ATLAS Status Report

Peter Onyisi, on behalf of the ATLAS Collaboration

5 June 2019
Recent Physics Results

\[m_{jj} = 8.02 \text{ TeV} \]
recording eff ~ 94%
good for physics ~ 95%

comparative stability of different lumi measurements in 2018

2018 prelim lumi uncertainty 2.0% (of which stability 0.8%)
Full Run 2 prelim uncertainty 1.7%
Performance

• Studies on object reconstruction, lumi performance to support initial search results using full 139 fb$^{-1}$
• Work ongoing to provide the best possible uncertainties for precision measurements

\[E_{\text{data}} = (1+\alpha)E_{\text{MC}} \]

electron energy scale correction

[Graphs and plots related to electron energy scale correction and missing transverse energy significance]
Higgs Coupling Combination

- Combine Run 2 results (up to 80 fb\(^{-1}\)) for a global picture of Higgs interactions
- Move beyond simple coupling modifiers in a full combination
 - “Simplified Template Cross Sections” provide constraints on Higgs production as a function of associated objects & kinematic regime – e.g. high \(p_T\) where new physics effects might become important
 - sensitivity to more subtle BSM effects, improve model-independence

6.5\(\sigma\) single-experiment observation of vector boson fusion (5.3 expected)

ATLAS Preliminary

ATLAS-CONF-2019-005
Higgs Coupling Combination: STXS

Modified Stage 1 STXS (see YR4 arxiv:1610.07922) defined by truth bin

\[gg \rightarrow H \]
- \[gg \rightarrow H, \text{0-jet} \]
- \[gg \rightarrow H, 1\text{-jet}, \vec{p}_T^H < 60 \text{ GeV} \]
- \[gg \rightarrow H, 1\text{-jet}, 60 \leq \vec{p}_T^H < 120 \text{ GeV} \]
- \[gg \rightarrow H, 1\text{-jet}, 120 \leq \vec{p}_T^H < 200 \text{ GeV} \]

\[gg \rightarrow H, \geq 1\text{-jet}, \vec{p}_T^H \geq 200 \text{ GeV} \]

\[qq \rightarrow H qq \]
- \[qq \rightarrow H qq, \vec{p}_T^j \geq 200 \text{ GeV} \]
- \[qq \rightarrow H qq, \text{VH topo} \]
- \[qq \rightarrow H qq, \text{VBF topo + Rest} \]

\[V(\text{lep})H \]
- \[qq \rightarrow Hlv, \vec{p}_T^V < 250 \text{ GeV} \]
- \[qq \rightarrow Hlv, \vec{p}_T^V \geq 250 \text{ GeV} \]
- \[gg/qq \rightarrow Hll, \vec{p}_T^V < 150 \text{ GeV} \]
- \[gg/qq \rightarrow Hll, 150 \leq \vec{p}_T^V < 250 \text{ GeV} \]
- \[gg/qq \rightarrow Hll, \vec{p}_T^V \geq 250 \text{ GeV} \]

\[\text{compatibility with SM } \rho = 88\% \]
Higgs Couplings Combination, κ-framework

- Simple scalings κ_i of SM couplings
 - include $H \to$ invisible branching fraction limits, width constraints from off-shell measurements to constrain unseen decays
 - SM: $\kappa_i = 1$

"effective couplings" κ_g, κ_γ encapsulate loop effects
ttH, H → γγ

- Use high-resolution H → γγ decay to search for ttH production
 - measures top quark Yukawa coupling
 - hadronic and leptonic categories of top pair decays; BDTs used to select bins of various purity
- 4.9σ observed signal (4.2σ exp); $\mu_{t\bar{t}H} = 1.38^{+0.41}_{-0.36} = 1.38^{+0.33}_{-0.31} \text{(stat.)}^{+0.13}_{-0.11} \text{(exp.)}^{+0.22}_{-0.14} \text{(theo.)}$

