
https://root.cern

ROOT
Data Analysis Framework

ROOT I/O

Philippe Canal for the ROOT Team

https://root.cern

Resources

Ø ROOT Website: https://root.cern
Ø Introduction material: https://root.cern/getting-started

Ø Includes a booklet for beginners: the “ROOT Primer”

Ø Reference Guide: https://root.cern/doc/master/index.html
Ø Training material: https://github.com/root-project/training
Ø Forum: https://root-forum.cern.ch

2

https://root.cern
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://github.com/root-project/training
https://root-forum.cern.ch

Introduction

3

A Quick Tour of ROOT

4

What can you do with ROOT?

5

ROOT in a Nutshell
Ø ROOT is a software framework with building blocks for:

● Data processing
● Data analysis
● Data visualisation
● Data storage

Ø ROOT is written mainly in C++ (newer code in C++11/17 standard)
● Bindings for Python available as well

Ø Adopted in High Energy Physics and other sciences (but also
industry)
● More than 1 EB of data in ROOT format
● Fits and parameters’ estimations for discoveries (e.g. the Higgs)
● Thousands of ROOT plots in scientific publications

Ø Started in 1995
6

An Open Source Project
We are on github
github.com/root-project
All contributions are warmly welcome!

ROOT in a Nutshell

ROOT can be seen as a collection of building blocks for various activities, like:

● Data analysis: histograms, graphs, functions
● I/O: row-wise, column-wise storage of any C++ object
● Statistical tools (RooFit/RooStats): rich modeling and statistical inference
● Math: non trivial functions (e.g. Erf, Bessel), optimised math functions
● C++ interpretation: full language compliance
● Multivariate Analysis (TMVA): e.g. Boosted decision trees, NN
● Advanced graphics (2D, 3D, event display)
● Declarative Parallel Analysis: RDataFrame
● And more: HTTP servering, JavaScript visualisation

7

ROOT Application Domains

8

Event Filtering

Data RecoRaw Analysis
Formats… Images

Data Storage: Local, Network

Reconstruction

Further
processing,
skimming

Offline Processing

Analysis

Event
Selection,
statistical

treatment …

A selection of the
experiments
adopting ROOT

Interpreter

Ø ROOT has a built-in interpreter : Cling
● C++ interpretation: highly non trivial and not foreseen by the language!
● One of its kind: Just In Time (JIT) compilation
● A C++ interactive shell

Ø Can interpret “macros” (non compiled programs)
● Rapid prototyping possible

Ø ROOT provides also Python bindings
● Can use Python interpreter directly after a simple import ROOT
● Possible to “mix” the two languages (see more later)

9

$ root
root[0] 3 * 3
(const int) 9

Persistency or Input/Output (I/O)

Ø ROOT offers the possibility to write C++ objects into files
● This is impossible with C++ alone
● Used the LHC detectors to write several petabytes per year

Ø Achieved with serialization of the objects using the reflection
capabilities, ultimately provided by the interpreter
● Raw and column-wise streaming
● No explicit instrumentation needed in most cases.

Ø As simple as this for ROOT objects: one method -
TDirectoryFile::WriteObject

10

Cornerstone for storage
of experimental data

Mathematics and Statistics

12

Ø ROOT provides a rich set of mathematical libraries and tools for
sophisticated statistical data analysis

Machine Learning: TMVA

TMVA : Toolkit for Multi-Variate data Analysis in ROOT
Ø provides several built-in ML methods

including:
● Boosted Decision Trees
● Deep Neural Networks
● Support Vector Machines

Ø and interfaces to external ML tools
● scikit-learn, Keras (Theano/Tensorflow), R

13

RooFit

RooFit: Toolkit for Data Modeling and Fitting
Ø functionality for building models: probability density

functions (p.d.f.)
● distribution of observables in terms of parameters P(x;p)

Ø complex model building from standard components
● e.g. composition, addition, convolution,...

