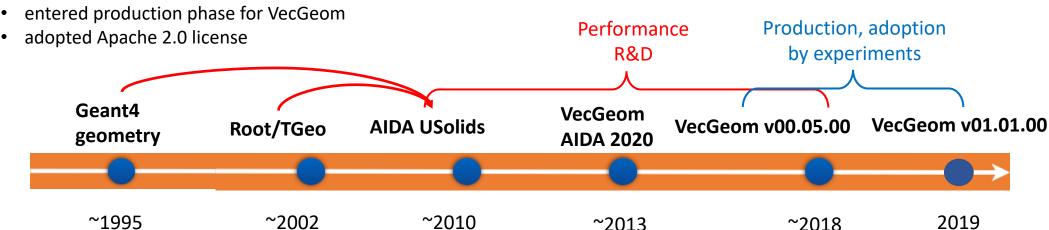
VecGeom

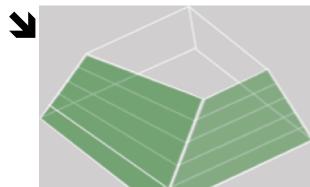

Vectorised Geometry Library

Gabriele Cosmo (CERN EP/SFT)

For the VecGeom team

VecGeom Evolution

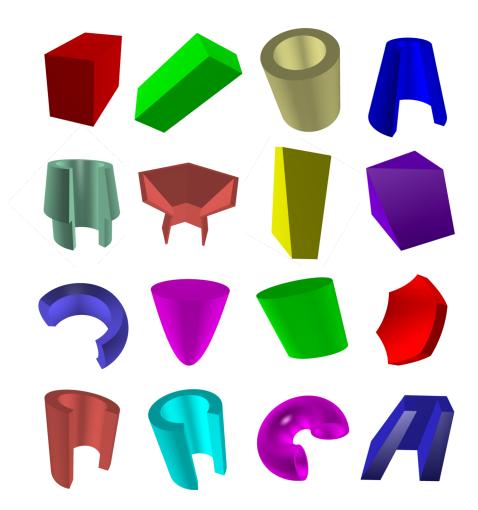
- AIDA project aiming to unify Geant4 and Root geometry algorithms
 - merge code base
 - pick best implementation and increase code quality
 - improve performance and increase long term maintainability
- Extended scope in **VecGeom**
 - encompass parallelism/vectorization
 - multi-architecture/multi-platform support
 - provide advanced navigation features
- Old initial USolids implementation phased out in 2018