(2017 multi-channel combination: 6.5σ obs, 5.1 exp)
Exotics Summary

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

| Model | \(\ell, \gamma\) | Jets | \(E_{T}^{miss}\) | \(|\mathcal{L}|a|b|^{fb^{-1}}\) | Limit | Reference |
|-------------------------------|------------------|------|-----------------|------------------|----------------|----------------------------|
| ADD QCD + g/q | \(2, 0, 0\) | 1 - 4 | 7.2 T TeV | 3.1 T TeV | Mu | 1711.023601 |
| ADD non-resonant \(g\gamma\) | \(2, 0, 0\) | 2 | 8.3 T TeV | 3.3 T TeV | Mu | 1799.02127 |
| ADD QCD + g/q | \(2, 0, 0\) | 2 | 8.3 T TeV | 3.3 T TeV | Mu | 1606.021658 |
| ADD QCD + g/q | \(2, 0, 0\) | 3 | 3.3 T TeV | 3.3 T TeV | Mu | 1512.021658 |
| RS1 QCD + g/q | \(2, 0, 0\) | 2 | 2.3 T TeV | 2.3 T TeV | Mu | 1893.02078 |
| Bulk RS G + g/q → WW/ZZ | \(2, 0, 0\) | 2 | 1.8 T TeV | 1.8 T TeV | Mu | 1893.02078 |
| Bulk RS G + g/q → WW/ZZ | \(2, 0, 0\) | 2 | 1.8 T TeV | 1.8 T TeV | Mu | 1893.02078 |
| Bulk RS G + g/q → WW/ZZ | \(2, 0, 0\) | 2 | 1.8 T TeV | 1.8 T TeV | Mu | 1893.02078 |
| Bulk RS G + g/q → WW/ZZ | \(2, 0, 0\) | 2 | 1.8 T TeV | 1.8 T TeV | Mu | 1893.02078 |

Extra Dimensions

- \(c\rightarrow t\bar{t}\) (higgsino + higgsino)

Gauge bosons

- **W’** → \(\ell\nu\) EXOT-2018-30
- **Z’** → \(\ell\ell\) arxiv:1903.06248

Dijet resonances

ATLAS-CONF-2019-007

VV resonances

ATLAS-CONF-2019-003

*Only a selection of the available mass limits on new states or phenomena is shown.

1 Small-radius (large-radius) jets are denoted by the letter \(J\).
W', Z' Searches

- Search for resonances decaying to $\ell\nu$ or $\ell\ell$ ($\ell = e, \mu$)
 - Provide cross section limits as a function of resonance width (and mass limits for some benchmark models, e.g. sequential standard model)

\mathcal{Z}'

arxiv:1903.06248 (sub. to Phys Lett B)

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$W' \rightarrow \ell\nu$

59% CL

Combined $e\nu$, $\mu\nu$

EXOT-2018-30

139 fb$^{-1}$
Diboson Resonance Search

- **WW/WZ/ZZ resonance search**
 - benchmark models: heavy vector triplets; radions; RS gravitons

- **all-hadronic channel**
 - R=1.0 jets: combine calo+track information (“Track-CaloClusters”) for better substructure resolution
 - select jets using \(n_{\text{trk}}, D_2 \) substructure, \(m(\text{jet}) \)

\[p_{T}^{j_1, j_2} > 600, 200 \text{ GeV}; \text{one tag, one anti-tag} \]
Dijet Resonance Search

- Dijet resonances could arise from e.g. excited quarks ($q' \rightarrow qg$)
 - dijet resonance search a typical probe for compositeness
- Smooth background distribution fit to data
- Bump search algorithm used to search for excesses
SUSY: Summary