Ø RooFit models have functionality for
● maximum likelihood fitting for parameter estimation
● toy MC generation
● visualization
● sharing and storing (workspace)

14

RooStats

Ø Advanced Statistical Tools for HEP
analysis. Used for :
● estimation of Confidence/Credible

intervals
● hypotheses Tests

● e.g. Estimation of Discovery significance
Ø Provides both Frequentist and

Bayesian tools
Ø Facilitate combination of results

15

Graphics in ROOT

16

Many formats for data analysis, and not only, plots

2D and 3D Graphics

17

Can save graphics in many formats:
ps, pdf, svg, jpeg, LaTex, png, c, root …

JSROOT

Ø JSROOT: a JavaScript version of ROOT graphics and I/O
Ø Complements traditional graphics
Ø Visualisation on the web or embedded in notebooks
Ø Basic functionality for exploring data in ROOT format

18

Parallelism

Ø Many ongoing efforts to provide means for parallelisation in ROOT
Ø Explicit parallelism

● TThreadExecutor and TProcessExecutor
● Protection of resources

Ø Implicit parallelism
● RDataFrame: Declarative Parallel analysis
● TTreeProcessor: process tree events in parallel
● TTree::GetEntry: process of tree branches in parallel

Ø Parallelism is a prerequisite element for tackling data analysis during
LHC Run III and HL-LHC

19

Many More Features!

20

Ø Geometry Toolkit
● Represent geometries as complex as LHC detectors

Ø Event Display (EVE)
● Visualise particle collisions within detectors

https://root.cern

Ø ROOT web site: the source of
information and help for ROOT users
● For beginners and experts
● Downloads, installation instructions
● Documentation of all ROOT classes
● Manuals, tutorials, presentations
● Forum
● ...

21

The ROOT Prompt and Macros

22

The ROOT Prompt

Ø C++ is a compiled language
● A compiler is used to translate source code into machine instructions

Ø ROOT provides a C++ interpreter
● Interactive C++, without the need of a separate compiler, like Python,

Ruby, Haskell …
● Code is Just-in-Time compiled!

● Allows reflection (inspect at runtime layout of classes)
● Is started with the command:

● The interactive shell is also called “ROOT prompt” or “ROOT interactive
prompt”

23

root

ROOT As a Calculator

24

Here we make a step forward.
We declare variables and use a for
control structure.

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09

Example: C++ to Python

25

> root

root [0] TH1F h("myHist", "myTitle", 64, -4, 4)

root [1] h.FillRandom("gaus")

root [2] h.Draw()

> python

>>> from ROOT import TH1F

>>> h = TH1F("myHist", "myTitle", 64, -4, 4)

>>> h.FillRandom("gaus")

>>> h.Draw()

Dynamic C++ (JITting)

26

import ROOT
cpp_code = """
int f(int i) { return i*i; }
class A {
public:
A() { cout << "Hello PyROOT!" << endl; }

};
"""
Inject the code in the ROOT interpreter
ROOT.gInterpreter.ProcessLine(cpp_code)

We find all the C++ entities in Python!
a = ROOT.A() # this prints Hello PyROOT!
x = ROOT.f(3) # x = 9

C++ code we
want to invoke
from Python

Dynamic C++ (JITting)

27

Make the header known to the interpreter
ROOT.gInterpreter.ProcessLine('#include "my_cpp_library.h"')

We find all the C++ entities in Python!
a = ROOT.A() # this prints Hello PyROOT!
x = ROOT.f(3) # x = 9

int f(int i) { return i*i; }

class A {
public:
A() { cout << "Hello PyROOT!" << endl; }

};

my_cpp_library.h

my_python_module.py

Dynamic Library Loading

28

Load a C++ library
ROOT.gInterpreter.ProcessLine('#include "my_cpp_library.h"')
ROOT.gSystem.Load('./my_cpp_library.so')

We find all the C++ entities in Python!
a = ROOT.A() # this prints Hello PyROOT!
x = ROOT.f(3) # x = 9

#include "my_cpp_library.h"

int f(int i) { return i*i; }

A::A() { cout << "Hello PyROOT!" << endl; }

my_cpp_library.h
my_python_module.py

my_cpp_library.so

int f(int i);

class A {
public:
A();