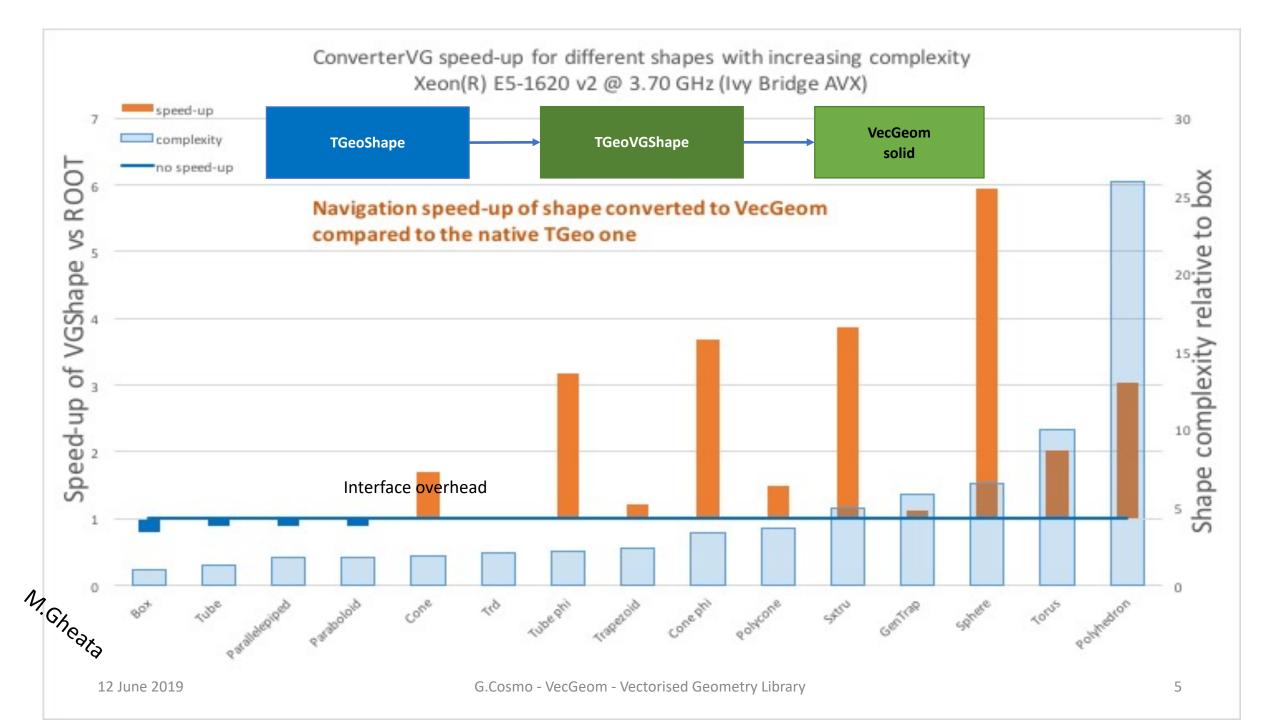

VecGeom: targeting vectorisation

Vector signatures "parallel" collision detection

Multi-particles queries

Internal algorithm vectorization


internal loop over lateral planes for distance calculation



Beneficial for current simulations

Shapes implementation status

- Available in VecGeom:
 - Box, Orb, Trapezoid (Trap), Simple Trapezoid (Trd), Sphere (+ sphere section), Tube (+ cylindrical section), Cone (+ conical section), Generic Trapezoid (Arb8), Polycone, Polyhedron (+generic)
 - Generic Polycone, Elliptical Tube, Elliptical Cone
 - Paraboloid, Parallelepiped (Para), Hyperboloid, Ellipsoid, Torus (+ torus section), Scaled Solid, Boolean (addition, subtraction, intersection), Cut Tube, Simple Extruded Solid (SExtru), <u>Tessellated</u> <u>Solid</u>, Extruded Solid
 - Tetrahedron (Tet), <u>Multi-Union</u>
- Missing:
 - Ellipsoid (+cut)
 - Twisted shapes (box, trap, tube)
 complex and infrequent use

Recent developments

Multi-level vectorization

Enhanced distance computing for tessellated solid

Group neighbor triangles in clusters, 4 per cluster. Store data in *vecCore::Double v*

Make groups of bounding boxes of clusters, 8 per group

Continue grouping by 8 and make "super" bounding boxes

-> bounding volume hierarchy (BVH)

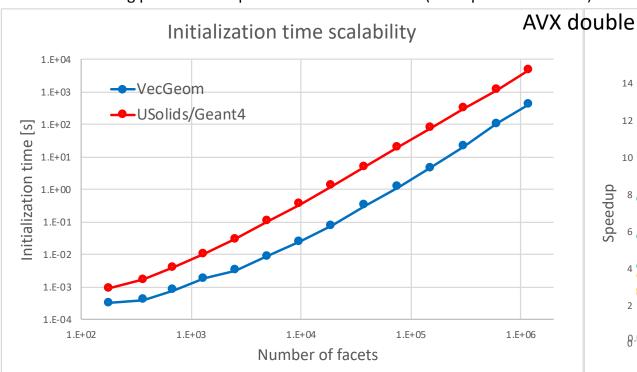
Vectorize in float computation of distances to super-boxes to select only hit candidates

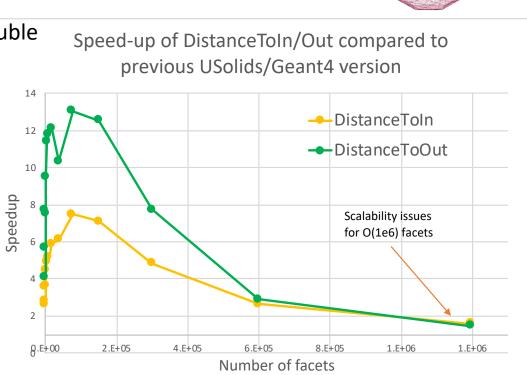
Repeat the same with the content of the boxes being hit, until we get the candidate clusters