- **Large number of new 139 fb\(^{-1}\) results**

<table>
<thead>
<tr>
<th>Final State</th>
<th>Probes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(\ell) + 0b + MET</td>
<td>chargino+neutralino</td>
<td>ATLAS-CONF-2019-020</td>
</tr>
<tr>
<td>(h \rightarrow \gamma\gamma + (\ell\nu/qq') +) MET</td>
<td>chargino+neutralino</td>
<td>ATLAS-CONF-2019-019</td>
</tr>
<tr>
<td>2(\tau) + MET</td>
<td>staus</td>
<td>ATLAS-CONF-2019-018</td>
</tr>
<tr>
<td>(\ell) + b + jets + MET</td>
<td>stop 3-body</td>
<td>ATLAS-CONF-2019-017</td>
</tr>
<tr>
<td>((Z \rightarrow \ell\ell) + \ell +) jets + MET</td>
<td>stop with Z</td>
<td>ATLAS-CONF-2019-016</td>
</tr>
<tr>
<td>2 same sign (\ell/3\ell) + jets + MET</td>
<td>gluinos/sbottom/stop/gluinos (\rightarrow) RPV stop</td>
<td>ATLAS-CONF-2019-015</td>
</tr>
<tr>
<td>(\ell\ell + j +) MET</td>
<td>compressed spectrum ewkinos, sleptons</td>
<td>ATLAS-CONF-2019-014</td>
</tr>
<tr>
<td>(\geq 3b +) MET</td>
<td>sbottom with Higgs in decays</td>
<td>ATLAS-CONF-2019-011</td>
</tr>
<tr>
<td>2(\ell) + MET</td>
<td>charginos/sleptons</td>
<td>ATLAS-CONF-2019-008</td>
</tr>
<tr>
<td>Displaced (\mu) and vertex</td>
<td>long-lived stop RPV</td>
<td>ATLAS-CONF-2019-006</td>
</tr>
</tbody>
</table>
SUSY: Stop Production

- Direct stop production with “unusual” decays
 - three-body decay $\tilde{t}_1 \rightarrow bW\tilde{\chi}_1^0$ in the $\ell + \text{jets} + \text{MET}$ final state
 - $Z + \text{top} \ (\tilde{t} \rightarrow tZ\tilde{\chi}_1^0 \text{ or } \tilde{t}_2 \rightarrow \tilde{t}_1 Z)$
 - long lived stop RPV $\tilde{t} \rightarrow q\mu$ displaced muon + vertex

ATLAS-CONF-2019-017

ATLAS Preliminary
\(f_s = 13 \text{ TeV, } 139 \text{ fb}^{-1}\)
Limit at 95% CL

ATLAS-CONF-2019-006

ATLAS Preliminary
\(f_s = 13 \text{ TeV, } 136 \text{ fb}^{-1}\)
All limits at 95% CL

ATLAS-CONF-2019-016

ATLAS Preliminary
\(f_s = 13 \text{ TeV, } 139 \text{ fb}^{-1}\)
All limits at 95% CL
SUSY: Chargino-Neutralino Production

- **Trilepton**
 - (emulated) recursive jigsaw
 - SRs with and without ISR

- **Higgs**
 - use $h \rightarrow \gamma\gamma$ decay, $W \rightarrow \ell\nu$ or qq' on the other side

Both analyses: excesses in 36 fb$^{-1}$ not seen in full dataset
SUSY: Compressed Spectra

- Small sparticle mass splittings \(\rightarrow \) low \(p_T \) SM particles: hard to trigger and reconstruct
 - use initial state jets (> 50 GeV) to provide a boost to increase MET
 - target electroweakinos and sleptons with same-flavor dilepton analysis
- Use MET trigger
- Recursive jigsaw to isolate ISR
- Sensitivity to mass splittings \(\sim 1 \) GeV

ATLAS-CONF-2019-014
SUSY: Staus

- Potential scenario: colored superpartners very heavy, sleptons accessible at LHC (and staus lightest)
- Search for stau pair production
 - two hadronic taus + MET
 - $m(\tau\tau) > 120$ GeV (remove Z/H), events with b-jets (remove $t\bar{t}$), $m_{\tau_2} > 70$ GeV (remove $t\bar{t}$, WW)

validation regions

high mass SR

first sensitivity for $m_\tau > 110$ GeV
New physics can affect mixing in the B_s system
- CP violating phase ϕ_s from interference of decays with and without mixing in $B_s \to J/\psi \varphi$ is small in SM (~ -0.036)

Flavor of produced B_s tagged via tagging charge of "opposite side" tracks (opposite side B hadron region identified using lepton or b-tagged jet)

Precision measurement of proper time

Fit includes interference with S-wave J/ψ K K
Forward System

- **ALFA** – data during runs with special LHC optics
- **AFP** – data during special runs and also generic high-μ physics
- ALFA/AFP operation in Run 3 intricately connected to beam optics
- Radiation damage to ALFA fibers → manageable now, but motivates $\sqrt{s} = 14$ TeV ALFA run as early as possible in Run 3

