about implications of -gap, more 
measurements are needed  

[JHEP 09 (2015) 148] [JHEP 09 (2015) 148] 
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✔ PYTHIA8 (Monash 2013)
✔ Initial hard processes
✔ Hard processes in MPI
✔ ISR / FSR

✔ Percolation model
✔ Soft sources stronger affected than hard sources 

with increasing density (multiplicity)

✔ EPOS3
✔ Gribov-Regge formalism (MPI included)
✔ Hydro evolution of the system
✔ version 3.2 include also parton saturation (smaller 

impact than collectivity)

✔ Kopeliovich et al.
✔ contributions of higher Fock states (increased 

number of gluons)  which increase probability to 
produce a J/

Comparison with models

Mid-y

Fwd-y

F. FiondaMPI@LHC 2019
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STAR, arXiv:1805.03745
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Ferreiro, Pajares, PRC86 (2012) 034903
EPOS3, Werner et al., Phys.Rept.350 (2001) 93
PYTHIA8, Sjostrand et al., Comput.Phys.Comm.178(2008)
Kopeliovich et al., PRD88 (2013) 116002

✔ PYTHIA8 calculations qualitatively describe 
the p

T
 dependent trends of ALICE data

✔ PYTHIA8 and EPOS 3 show a fair 
agreement with low energy measurements 
from STAR
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w/o -gapwith -gap

w/o -gap

Data: ALICE Data: ALICE

Data: STAR

Comparison with models

Siddikov, Levin, Schmidt,  arXiv:1910.13579v1 (2019) 12

✔ Multiplicity dependence of J/ described in terms of 
two-gluon and three-gluon fusion mechanisms 

– 2-gluon fusion mechanism significantly 
underestimates production at high-multiplicity

✔ Reasonable agreement with ALICE data at the LHC

– effect due to -gap reproduced quite well

✔ Good agreement with lower energy results (RHIC)
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two-gluon and three-gluon fusion mechanisms 

– 2-gluon fusion mechanism significantly 
underestimates production at high-multiplicity

✔ Reasonable agreement with ALICE data at the LHC

– effect due to -gap reproduced quite well

✔ Good agreement with lower energy results (RHIC)

w/o -gapwith -gap

w/o -gap

Data: ALICE Data: ALICE

Data: STAR

Comparison with models

Siddikov, Levin, Schmidt,  arXiv:1910.13579v1 (2019)

→ models including HF production in MPI, parton 
saturation / gluon fusion mechanisms describe 
qualitatively the observed trends vs multiplicity   12
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Comparison with models
✔ Quarkonia production in association with jets could provide further constraints for tuning models

✔ Similar results obtained by CMS 
and LHCb at different s

✔ J/are less isolated in data 
compared to PYTHIA8
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From pp to pPb
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J/ vs multiplicity in p-Pb
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✔ J/ vs multiplicity in p-Pb at                    
s

NN
 = 8.16 TeV measured by ALICE

– hint of faster than linear trend at backward 
rapidity

– suppression observed at forward rapidity

→ compatible with expected CNM effects

Forward rapidity Backward rapidity 14
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J/ vs multiplicity in p-Pb
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Forward rapidity Backward rapidity

✔ J/ vs multiplicity in p-Pb at                    
s

NN
 = 8.16 TeV measured by ALICE

– hint of faster than linear trend at backward 
rapidity

– suppression observed at forward rapidity

→ compatible with expected CNM effects

✔ Comparison with s
NN

 = 5.02 TeV results 

show no dependence on center-of-mass 
energy (as observed in pp)

[JHEP 07 (2018) 160]
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Quarkonia vs multiplicity in p-Pb
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Mid-rapidity

– ALICE: faster than linear trend w/o -gap

– ATLAS (+CMS): suppression towards higher 
multiplicities with -gap                  

ALICE, PLB 776 (2018) 91

w/o -gap

with -gap

✔ At mid-rapidity 
quarkonia and open-
heavy flavour vs  
multiplicity show 
similar trend vs 
multiplicity:

                  

ATLAS: EPJC 78 (2018) 17
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Quarkonia vs multiplicity in p-Pb
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Mid-rapidity

– ALICE: faster than linear trend w/o -gap

– ATLAS (+CMS): suppression towards higher 
multiplicities with -gap                  

w/o -gap

✔ At mid-rapidity 
quarkonia and open-
heavy flavour vs  
multiplicity show 
similar trend vs 
multiplicity:

                  

✔ Similar behaviour 
observed for D-mesons 
when multiplicity with 
and w/o -gap

✔ Comparison with 
models suggest that a 
hydro could provide a 
possible explanation    
→ collectivity ? 