}; my_cpp_library.cpp

Reading and Writing Data

29

I/O at LHC: an Example

30

Event Filtering

Data RecoRaw Analysis
Formats… Images

Data Storage: Local, Network

Reconstruction

Further
processing,
skimming

Offline Processing

Analysis

Event
Selection,
statistical

treatment …

A selection of the
experiments
adopting ROOT

The ROOT File

Ø In ROOT, objects are written in files*
Ø ROOT provides its file class: the TFile
Ø TFiles are binary and have: a header, records and can be

compressed (transparently for the user)
Ø TFiles have a logical “file system like” structure

● e.g. directory hierarchy

Ø TFiles are self-descriptive:
● Can be read without the code of the objects streamed into them
● E.g. can be read from JavaScript

* this is an understatement - we’ll not go into the details.
32

Flavour of TFiles

33

ROOT File Description

34

A Well Documented File Format

35

How Does it Work in a Nutshell?

Ø C++ does not support native I/O of its objects
Ø Key ingredient: reflection information - Provided by

ROOT
● What are the data members of the class of which this object is instance?

I.e. How does the object look in memory?
Ø The steps, from memory to disk:
1. Serialisation: from an object in memory to a blob of

bytes
2. Compression: use an algorithm to reduce size of the blob

(e.g. zip, lzma, lz4)
3. Writing to the physical resource (disk) via OS primitives

36

Serialisation: not a trivial task
For example:

Ø Must be platform independent: e.g. 32bits, 64bits
● Remove padding if present, little endian/big endian

Ø Must follow pointers correctly
● And avoid loops ;)

Ø Must treat stl constructs
Ø Support for custom serialization of numerical type

● For example floating point that are double precision in memory stored in only 4 bytes

Ø Support for schema evolution

● Object shape different on file and on disk.

Ø Must take into account customisations by the user
● E.g. skip “transient data members”
● I/O customization rule (transformation of data)

37

Persistency

38

C++
Classes/structs

Interfaces
(e.g. header files)

XML/C++
Selection metadata
(transient members,

versioning, morphing)

Dictionary
generation

C++
Dictionary (info for

registration of
classes in ROOT

Core)

C++
Classes/structs

implementations

Compiler

Shared
Library

Injection of Reflection Information

39

Needed, Discovered, Loaded

Now ROOT “knows” how to serialise the instances implemented in the library (series
of data members, type, transiency) and to write them on disk in row or column
format.

TFile in Action

40

TH1F* myHist;
TFile f("myfile.root");
f.GetObject("h", myHist);
myHist->Draw();

TBrowser

41

The ROOT Columnar Format

42

Columns and Rows

Ø High Energy Physics: many statistically independent
collision events

Ø Create an event class, serialise and write out N instances
on a file? No. Very inefficient!

Ø Organise the dataset in columns

43

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

44

can contain any kind
of c++ object

45

Relations Among Columns

TTree

A columnar dataset in ROOT is represented by TTree:
Ø Also called tree, columns also called branches
Ø An object type per column, any type of object
Ø One row per entry (or, in collider physics, event)

46

Anatomy of a File

47

Branch #1

Entries 0 .. N-1

File

Header

#2

0 .. N-1

#3

0 .. N-1

#1

N ... 2N-1

#2

N .. 2N-1

#3

N .. 2N-1

Cluster Cluster

TTree

Meta Data

File
Schema

Evolution

Support

#1

4N ...

#2

4N ...

#3

4N …

Cluster

#1

3N ...

#2

3N

…

#3

3N

…

Cluster

#1

2N ... 3N-1

#2

2N .. 3N-1

#3

2N .. 3N-1

Cluster

#1

5N ...

#2

5N ...

#3

5N ...

Cluster

#1

6N ... 6.9*N-1

#2

6N …

#3

6N …

Cluster

#1

7N …

#2

7N …

#3

7N

…

Cluster

#1

6.9*N ...