ALFA 8 TeV total xsec: $\sigma_{\text{tot}}(pp \rightarrow X) = 96.07 \pm 0.18 \text{ (stat.)} \pm 0.85 \text{ (exp.)} \pm 0.31 \text{ (extr.) \, mb}$

PLB 761, 158 (2016)
Forward Physics

- Single diffractive events in ALFA
 - tag intact proton – suppress double diffractive/non-diffractive background
 - study exchanged color-neutral system & characteristics of rapidity gap
 - improve constraints on σ_{inel}

- Trigger on min bias trigger scintillators + ALFA coincidence

- Use central tracker to obtain rapidity gap $\Delta \eta$ and fractional proton energy loss $\xi = M_x^2/s$
Light-by-Light Scattering

- $\gamma\gamma \rightarrow \gamma\gamma$ through a loop is a fundamental QED process
 - violates superposition principle of classical electromagnetism
 - $\sigma \propto q^6$
- Ultraperipheral heavy ion collisions are an ideal system to search for $\gamma\gamma \rightarrow \gamma\gamma$
 - colliding the nuclei’s E, B fields – cross section enhanced by a factor $Z^4 = 4.5 \times 10^7$ over proton collisions
 - in-time pileup negligible → look for events with two photons and nothing else
 - $E_T^\gamma > 3$ GeV, back-to-back in ϕ, low $p_T^\gamma\gamma$
 - Trigger allows a maximum amount of calo energy
- 8.2σ observation (6.2 exp)

$\text{arxiv:1904.03536 (sub. to PRL)}$

2018 PbPb data
Planning

- Many activities happening in parallel in cavern
 - potential for conflict between different systems must be managed
Maintenance

• Leak finding/repair
 – comprehensive refurbishment of LAr & Tile cooling circuits (connectors, hoses ...)
 – RPC gas leak repairs progressing well

• Refurbishment of DAQ networks at P1
 – router & switch replacement, bandwidth increase
 – node transition to CentOS 7
 – HLT farm used for MC generation when available

• Replacement of crack scintillators & min bias trigger scintillators (MBTS) in progress
 – crack scintillators significantly improve energy resolution in $|\eta| \sim 1.2-1.6$; replacement will extend coverage to 1.72

• Plans to study pixel depletion depth via program of cosmic runs during LS2
 – ID was warm for only 17 days during endplate opening

new core routers
LAr Trigger Upgrade

- Installation of new trigger data path for liquid argon calorimeter
 - synergistic with “regular” maintenance
- Front-end board rework, crate baseplane replacement proceeding well
 - 50 FEB/wk achieved (1524 total)
- Commissioning of new crates ongoing
 - validate old trigger path first, then new path when possible
Muon New Small Wheel

Assembled sTGC wedges, waiting for services and electronics

New Small Wheel (NSW)

2x 4 layers (Quadruplet) of Micromegas detectors / NSW sector

2x 4 layers (Quadruplet) of sTGC detectors / NSW sector

First complete Micromegas double wedge in cosmic ray test stand for electronics studies

Electronics test on sTGCs
Muon New Small Wheel

- NSW structure ready to receive detector sectors: installation of 1st sector planned in summer
 - Services installation on A-side wheel is complete

- sTGC:
 - Production is progressing according to schedule, 27 chambers shipped to CERN. Wedge assembly ongoing, first 5 wedges completed

- Micromegas:
 - Production is ongoing. Some remaining HV stability issues
 - Wedge assembly PRR was passed in April
 - 1st double wedge assembled successfully, further wedge integration driven by chamber availability

- Electronics:
 - 50% of front end ASIC (VMM) series production wafers received → packaging next
 - All electronics cards are either in pre-production or production, with some delays on the Micromegas frontend board (MMFE8)

- Good progress, but installation of first wheel (A-side) in LS2 remains a challenge
TDAQ Upgrade

L1Calo:
- Prototype boards exist for all feature extractors (FEXs).
- Being tested in Surface Test Facility (STF)@CERN aiming for full FEX-Hub-ROD-FELIX data path.
- Baseline algorithms established for all FEXs.
- Installation Q4-2019 until Q1-2020.

