

# Particle physics in extensive air showers

MPI@LHC, Prague, 21.11.2019

Ralf Ulrich (KIT), Hans Dembinski (MPIK) for the CORSIKA 8 Projec

# Take-home message

### • High-energy cosmic rays initiate air showers

- Cosmic-ray mass composition can tell us about astrophysical sources
- Requires accurate simulation of air showers (hadron cascades)
- Background for IceCube and future neutrino observatories, and multi-messenger observations
- Particle physics at sqrt(s) = 300 TeV!

### Muon mystery

- Data/MC mismatch in muon density in air showers, new particle/QCD physics?
- Eight experiments combined muon density measurements from 0.5 PeV to 10 EeV and established mismatch at  $8\sigma$

#### Potential solution from the LHC

- Smoking gun: Energy fraction carried by neutral pions too high?
- proton-oxygen collisions to clarify nuclear effects, planned for 2023
- Also needed: high precision forward measurements in pp and pPb

# **High-energy cosmic rays**



# Big ultra-high cosmic ray questions



- What are they?
- Where do they come from?
- How do they interact?

### Air shower observables



# Atmosphere as calorimeter

Telescopes measure dE/dX and timing

### Surface detectors measure particle fluxes and timing

$$X_{
m max} \propto \ln \left( rac{E_0}{A} 
ight)$$
 $E_0 = E_{
m cal} + E_{
m invisible}$ 
 $E_0 \propto S_{1000}$ 
 $N_\mu \propto S_\mu \propto \left( rac{E_0}{A} 
ight)^eta$  (\$\beta \cdot 0.9)

## **Cosmic ray mass composition**



Astrophysical models of cosmic rays?

Mass composition (c.f. < In A>) of cosmic rays carries imprint of sources and propagation

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

# **Cosmic ray mass composition**



Astrophysical models of cosmic rays?

- Mass composition (c.f. <In A>) of cosmic rays carries imprint of sources and propagation
- Accuracy of <In A> limited by uncertainty in description of hadronic interactions in air showers

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

## **Cosmic ray mass composition**



Mass composition (c.f. < In A>) of cosmic rays carries imprint of sources and propagation

Astrophysical models of cosmic rays?

Accuracy of <ln A> limited by uncertainty in description of hadronic interactions in air showers

**Muon mystery (I):** Muon predictions in air showers are inconsistent with X<sub>max</sub>

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

There is a general difficulty to predict muon production in air showers

Model dependence is large and not well understood

# Average longitudinal dE/dX profile



# Longitudinal shower development



Remarkable: shape of dE/dX profiles becomes sensitive to mass and models

ralf.ulrich@kit.edu 10

# Signal deficiency at ground level



Attempt of consistent description of longitudinal and lateral shower data ... fails



Problems become worse at higher zenith angles

# Hadron/Muon component in data is too large



• Scale E.M. and had. part of MC showers by  $R_{\rm E}$  and  $R_{\rm had}$  to fit data:

$$S_{resc}(R_E, R_{had}) = R_E S_{EM} + R_{had} R_E^{\alpha} S_{had}$$

- While R<sub>F</sub> = 1 is possible and mostly consistent with data
- R<sub>bad</sub> is significantly above 1
- None of the models/assumptions reproduces data

→ myon mystery (II)

## Muon content at ground level

Inclined showers: 62 – 80 deg

→ electromagnetic component is ~absorbed





myon mystery (II)

# Muon mystery (III)

Muon number **rises faster with energy** than any model predicts. Non-zero positive slope at **8**σ significance



### What are we observing here?

- Collective effects? arXiv:1902.09265 [hep-ph]
- Strange fireball?
   PRD 95 (2017) 063005
- Exotic physics? arxiv:1307.2322 [astro-ph]
- ???
  - → unsolved!
- Converted very different muon measurements to universal **z-scale**
- Cross-calibrated energy scales of experiments by matching all-particle fluxes