BasketBasket Basket Basket

Optimal Runtime and Storage Usage

Runtime:
Ø Can decide what columns to read
Ø Prefetching, read-ahead optimisations
Storage Usage:
Ø Run-length Encoding (RLE). Compression of individual

columns values is very efficient
● Physics values: potentially all “similar”, e.g. within a few orders of

magnitude - position, momentum, charge, index

48

Comparison With Other I/O Systems

49J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

Comparison With Other I/O Systems

50J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

Comparison With Other I/O Systems

51J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

I/O Patterns

52J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

The less you read (red sections),
the faster

https://indico.cern.ch/event/567550/contributions/2628878/

One Line Analysis

53

TFile f(filename);
TTree *mytree;
f.GetObject("tree", mytree);
myntuple.Draw("px * py", "pz > 0");

Works for all types of
columns, not only numbers!

One Line Analysis

54

Ø It is possible to produce simple plots described as strings

Ø TTree::Draw() method

Ø Good for quick looks, does not scale
● E.g. one loop on all events per plot

● See backup slide for newer functional analysis
framework (RDataFrame)

Filling a Tree with Numbers

55

TFile f("SimpleTree.root","RECREATE"); // Create file first. The TTree will be associated to it

TTree data("tree","Example TTree"); // No need to specify column names

double x, y, z, t;

data.Branch(”px",&x,"x/D"); // Associate variable pointer to column and specify its type, double

data.Branch(”py",&y,"y/D");
data.Branch(”pz",&z,"z/D");
data.Branch("t",&t,"t/D");

for (int i = 0; i<128; ++i) {

x = gRandom->Uniform(-10,10);

y = gRandom->Gaus(0,5);

z = gRandom->Exp(10);

t = gRandom->Landau(0,2);

data.Fill(); // Make sure the values of the variables are recorded

}

data.Write(); // Dump on the file

f.Close();

Filling a Tree with Objects

56

TRandom3 R;
using trivial4Vectors =
std::vector<std::vector<double>>;

TFile f("vectorCollection.root",
"RECREATE");

TTree t("t","Tree with pseudo particles");

trivial4Vectors parts;
auto partsPtr = &parts;

t1.Branch("tracks", &partsPtr);
// pi+/pi- mass
constexpr double M = 0.13957;

for (int i = 0; i < 128; ++i) {
auto nPart = R.Poisson(20);
particles.clear(); parts.reserve(nPart);
for (int j = 0; j < nPart; ++j) {

auto pt = R.Exp(10);
auto eta = R.Uniform(-3,3);
auto phi = R.Uniform(0, 2*TMath::Pi());
parts.emplace_back({pt, eta, phi, M});

}
t.Fill();

}
t.Write();

}

Reading Objects from a TTree

57

{

using trivial4Vector =

std::vector<double>;
using trivial4Vectors =

std::vector<trivial4Vector>;

TFile f("parts.root");
TTreeReader myReader("t", &f);
TTreeReaderValue<trivial4Vectors>

partsRV(myReader, "parts");

TH1F h("pt","Particles Transverse
Momentum;P_{T} [GeV];#", 64, 0, 10);

while (myReader.Next()) {

for (auto &p : *partsRV) {

auto pt = p[0];

h.Fill(pt);

}

}

h.Draw();

}

Reading a TNtuple with TBrowser

58

Many writers?

59

ROOT Files vs Multiple Writers

Ø ROOT Files inherently deals with variable size records
● Data frequently contains variable size collection

● Compression done inline

● For each branch/column data store in ‘bunch’ of several entries/row,
named a ‘Basket’; this is the unit of compression.

Ø Pre-reservation of file space not an option

60

Final File

Old Fashion Arrangement

61

Client

Client

Client Server

Fast Merging
Ø ROOT Files can be ‘fast’ merged by ‘only’

● Copying/appending the compressed data (baskets)

● Updating the meta data (TTree object)

● In first approximation we reach disk bandwith

• Actually … half … since we read then write.