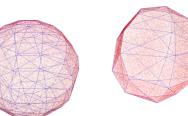
Example:

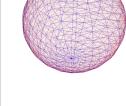
Tessellated solid

SIMD_size[AVX double] = 4

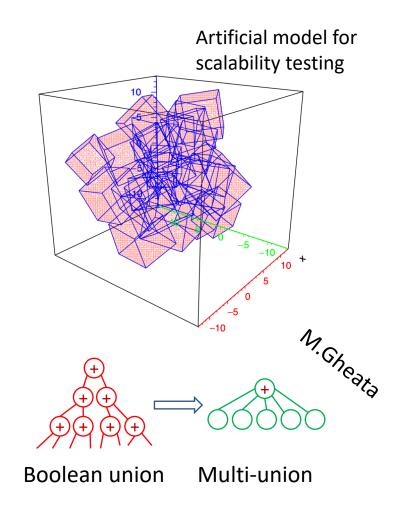

SIMD_size[AVX float] = 8


Vectorize in double computation of distances to triangles in each cluster

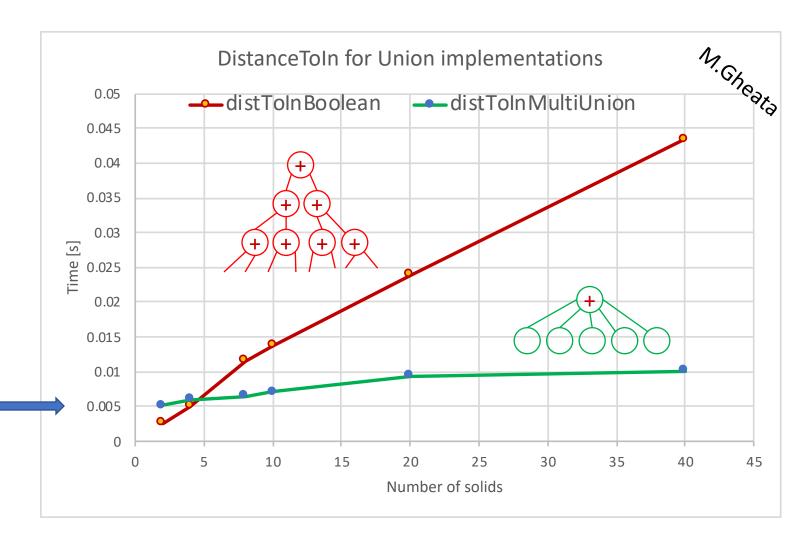



Effect on Tessellated Solid performance

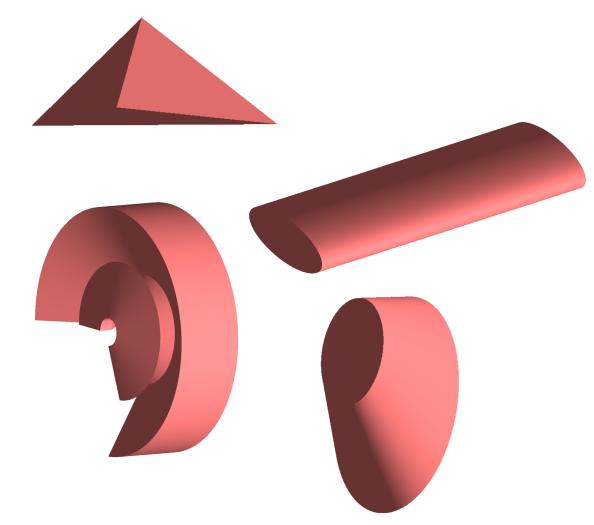
- O(10) speed-up compared to the original USolids/Geant4 implementation in both initialization and run time for up to 100K facets
- Next step: improve of scalability for very large number of facets/components
 - Vectorized approaches are available in industry ray tracers (such as <u>Intel Embree</u>)
 - · Trading precision for speed in some calculations (isotropic safe distance)



