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Take-home message

• High-energy cosmic rays initiate air showers
• Cosmic-ray mass composition can tell us about astrophysical sources

• Requires accurate simulation of air showers (hadron cascades)

• Background for IceCube and future neutrino observatories, and multi-messenger observations

• Particle physics at sqrt(s) = 300 TeV!

• Muon mystery
• Data/MC mismatch in muon density in air showers, new particle/QCD physics?

• Eight experiments combined muon density measurements from 0.5 PeV to 10 EeV and
established mismatch at 8s

• Potential solution from the LHC
• Smoking gun: Energy fraction carried by neutral pions too high?

• proton-oxygen collisions to clarify nuclear effects, planned for 2023

• Also needed: high precision forward measurements in pp and pPb
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High-energy cosmic rays

3
Regime of air shower detection
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Big ultra-high cosmic ray questions

● What are 
they?

● Where do they 
come from?

● How do they 
interact?
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Air shower observables

Atmosphere as 
calorimeter

Telescopes measure 
dE/dX and timing

Surface detectors 
measure particle fluxes 
and timing 

Signal=S
e.m.

(r,θ) + S
μ
(r,θ)

(β~0.9)
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Cosmic ray mass composition
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Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Astrophysical models of cosmic rays?

• Mass composition (c.f. <ln A>) of cosmic rays carries 
imprint of sources and propagation
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Cosmic ray mass composition
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Astrophysical models of cosmic rays?

• Mass composition (c.f. <ln A>) of cosmic rays carries 
imprint of sources and propagation

• Accuracy of <ln A> limited by uncertainty in 
description of hadronic interactions in air showers

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660
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Cosmic ray mass composition
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Astrophysical models of cosmic rays?

• Mass composition (c.f. <ln A>) of cosmic rays carries 
imprint of sources and propagation

• Accuracy of <ln A> limited by uncertainty in 
description of hadronic interactions in air showers

• Muon mystery (I): Muon predictions in air showers 
are inconsistent with Xmax

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660
There is a general difficulty to predict muon
production in air showers

Model dependence is large and not
well understood
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JCAP 03 (2019) 018

Average longitudinal dE/dX profile

Transformation

18 < lg(E/eV) < 18.2
chi2/ndf = 0.85

18.8 < lg(E/eV) < 19.2
chi2/ndf = 0.47

Gaisser-
Hillas
function
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Longitudinal shower development
18 < lg(E/eV) < 18.2 18.8 < lg(E/eV) < 19.2

Areas: all possible mass mixtures

Remarkable: shape of dE/dX profiles becomes sensitive to mass and models
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Signal deficiency at ground level

Attempt of consistent description of
longitudinal and lateral shower data
                                                  … fails 

Problems become worse at higher 
zenith angles
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PRL 117, 192001 (2016)

Hadron/Muon component in data is too large

● Scale E.M. and had. part of MC showers by R
E
 and R

had
 to fit data:

         S
resc

 (R
E
 , R

had
 ) = R

E
 S

EM
 + R

had
 R

E
α S

had

● While R
E
 = 1 is possible and mostly consistent with data

● R
had

 is significantly above 1
● None of the models/assumptions reproduces data → myon mystery (II)
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Muon content at ground level
Inclined showers: 62 – 80 deg 

              → electromagnetic component is ~absorbed

Phys. Rev. D 91 (2015) 032003

myon mystery (II)
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Muon mystery (III)

What are we observing here?

● Collective effects? 
arXiv:1902.09265 [hep-ph]

● Strange fireball? 

PRD 95 (2017) 063005

● Exotic physics?
arxiv:1307.2322 [astro-ph]

● ???

     → unsolved !

arXiv:1902.08124 [astro-ph]
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LHC, 13TeV

• Converted very different muon measurements to universal z-scale
• Cross-calibrated energy scales of experiments by matching all-particle fluxes

Muon number rises faster with energy than any 
model predicts. Non-zero positive slope at 8s significance

https://arxiv.org/abs/1902.09265
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.063005
https://arxiv.org/abs/1307.2322
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Air shower cascades
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10 GeV proton in cloud chamber with lead
absorbers at 3027 m altitude

Heitler-Matthews model of air shower

Cascade stops after O(10) steps (energy-dependent)
Pions/Kaons decay into GeV muons at the end of cascade
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Air shower physics
Electromagnetic particles Muons

