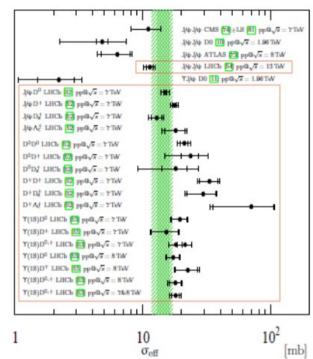
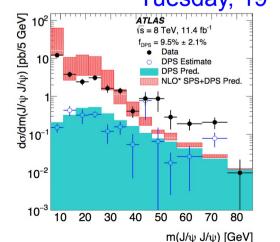


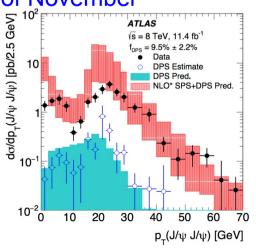
Three very productive sessions!

Going deeper in the proton structure...

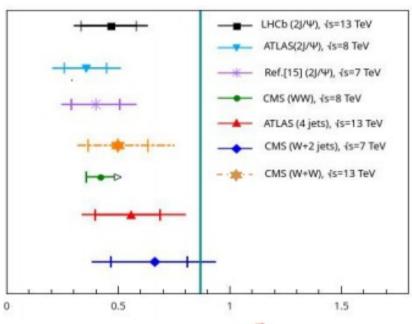

$$\sigma_{
m DPS} = rac{1}{s} rac{\sigma_A \sigma_B}{\sigma_{
m eff}}$$
 Is it still process and energy independend?

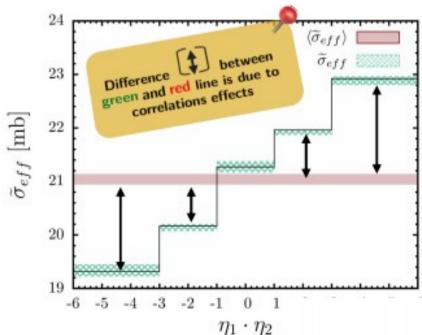
Experiment (energy, final state, year) ATLAS AFS ($\sqrt{s} = 63 \text{ GeV}$, 4 jets, 1986) UA2 ($\sqrt{s} = 630 \text{ GeV}$, 4 jets, 1991) CDF ($\sqrt{s} = 1.8 \text{ TeV}, 4 \text{ jets}, 1993$) CDF ($\sqrt{s} = 1.8 \text{ TeV}, \gamma + 3 \text{ jets}, 1997$) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) LHCb ($\sqrt{s} = 7$ TeV, $J/\psi \Lambda_s^+$, 2012) LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D_s^+, 2012$) **LHCb** ($\sqrt{s} = 7 \text{ TeV}, J/\psi D^+, 2012$) LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D^0, 2012$) ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013) CMS ($\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ jets}, 2014$) DØ $(\sqrt{s} = 1.96 \text{ TeV}, \gamma + b/c + 2 \text{ jets}, 2014)$ DØ $(\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014)$ DØ $(\sqrt{s} = 1.96 \text{ TeV}, J/\psi + J/\psi, 2014)$ ATLAS ($\sqrt{s} = 8 \text{ TeV}, Z + J/\psi, 2015$) **LHCb** ($\sqrt{s} = 7\&8 \text{ TeV}, \Upsilon(1S)D^{0,+}, 2015$) DØ ($\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Upsilon, 2016$) DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) ATLAS ($\sqrt{s} = 7 \text{ TeV}$, 4 jets, 2016) ATLAS ($\sqrt{s} = 8 \text{ TeV}, J/\psi + J/\psi, 2017$) HAH CMS ($\sqrt{s} = 8$ TeV, $\Upsilon + \Upsilon$, 2017) **LHCb** ($\sqrt{s} = 13 \text{ TeV}, J/\psi + J/\psi, 2017$) CMS $(\sqrt{s} = 8 \text{ TeV}, W^{\pm}W^{\pm}, 2018)$ ATLAS ($\sqrt{s} = 8 \text{ TeV}$, 4 leptons, 2018) 10 15 20 25 30


Figure: Compiled by the ATLAS Collaboration; PLB, 790, 595.


 $\sigma_{\rm eff}$ [mb]

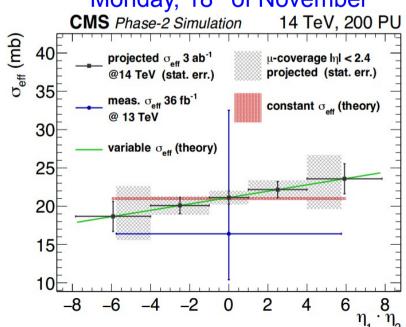
Daria Savrina (LHCb Collaboration) Monday, 18th of November


Maria Smizhanska (ATLAS Collaboration) Tuesday, 19th of November




Correlations?

Matteo Rinaldi Thursday, 21st of November



Gulia Pancheri Monday, 18th of November

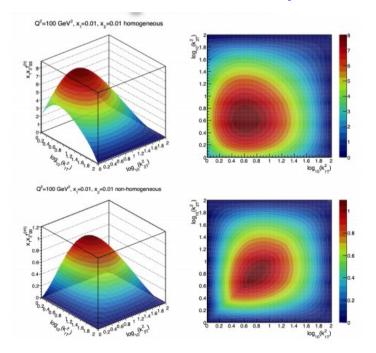
Marc Dünser for the CMS Collaboration Monday, 18th of November

Many theoretical calculations/tools

Jean-Phillipe Lansberg, Tuesday, 19th of November

• The quarkonium-inclusive-production mechanisms

not yet the object of a consensus


- QCD corrections via new NLO, and perhaps NNLO topologies,
 matter much for some mechanisms and some observables
- Novel Observables are necessary:

pseudoscalar states and associated production

- Beside the production-mechanism debate, quarkonia already allow us to probe the parton correlation through DPS studies
- They also start to tell us new information on the gluon Transverse Momentum Distribution distributions

e.g. JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217; F. Scarpa et al. arXiv:1909.05769 [hep-ph]

Krzysztof Golec-Biernat, Tuesday, 19th of November

Going to NLO and NNLO

Testing the internal mechnisms

Evaluating DPDs

How do these results get along with each other?