N. Ghedta


Multi-Union structure in VecGeom

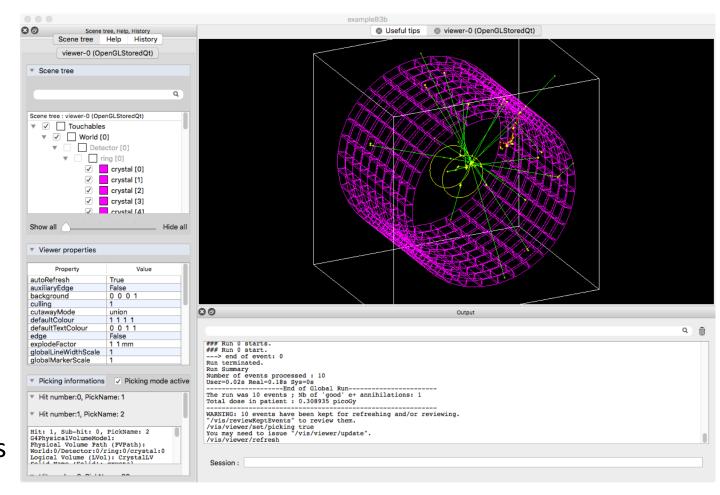
- Boolean unions traditionally represented as binary trees
 - Pathologically slow in simulation too many individual checks
- Multi-unions representing nodes at same level with same material
 - Optimisation structures to limit selection of candidates
 - Implementation in Geant4 using voxelization helper
- Re-implemented in VecGeom using technique based on Bounding Volume Hierarchies (BVH)
 - Vectorised search of candidates
 - Similar technique adopted as for Tessellated Solid


Replacing Boolean union with Multi-Union

- 2x-4x speed-up compared to corresponding implementation in USolids/Geant4 for up to several hundred components
- VecGeom implements automatic conversion of classic Boolean union of volumes to the new multiunion structure
- Much better scaling performance for large number of components

Shapes recently added

- Tetrahedron
 - A solid defined by four points in space
- Elliptical Tube
 - A tube with elliptical cross-section
- Elliptical Cone
 - A cone with elliptical cross-section
- Generic Polycone
 - A polycone constructed by specifying points through (r,z) coordinates and optionally nonmonotonic order for Z sections



Current VecGeom version

- Version v1.1.1 of VecGeom containing all latest new features and fixes
 - Fixes for corner-case problems in tube and polyhedron
 - First implementation of GDML reader based on Xerces-C
 - Faster safety computation for tessellated solid
 - Removed obsolete USolids module and configuration
- Soon will be tagging v1.1.2
 - Fixes in Para, Cone, Tube, Extruded Solid, ...
 - Doxygen documentation
- Reference versions for latest Geant4 10.5.p01 release and coming 10.6-Beta

Using VecGeom in Geant4

- VecGeom can be used in the last Geant4 version 10.5
- VecGeom solids can be used seamlessly since Geant4 10.2 as external library
- Part of nightly builds in Geant4
 - VecGeom shapes from Git master
 - Tested on CentOS/gcc-5.3
- VecGeom in Geant4 works either in batch or interactive mode
 - Including multi-threading (MT)
 - Including replicas/parameterisations

Building Geant4 to use VecGeom shapes

a. Install VecGeom library

• Scalar mode:

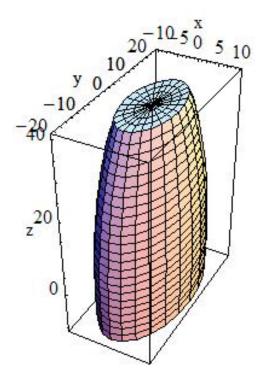
```
cmake -DBACKEND=Scalar -DGEANT4=OFF -DCMAKE_BUILD_TYPE=Release \
    [...other optional VecGeom switches as needed...] \
    -DCMAKE_INSTALL_PREFIX=${VecGeomINSTALLDIR} ${VecGeomSOURCE}
make -j8 install
```

• Or .. Vector mode:

```
cmake -DBACKEND=Vc -DGEANT4=OFF -DCMAKE_BUILD_TYPE=Release -DVECGEOM_VECTOR=native \
    [...other optional VecGeom switches as needed...] \
    -DCMAKE_INSTALL_PREFIX=${VecGeomINSTALLDIR} ${VecGeomSOURCE}
make -j8 install
```