Ø Leverage this capability and use in-memory file to add
support for multiple writers to the same file
● Multi-thread in production

● MPI prototype
62

With Parallel Merging

63

Client

Client

Client

Server

With Parallel Merging

64

Client

Client

Client

Server

With Parallel Merging

65

Final File

Client

Client

Client

Server

With Parallel Merging

66

Final File

Client

Client

Client

Server

With Parallel Merging

67

Final File

Client

Client

Client

Server

With Parallel Merging

68

Final File

Client

Client

Client

Server

With Parallel Merging

69

Final File

Client

Client

Client

Server

TBufferMerger

70

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data
Buffer

Data Queue Data
Buffer

TBufferMerger

Data
BufferData

BufferWorker Thread

Data
Buffer

Write()

TBufferMerger Single Branch Benchmark

Ø Create ~1GB of simple data and write out to different media using
different compression algorithms

Ø Measured time to flush disk cache is negligible compared to runtime
Ø Synthetic benchmark that exacerbates the role of I/O by doing light

amount of work (generating a random number)
Ø Test environment

● Intel® CoreTM i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)

● Write out data to HDD, NVMe SSD, DRAM

● Compare compression algorithms: LZ4, ZLIB, LZMA, no compression

● GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release build

6

Single Branch Benchmark: Speedup

72All figures using ROOT master branch

TBufferMerger Multi Branch Benchmark

ØCreate 1GB of complex data and write out to different media using different

compression algorithms

ØSynthetic benchmark to investigate what changes with added data complexity vs

previous benchmark, IMT disabled but speedups are similar

Ø 1 branch = std::vector<Event> (3x Vector3D, 3x double, 3x int)

ØData compresses better, so uncompressed is writing more output

Ø Test environment

• Intel® CoreTM i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)

• Write out data to HDD, NVMe SSD, DRAM

• Compare compression algorithms: LZ4, ZLIB, LZMA, no compression

• GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release build 9
73

Test creates 10 branches, each with a vector of 10 Events

Multi Branch Benchmark: Speedup

74All figures using ROOT master branch

MPI Prototype: Basic Structure

75

Worker (Process 1)

Worker (Process 2)

Worker (Process 3)

Collector (Process 4)

M
PI

MPI

MPI

Workers:
• Process Events (Populate TTrees

or TH1D’s)
• Send Processed Events to

Collector Using MPI functionalities

Collectors:
• Receive Processed Events from

Workers
• Merge them
• Write into disk

Communication is done via MPI
functionalities

Reading/Writing into buffer is done using
TMemFile functionalities

Each of the workers and collectors is one
unique MPI Process or Rank.

MPI Prototype: Basic Structure

76

Worker

Worker

Worker

Worker

Worker

Worker

Collector

Collector

Processes can be divided into many
worker/processor sub groups and do

multiple parallel merging.

Wrap up

77

ROOT I/O

Ø Write almost any C++ objects/data into files
● Used the LHC detectors to write several petabytes per year

Ø Leverage Cling C++ reflection capabilities
Ø Object-wise and column-wise streaming
Ø Very efficient in space and run-time
Ø Multiple writers support

● Multi-thread in production

● Multi-process (via MPI) in prototype
Ø Multiple language support, ROOT files can be read in:

● C++, Python, JavaScript

● Java, Go, even Rust (Contributions) 78

Backup slides

79

https://root.cern

ROOT
Data Analysis Framework

CREDITS
E. Tejedor, D. Piparo, G. Amadio, A Bashyal and the rest of the ROOT

Team

https://root.cern

RDataFrame Basics

Can we do Better?

82

simple yet powerful way to analyse data with modern C++

provide high-level features, e.g.
less typing, better expressivity, abstraction of complex operations

allow transparent optimisations, e.g.
multi-thread parallelisation and caching

Improved Interfaces

83

TTreeReader reader(data);
TTreeReaderValue<A> x(reader,"x");
TTreeReaderValue y(reader,"y");
TTreeReaderValue<C> z(reader,"z");
while (reader.Next()) {

if (IsGoodEntry(*x, *y, *z))
h->Fill(*x);

}

what we
write what we

mean

● full control over the event loop
● requires some boilerplate
● users implement common tasks again and again
● parallelisation is not trivial

RDataFrame: declarative analyses

84

● full control over the analysis
● no boilerplate
● common tasks are already implemented
? parallelization is not trivial?

RDataFrame d(data);
auto h = d.Filter(IsGoodEntry, {"x","y","z"})

.Histo1D("x");

RDataFrame: declarative analyses

85

● full control over the analysis
● no boilerplate
● common tasks are already implemented
? parallelization is not trivial?