### Air shower cascades



10 GeV proton in cloud chamber with lead absorbers at 3027 m altitude

#### Heitler-Matthews model of air shower



Cascade stops after O(10) steps (energy-dependent)
Pions/Kaons decay into GeV **muons** at the end of cascade

# Air shower physics



- Electromagnetic shower features are very sensitive to high-energy interactions
- Muon observables are a magnifying glass into small features of interactions over a wide energy range.
   Consider 10 shower generation: Total effect ~ effect<sup>10</sup>

→ 50% on muon number ~ 4% per interaction

# **Modify hadronic interaction features**

Ad-hoc modify features at LHC energy scale with factor  $\mathbf{f}_{\text{LHC-pO}}$  and extrapolate up to  $10^{19}$  eV proton shower

(with  $f_{IHC-pO}$ : relative effect strength in LHC pO collisions at 9TeV)

#### Modified features

- cross-section: inelastic cross-section of all interactions
- hadron multiplicity: total number of secondary hadrons
- **elasticity**: E<sub>leading</sub>/E<sub>total</sub> (lab frame)
- $\pi^0$  fraction: (no. of  $\pi^0$ ) / (all pions)



## Importance of interaction features



### Large impact on muon number

- Neutral pion fraction
- Hadron multiplicity



# Projected impact of changes



- Changing hadron multiplicity does not solve muon puzzle
- Need to change energy fraction R of neutral pions

$$R = \frac{\sum E_{\pi^0}}{\sum E_{\text{long-lived hadron}}}$$

### Possibilities to reduce R

- Nuclear effects are very important for air shower phenomology D'Enterria, T. Pierog, G. Sun, Astrophys.J. 874 (2019) 152
- Are collective nuclear effects in  $\pi N$  or  $\pi O$  collisions reducing R?



Collective effects may reduce pion fraction, EPOS-LHC predicts drop in *R* at eta = 0 <a href="https://arxiv.org/pdf/1902.09265.pdf">https://arxiv.org/pdf/1902.09265.pdf</a>

QGP in air showers could enhance strangeness production, reducing pion fraction <a href="https://arxiv.org/pdf/1612.07328.pdf">https://arxiv.org/pdf/1612.07328.pdf</a>

Enhancement of strangeness observed in central collisions in *pp*, *p*Pb ALICE, Nature Phys. 13 (2017) 535

# ...or is R already too low?





CMS, Eur.Phys.J. C 79 (2019) no.11, 893

- CMS measurements give higher R than models for 5.2 < |eta| < 6.6</li>
- Models should have higher R and then would yield even fewer muons!
- But this is in pp, what about pO?

# Nuclear effects in prompt J/Ψ production





LHCb, Phys. Lett. B 774 (2017) 159

- Up to 50 % suppression in forward direction
- Especially strong where relevant for CR!
- But: how in pO collisions?

# Nuclear effects in $\pi^0$ production



p<sub>⊤</sub> [GeV]

p<sub>⊤</sub> [GeV]

Very strong nuclear effects for  $\pi^{o}$  production in far forward

But: How much in pO collisions?

LHCf, Eur. Phys. J. C (2013) 73:2421

## Proton-oxygen collisions at the LHC

Collision systems at the LHC



Collision systems in air showers



- Only proton-oxygen collisions mimic interactions in air showers
- Need pp, pPb, and pO to understand nuclear effects

Nuclear "interpolation" 1800

- Interpolation in A does not work well,
   system differences are too large
- X<sub>max</sub> sensitive to cross sections, hadron multiplicities
- Muons sensitive to multiplicity, e.m./had ratios, π<sup>0</sup> production
- Nuclear modifications in forwarddirection expected and relevant



ALICE Xe-Xe arXiv:1807.09061; ATLAS Pb-Pb arXiv:1504.04337; CMS p-Pb arXiv:1710.09355v2; CMS p-p arXiv:1507.05915v2; LHCb p-p arXiv:1402.4430