                  

ALICE, PLB 776 (2018) 91

w/o -gap

ALICE, JHEP 8 (2016) 1

with -gap
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✔ saturation towards high-multiplicity for pPb

✔ continuous increase for pp  

                  

✔ Self-normalized 
p

T
vs 

multiplicity 
increases 
similarly for 
different s

NN
 

and rapidities 

                  

p
T
 of J/vs multiplicity in p-Pb
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pp
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pPb

✔ saturation towards high-multiplicity for pPb

✔ continuous increase for pp  

                  → similar behaviour observed for 
charged particles (saturation in 
Pb-Pb is interpreted in terms of 
collectivity)

p
T
 of J/vs multiplicity in p-Pb

ALICE, PLB 727 (2013) 371

✔ Self-normalized 
p

T
vs 

multiplicity 
increases 
similarly for 
different s

NN
 

and rapidities 
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J/ elliptic flow in p-Pb
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[PLB 780 (2018) 7]

[CMS, arXiv:1810.01473]

✔ Inclusive J/v
2
 measured looking at long-range angular 

correlations between backward / forward rapidity J/ and 
charged hadrons produced at mid-rapidity (rapidity gap ~ 1.5)

✔ Non-zero v
2
 observed for p

T
 > 3 GeV/c (~5 significance) 

✔ Similar v
2
 compared to Pb-Pb measurements→ very 

intriguing result: common underlying mechanism 
(besides what's included in current calculations) at the 
origin of J/ v

2
?  

✔ Initial conditions ? 

✔ Prompt J/v
2
 measured by CMS at 

high-multiplicity (estimated in ||<2.4) 

– compatible with D-meson and K0s at 
high-pT
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✔ pp collisions: 

– not significantly affected by s and quarkonium specie

– impact of -gap still not clear, more measurements needed

– steepness of the multiplicity dependence increases with the p
T
 of the particles

– several models can describe qualitatively the observed trends

✔ p-Pb collisions:

– no significant dependence on s
NN

 observed for both yields and p
T


– suppression observed at forward rapidity,  in line with CNM effects

– faster than linear increase observed at mid-y → collectivity ?    

– v
2
 comparable with Pb-Pb values→common underlying mechanism? Initial conditions ?

✔ Outlook:

– “new” observables (e.g. quarkonia-h correlations, quarkonia production in jets, spherocity 
dependence) could help to disantangle / further constrain models

– The usage of more “common” ways of plotting results among different collaborations would help 
to compare / discuss together experimental results (e.g. impact of -gap)     
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Tank you for your attention !
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Nuclear modification factor R
pPb

✔ Similar suppression observed for J/ and 
(1S) at both backward and forward rapidity

✔ Similar suppression observed for J/ and 
(2S) at forward rapidity

✔ (2S) suppressed significantly more than 
J/ at backward rapidity 

✔ Final state effects needed to explain 
(2S) modification

F. FiondaMPI@LHC 2019



Azimuthal anisotropy (v
2
)

[Figure: Raimond Snellings New J. Phys. 13 (2011)]
✔ In a strongly interacting medium, pressure gradients 

convert any initial geometrical anisotropy into an 
anisotropy in the momentum space

✔ anisotropy is quantified by the 2nd order 
coefficient v

2
 of the Fourier expansion of the 

particle azimuthal angle distribution

✔ In heavy-ion collisions non-zero v
2
 indicates the participation in the collective expansion of the system

✔ J/v
2
 measured looking at long-range angular correlations 

between backward / forward rapidity J/ and charged hadrons 
produced at mid-rapidity (rapidity gap ~ 1.5)

✔ Non-zero v
2
 observed for p

T
 > 3 GeV/c (~5 significance) 

✔ Similar v
2
 compared to Pb-Pb measurements→ very 

intriguing result: common underlying mechanism 
(besides what's included in current calculations) at the 
origin of J/ v

2
?  

✔ Initial conditions ? 

[PLB 780 (2018) 7]
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J/ elliptic flow in p-Pb
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[PLB 780 (2018) 7]

[CMS, arXiv:1810.01473]

✔ Inclusive J/v
2
 measured by ALICE 

– Non-zero v
2
 observed for p

T
 > 3 GeV/c (~5 significance) 

– Similar v
2
 compared to Pb-Pb measurements→ very intriguing 

result: common underlying mechanism (besides what's included in 
current calculations) at the origin of J/ v

2
?  

– Initial conditions ? 

✔ Prompt J/v
2
 measured by CMS at high-multiplicity (estimated in 

||<2.4) 

– similar flow measured by ATLAS by open charm at high-
multiplicity pp
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J/ production vs multiplicity in PYTHIA8

w/o CR

with CR

✔ J/yields result from different contributions Eur. Phys. J. C (2019) 79
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J/ production vs multiplicity in PYTHIA8
✔ J/yields result from different contributions Eur. Phys. J. C (2019) 79



 

Ratio-to-INEL>0

F. FiondaMPI@LHC 2019



Production in p-Pb collisions

Mid-rapidityForward rapidity Backward rapidity

✔ Cold Nuclear Matter (CNM) effects:

✔ (anti-)shadowing modifications for 
nuclear PDFs 

✔ gluon saturation, Colour Glass 
Condensate

✔ parton energy loss

✔ final state dissociation (absorption, 
comovers)

✔ Two beam configurations: p-Pb / Pb-p (two energies: s
NN

 = 5.02, 8.16 TeV) 

✔ Open questions: QGP formation in small systems ?  Collectivity ? 

CM
S, JHEP 2010 (091)

[EPJ C77 (2017) 163]
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