ROOT::EnableImplicitMT();
RDataFrame d(data);
auto h = d.Filter(IsGoodEntry, {"x","y","z"})

.Histo1D("x");

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

86

can contain any kind
of c++ object

RDataFrame: quick how-to

87

1. build a data-frame object by specifying your data-set

2. apply a series of transformations to your data

○ filter (e.g. apply some cuts) or

○ define new columns

3. apply actions to the transformed data to produce results

(e.g. fill a histogram)

Creating a RDataFrame - 1 file

88

RDataFrame d1("treename", "file.root");

auto filePtr = TFile::Open("file.root");
RDataFrame d2("treename", filePtr);

TTree *treePtr = nullptr;
filePtr->GetObject("treename", treePtr);
RDataFrame d3(*treePtr); // by reference!

Three ways to create a RDataFrame that reads tree
“treename” from file “file.root”

Creating a RDataFrame - more files

89

RDataFrame d1("treename", "file*.root");
RDataFrame d2("treename", {"file1.root","file2.root"});

std::vector<std::string> files = {"file1.root","file2.root"};
RDataFrame d3("treename", files);

TChain chain("treename");
chain.Add("file1.root); chain.Add("file2.root);
RDataFrame d4(chain); // passed by reference, not pointer!

Here RDataFrame reads tree “treename” from files
“file1.root” and “file2.root”

Cut on theta, fill histogram with pt

90

RDataFrame d("t", "f.root");
auto h = d.Filter("theta > 0").Histo1D("pt");
h->Draw(); // event loop is run here, when you access a result

// for the first time

event-loop is run lazily, upon first access to the
results

91

Think of your analysis as data-flow

auto h2 = d.Filter("theta > 0").Histo1D("pt");
auto h1 = d.Histo1D("pt");

data filter histo
pt

histo
pt

Using callables instead of strings

92

// define a c++11 lambda - an inline function - that checks “x>0”

auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names

auto h = d.Filter(IsPos, {"theta"}).Histo1D("pt");
h->Draw();

any callable (function, lambda, functor class) can be
used as a filter, as long as it returns a boolean

Filling multiple histograms

93

auto h1 = d.Filter("theta > 0").Histo1D("pt");
auto h2 = d.Filter("theta < 0").Histo1D("pt");
h1->Draw(); // event loop is run once here h2-
>Draw("SAME"); // no need to run loop again here

Book all your actions upfront. The first time a result is
accessed, RDataFrame will fill all booked results.

94

Define a new column

double m = d.Filter("x > y")
.Define("z", "sqrt(x*x + y*y)")
.Mean("z");

`Define` takes the name of the new column and its
expression. Later you can use the new column as if it

was present in your data.

95

Define a new column

double SqrtSumSq(double, double) { return … ; }
double m = d.Filter("x > y")

.Define("z", SqrtSumSq, {"x","y"})

.Mean("z");

Just like `Filter`, `Define` accepts any callable object
(function, lambda, functor class…)

96

Think of your analysis as data-flow
// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")
.Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");
auto hxy = d2.Histo2D("x","y");

You can store transformed data-frames in variables,
then use them as you would use a RDataFrame.

data

filter
x > 0

histo
x,y

histo
z

define
z

d

d2

97

d.Filter("x > 0", "xcut")
.Filter("y < 2", "ycut");

d.Report();

Cutflow reports

// output
xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %

When called on the main TDF object, `Report` prints
statistics for all filters with a name

98

// stop after 100 entries have been processed

auto hz = d.Range(100).Histo1D("x");

// skip the first 10 entries, then process one every two until the end

auto hz = d.Range(10, 0, 2).Histo1D("x");

Running on a range of entries #1

Ranges are only available in single-thread executions.
They are useful for quick initial data explorations.

99

// ranges can be concatenated with other transformations

auto c = d.Filter("x > 0")
.Range(100)
.Count();

Running on a range of entries #2

This `Range` will process the first 100 entries
that pass the filter

100

auto new_df = df.Filter("x > 0")
.Define("z", "sqrt(x*x + y*y)")
.Snapshot("tree",

"newfile.root");

Saving data to file

We filter the data, add a new column, and then save
everything to file. No boilerplate code at all.