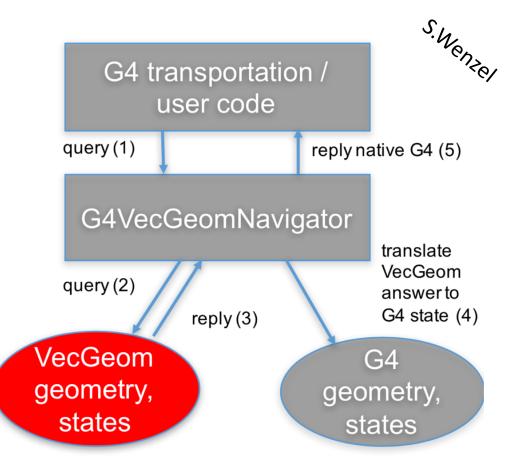
b. Install Geant4

- export VecGeom_DIR=\${VecGeomINSTALLDIR}/lib/Cmake/VecGeom
- Add -DGEANT4_USE_USOLIDS=ALL when configuring Geant4 with Cmake, to use all shapes currently being exercised
- OR, -DGEANT4_USE_USOLIDS="box; trap" for configuring to use/replace only specified shapes


NOTES: Reasonably recent version of the gcc/clang compilers required. Windows VC++ currently not supported

On going activity...

Addition of missing shapes


- G4Ellipsoid
 - A general triaxial ellipsoid with optional cut in Z

This completes the set of shapes in the GDML schema (still excluding twisted shapes)

Interface to VecGeom navigation

- VecGeom implements structures which benefits from SIMD (vectorized search/traversal of structure)
 - Increasing size of vector registers on future hardware will automatically make algorithm faster
- Other advantages like strong solid specialization would be made available, especially important for simple solids
- Two options for interfacing VecGeom navigation in Geant4:
- a) No overhead, full integration but much more complex and potentially user-disturbing
 - Relatively complex changes required in VecGeom and in Geant4
 - API and type evolution, more abstraction layers, ...
- b) User friendly, easy-to-implement, but "some overhead" option:
 - Simultaneous existence of Geant4 and VecGeom geometry with necessary synchronization/translation of states/objects
 - Applicable at first to placed/static geometries only
 - Useful as first approach and/or feasibility study

Student projects & more...

- Enhancements to specialized navigators, neighbor volume detection
- Addition of replicas/divisions
- Use of Intel Embree library for tessellated shapes
- GDML writer & Root I/O persistency
- Generation of polyhedral meshes for shapes
- Addition of overlaps checking
- Improve error logging / diagnostics

Documentation

- Invest some efforts to write a Users Guide
 - VecGeom primitives can be transparently built through either Geant4 or Root modelers
 - Still it is required to document original VecGeom API and features specific to VecGeom navigation and tools
 - Currently working to setup/complete Doxygen reference guide

Summary

- VecGeom now available as production-quality since version v0.5.0
 - Tested by several experiments, adopted by CMS in production
 - Latest version v1.1.1 including most recent features and reference for Geant4 10.5.p01
- Most primitives from the GDML schema now supported
 - Recently added: Generic Polycone, Tetrahedron, Elliptical Tube, Elliptical Cone
 - Added Multi-Union structure and enhanced Tessellated Solid queries
- Added GDML reader and removed old USolids module
- Ongoing work for interfacing Geant4 and Root navigation with VecGeom
- Several student projects defined for completing features of the modeler
- Documentation

Contributors

- CERN-EP/SFT + AIDA 2020: G.Amadio, J.Apostolakis, G.Cosmo, A.Gheata, M.Gheata, P.Mato, W.Pokorski, E.Tcherniaev
- J.Martinez Castro, A.Miranda Aguillar (Mexico), P.Canal, G.Lima (FNAL), D.Savin (GSoC student), R.Sehgal (BARC), S.Wenzel (CERN-ALICE)
- Repository for VecGeom
 - https://gitlab.cern.ch/VecGeom/VecGeom
- JIRA issue tracking tool
 - https://sft.its.cern.ch/jira/projects/VECGEOM