# Tuning matters – and depends on data

Shown is spread between EPOS-LHC, QGSJetII.4 and SIBYLL 2.3



Models mostly tuned to p+p data at  $|\eta|$  < 2: p+p 10 % model spread, p+O 50 % model spread

# **Proposed LHC schedule for Run 3**

#### Z. Citron et al., CERN-LPCC-2018-07

| Year  | Systems, $\sqrt{s_{\scriptscriptstyle { m NN}}}$ | Time     | $L_{int}$                                                                                    |
|-------|--------------------------------------------------|----------|----------------------------------------------------------------------------------------------|
| 2021  | Pb-Pb 5.5 TeV                                    | 3 weeks  | $2.3~\mathrm{nb}^{-1}$                                                                       |
|       | pp 5.5 TeV                                       | 1 week   | $3 \text{ pb}^{-1}$ (ALICE), $300 \text{ pb}^{-1}$ (ATLAS, CMS), $25 \text{ pb}^{-1}$ (LHCb) |
| 2022  | Pb-Pb 5.5 TeV                                    | 5 weeks  | $3.9~\mathrm{nb}^{-1}$                                                                       |
|       | O–O, p–O                                         | 1 week   | $500~\mu { m b}^{-1} { m and} ~ 200~\mu { m b}^{-1}$                                         |
| 2023  | p-Pb 8.8 TeV                                     | 3 weeks  | $0.6 \text{ pb}^{-1}$ (ATLAS, CMS), $0.3 \text{ pb}^{-1}$ (ALICE, LHCb)                      |
|       | pp 8.8 TeV                                       | few days | $1.5 \text{ pb}^{-1}$ (ALICE), $100 \text{ pb}^{-1}$ (ATLAS, CMS, LHCb)                      |
| 2027  | Pb-Pb 5.5 TeV                                    | 5 weeks  | $3.8~\mathrm{nb}^{-1}$                                                                       |
|       | pp 5.5 TeV                                       | 1 week   | $3 \text{ pb}^{-1}$ (ALICE), $300 \text{ pb}^{-1}$ (ATLAS, CMS), $25 \text{ pb}^{-1}$ (LHCb) |
| 2028  | p-Pb 8.8 TeV                                     | 3 weeks  | $0.6 \text{ pb}^{-1}$ (ATLAS, CMS), $0.3 \text{ pb}^{-1}$ (ALICE, LHCb)                      |
|       | pp 8.8 TeV                                       | few days | $1.5 \text{ pb}^{-1}$ (ALICE), $100 \text{ pb}^{-1}$ (ATLAS, CMS, LHCb)                      |
| 2029  | Pb-Pb 5.5 TeV                                    | 4 weeks  | $3\mathrm{nb}^{-1}$                                                                          |
| Run-5 | Intermediate AA                                  | 11 weeks | e.g. Ar–Ar 3–9 pb <sup>-1</sup> (optimal species to be defined)                              |
|       | pp reference                                     | 1 week   |                                                                                              |

- one week can be enough to push uncertainties to <~5% (→ Auger)</li>
- 2 nb<sup>-1</sup> (10 x minimum) will also allow to measure charm ( $\rightarrow$  IceCube)
  - Latest planning moved oxygen-week to 2023

## Summary



- Muon Puzzle in air showers experimentally established
  - Statement by eight leading air shower experiments (8 $\sigma$ )
- Problem not in the data, theory has to change
  - None of the hadronic interaction models reproduces muon data (neither pre- nor post-LHC)
  - Suggests common missing QCD effect, perhaps QGP-related?
- pO and OO collisions planned for 2023
  - Probably 2 nb<sup>-1</sup> of pO
  - Data should be analyzed by ALICE, ATLAS, CMS, LHCb and LHCf
- Key forward measurements to be done at the LHC
  - In pp, pPb, and pO
    - Energy ratio *R* of  $\pi^0$  to long-lived hadrons at forward rapidity
    - Production cross-sections for  $\pi^0$ ,  $\pi^{+/-}$ , K, p
  - Precise measurements needed to 5 % or better