101

RDataFrame d(100);
auto new_d = d.Define("x", []() { return double(rand()) / RAND_MAX; })

.Define("y", []() { return rand() % 10; })

.Snapshot("tree", "newfile.root");

Creating a new data-set

We create a special TDF with 100 (empty) entries,
define some columns, save it to file

N.B. `rand()` is generally not a good way to produce uniformly
distributed random numbers

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

102

Not Only ROOT Datasets

• TDataSource: Plug any columnar format in RDataFrame
• Keep the programming model identical!
• ROOT provides CSV data source
• More to come
– TDataSource is a programmable interface!
– E.g. https://github.com/bluehood/mdfds LHCb raw

format - not in the ROOT repo

https://github.com/bluehood/mdfds

103

Not Only ROOT Datasets

tdf014_CsvDataSource_MuRun2010B.csv:

Run,Event,Type1,E1,px1,py1,pz1,pt1,eta1,phi1,Q1,Type2,E2,px2,py2,pz2,pt2,eta2,phi2,Q2,M

146436,90830792,G,19.1712,3.81713,9.04323,-16.4673,9.81583,-1.28942,1.17139,1,T,5.43984,-0.362592,2.62699,-

4.74849,2.65189,-1.34587,1.70796,1,2.73205

146436,90862225,G,12.9435,5.12579,-3.98369,-11.1973,6.4918,-1.31335,-0.660674,-1,G,11.8636,4.78984,-6.26222,-

8.86434,7.88403,-0.966622,-0.917841,1,3.10256

...

auto fileName = "tdf014_CsvDataSource_MuRun2010B.csv";

auto tdf = ROOT::Experimental::TDF::MakeCsvDataFrame(fileName);

auto filteredEvents =

tdf.Filter("Q1 * Q2 == -1")

.Define("m", "sqrt(pow(E1 + E2, 2) - (pow(px1 + px2, 2) + pow(py1 + py2, 2) + pow(pz1 + pz2, 2)))");

auto invMass =

filteredEvents.Histo1D({"invMass", "CMS Opendata: #mu#mu mass;mass [GeV];Events", 512, 2, 110}, "m");

RDataFrame
Extra features

105

RDataFrame d("mytree", "myFile.root");
auto cached_d = d.Cache();

Caching

All the content of the TDF is now in (contiguous) memory.
Analysis as fast as it can be (vectorisation possible too).

N.B. It is always possible to selectively cache columns to save some
memory!

106

ROOT::EnableImplicitMT();
RDataFrame d(100);
auto new_d = d.Define("x", []() { return double(rand()) / RAND_MAX; })

.Define("y", []() { return rand() % 10; })

.Snapshot("tree", "newfile.root");

Creating a new data-set - parallel

We create a special TDF with 100 (empty) entries,
define some columns, save it to file -- in parallel

N.B. `rand()` is generally not a good way to produce uniformly
distributed random numbers

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

107

auto h = d.Histo1D("x","w");

More on histograms #1

TDF can produce weighted TH1D, TH2D and TH3D.
Just pass the extra column name.

108

More on histograms #2

auto h = d.Histo1D({"h","h",10,0.,1.},"x", "w");

You can specify a model histogram with a set axis
range, a name and a title (optional for TH1D,

mandatory for TH2D and TH3D)

109

auto h = d.Histo1D("pt_array", "x_array");

Filling histograms with arrays

If `pt_array` and `x_array` are an array or an STL
container (e.g. std::vector), TDF fills histograms with

all of their elements. `pt_array` and `x_array` are
required to have equal size for each event.

110

C++ / JIT / PyROOT

d.Filter([](double t) { return t > 0.; }, {"th”})
.Snapshot<vector<float>>("t","f.root",{"pt_x"});

d.Filter("th > 0").Snapshot("t","f.root","pt*");
C++ and JIT-ing with CLING

Pure C++

pyROOT -- just leave out the ;
d.Filter("th > 0").Snapshot("t","f.root","pt*")