As experimentalists, what should/can we measure?

Many theoretical calculations/tools

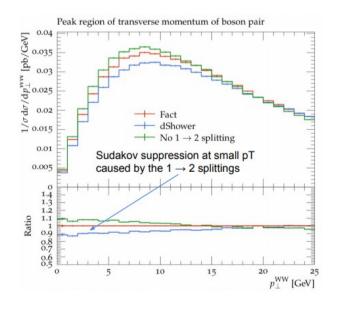
Riccardo Nagar, Tuesday, 19st of November

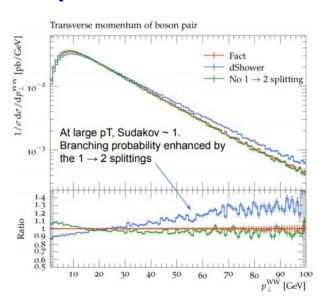
New DPD evolution code:

- efficient and precise algorithm for the solution of single and double DGLAP equations
- new library ChiliPDF intended for public release
- can evaluate DPD luminosities for the first time with NNLO DGLAP and flavor-matching
- a step towards full computation of DPS cross section...

Massive DPD splitting:

- scale choices in the massless DPD splitting formula can produce significant scale uncertainties
- adding the mass-dependent terms into the formulae, scale uncertainties are mitigated
- ongoing effort... towards a coherent factorization scheme with 2+ large scales involved in the splitting $(1/y, m_b, m_c, ...)$


Simulation is important!


Great to have reliable and up-to-date tools

Lots of ongoing work

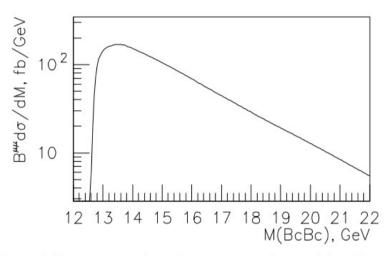
Thank you!

Baptiste Cabouat, Thursday, 21st of November

Many theoretical calculations/tools

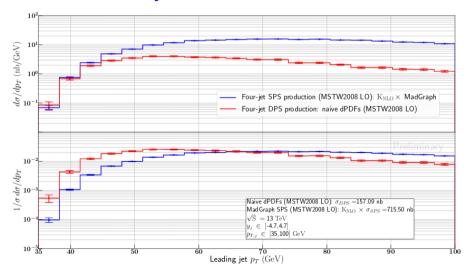
Higher precision (always on top!)

Experiment → theory wish list:

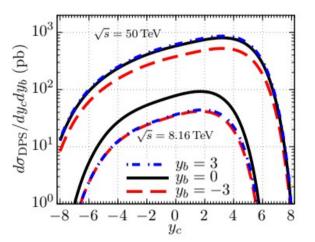

DPS with open beauty
Same-sign lepton pairs
D-meson+2 jets
W+2 jets
Proton-ion collisions (AA?)
WW kinimatical properties
4 jets measurements
Y+J/ψ

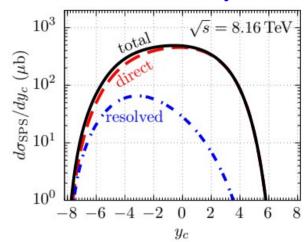
More?

Serguei Baranov, 19th of November, Tuesday

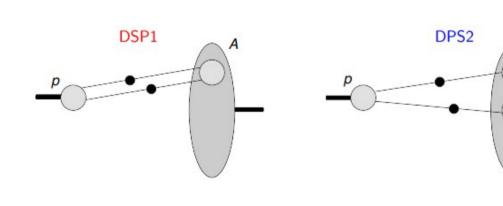

Numerical results at LHCb

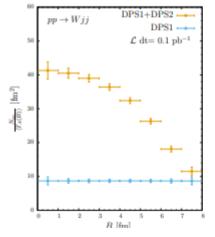
Four-quark invariant mass spectrum at $\sqrt{s} = 13 \text{ TeV}$

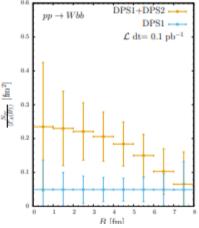

Differential cross section times muon branching fraction $Br^{\psi \to \mu\mu}Br^{\Upsilon \to \mu\mu}d\sigma(pp\to B_c\bar{B}_c)/dM$


Oleh Fedkevych, 18th of November, Monday

Large development for the pA collision studies


Roman Pasechnik, Tuesday, 19th of November





\sqrt{s} (TeV)	8.16	50	100
SPS UPC $c\bar{c}$ production in mb			
Direct	3.10	10.46	15.75
Resolved	0.35	1.81	3.03
Total	3.45	12.27	18.78
DPS UPC $c\bar{c}b\bar{b}$ production in nb			
Total	3.55	54.1	136

Federico Ceccopieri, Thursday, 21st of November

Some things would need big experimental efforts

Some can be tested already with Run1-2 LHC data!