Longitudinal shower development

● Electromagnetic shower features are very sensitive to high-energy interactions
● Muon observables are a magnifying glass into small features of interactions over a wide 

energy range.                    Consider 10 shower generation:   Total effect ~ effect10

                                                                                                                                   → 50% on muon number ~ 4% per interaction
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Modify hadronic interaction features
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Modified features
• cross-section: inelastic cross-section of all 

interactions
• hadron multiplicity: total number of 

secondary hadrons
• elasticity: Eleading/Etotal (lab frame)

• p0 fraction: (no. of p0) / (all pions)

Ad-hoc modify features at LHC energy scale with factor fLHC-pO and 

extrapolate up to 1019 eV proton shower

(with fLHC-pO : relative effect strength in LHC pO collisions at 9TeV)

PRD 83 (2011) 054026
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Importance of interaction features
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Large impact on muon number
• Neutral pion fraction
• Hadron multiplicity

Muons Electromagnetic particles
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Projected impact of changes

Based on
Ulrich et al. PRD 83 (2011) 054026
Pierre Auger collab. PRD 91 (2015) 032003

• Changing hadron 
multiplicity does not solve 
muon puzzle

• Need to change energy 
fraction R of neutral pions

multiplicity

R
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Possibilities to reduce R
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Collective effects may reduce pion fraction,
EPOS-LHC predicts drop in R at eta = 0
https://arxiv.org/pdf/1902.09265.pdf

• Nuclear effects are very important for air shower phenomology
D‘Enterria, T. Pierog, G. Sun, Astrophys.J. 874 (2019) 152

• Are collective nuclear effects in pN or pO collisions reducing R?

QGP in air showers could enhance strangeness 
production, reducing pion fraction
https://arxiv.org/pdf/1612.07328.pdf

Enhancement of strangeness
observed in central collisions in pp, pPb
ALICE, Nature Phys. 13 (2017) 535

pp 13 TeV ,EPOS-LHC

https://arxiv.org/pdf/1902.09265.pdf
https://arxiv.org/pdf/1612.07328.pdf
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...or is R already too low?
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CMS, Eur.Phys.J. C 79 (2019) no.11, 893
• CMS measurements give higher R than models for 5.2 < |eta| < 6.6
• Models should have higher R and then would yield even fewer muons!
• But this is in pp, what about pO?

~R
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Nuclear effects in prompt J/Ψ production
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• Up to 50 % suppression in forward direction

• Especially strong where relevant for CR!

• But: how in pO collisions?
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LHCb, Phys. Lett. B 774 (2017) 159
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Nuclear effects in π0 production
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LHCf, Eur. Phys. J. C (2013) 73:2421

Very strong nuclear effects for p0 
production in far forward

But: How much in pO collisions?
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Proton-oxygen collisions at the LHC
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PbPb
XeXepPb

pp

pO

Collision systems at the LHC

• Only proton-oxygen collisions mimic 
interactions in air showers

• Need pp, pPb, and pO to understand 
nuclear effects

p-N and  p-O

p-N and p-O

Collision systems in air showers

(and: N~O)
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Nuclear “interpolation”

● Interpolation in A does not work well, 

system differences are too large

● Xmax sensitive to cross sections, hadron 
multiplicities

● Muons sensitive to multiplicity, e.m./had 
ratios, π0 production 

● Nuclear modifications in forward-
direction expected  and relevant
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Tuning matters – and depends on data
Shown is spread between EPOS-LHC, QGSJetII.4 and SIBYLL 2.3
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Proposed LHC schedule for Run 3
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• one week can be enough to push uncertainties to <~5% (→ Auger) 

• 2 nb-1 (10 x minimum) will also allow to measure charm (→ IceCube)

• Latest planning moved oxygen-week to 2023

Z. Citron et al., CERN-LPCC-2018-07
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Summary

• Muon Puzzle in air showers experimentally established
• Statement by eight leading air shower experiments (8s)

• Problem not in the data, theory has to change
• None of the hadronic interaction models reproduces

muon data (neither pre- nor post-LHC)

• Suggests common missing QCD effect, perhaps QGP-related?

• pO and OO collisions planned for 2023
• Probably 2 nb-1 of pO

• Data should be analyzed by ALICE, ATLAS, CMS, LHCb and LHCf

• Key forward measurements to be done at the LHC
• In pp, pPb, and pO

• Energy ratio R of p0 to long-lived hadrons at forward rapidity

• Production cross-sections for p0, p+/-, K, p

• Precise measurements needed to 5 % or better