L1Muon:
- Barrel+Endcap Muon Sector Logic (SL) installation planned for July 2019.

FELIX (common readout driver):
- Significant stability improvements in firmware and software; FPGA utilisation under control.
- Pre-production of 20 boards testing found issues, under evaluation, final PRR foreseen May 2019 is delayed.
- Target for installation Q3 2019.
Phase-II Upgrades
Phase-II upgrades

- Six TDR approved (ITk pixel, ITk strips, LAr, Tile, Muon, TDAQ) + one Technical Proposal (HGTD)
 - ATLAS review identified additional R&D steps for HGTD: TDR to be submitted by April 2020
- 5 MoUs released for signature
 - ITk pixel being prepared for summer
- Project baselining process complete
 - Follow-up reviews of ITk pixel and TDAQ planning scheduled by beginning of July
- ITK strips, LAr and Muons passed P2UG in-depth review in May – milestones approved
- In-depth review of ITk pixel and common items, Tile and TDAQ in November
Muons & ITk Strips

Muon upgrade:

- Design of new electronics for MDT/TGC/RPC: new ASICs are either in pre-production or have first prototypes
- BIS7/8, a pilot project for new barrel-inner chambers, on track for installation in LS2

ITk Strips:

- Undergoing the transition from prototyping to pre-production.
- This coming year will have most of the technical reviews allowing for pre-production (final design review)
 - First FDR to allow for sensor preproduction finished this April
 - Next FDR for global mechanics next week

EC Global Support
Demonstrator + Petal Insertion
Conclusion

- Excellent progress in exploiting full 139 fb$^{-1}$ dataset for search analyses
 - 15 public results in SUSY, exotic resonances, Higgs
 - also first result from Nov 2018 heavy ion run!
- Studies in progress to obtain ultimate accuracy for precision analyses
- Long Shutdown activities: detector refurbishment + Phase-I upgrade installation making good progress.
 - Software + TDAQ overhaul for multithreading also proceeding
- Phase-II upgrade activities passing major project milestones – TDR approval, MOUs, baselining

Many thanks to the LHC & computing professionals without whom our results would not be possible!
Extra
Higgs Combination Categories

<table>
<thead>
<tr>
<th>$H \rightarrow \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow ZZ^*$</td>
</tr>
<tr>
<td>$H \rightarrow WW^*$</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
</tr>
<tr>
<td>$H \rightarrow bb$</td>
</tr>
</tbody>
</table>

ttH Leptonic (3 categories)
- ttH leptonic 1 $\ell + 2$ τ_{had}
- ttH leptonic 2 opposite-sign $\ell + 1$ τ_{had}
- ttH leptonic 2 same-sign ℓ (categories for 0 or 1 τ_{had})
- ttH leptonic 3 ℓ (categories for 0 or 1 τ_{had})
- ttH leptonic 4 ℓ (except $H \rightarrow ZZ^* \rightarrow 4\ell$)
- ttH hadronic, $H \rightarrow ZZ^* \rightarrow 4\ell$

VH Leptonic
- VH 2 ℓ
 - VH 1 ℓ, $p_T^{\ell+E_T^{miss}} \geq 150$ GeV
 - VH 1 ℓ, $p_T^{\ell+E_T^{miss}} < 150$ GeV
 - VH E_T^{miss}, $E_T^{miss} \geq 150$ GeV
 - VH E_T^{miss}, $E_T^{miss} < 150$ GeV
 - $VH + VBF$ $p_T^{3\ell} \geq 200$ GeV
- VH hadronic (2 categories)

VBF
- VBF, $p_T^{\gamma\gamma ij} \geq 25$ GeV (2 categories)
- VBF, $p_T^{\gamma\gamma ij} < 25$ GeV (2 categories)

ggF
- 2-jet, $p_T^{\gamma\gamma} \geq 200$ GeV
- 2-jet, 120 GeV $\leq p_T^{\gamma\gamma} \leq 200$ GeV
- 2-jet, 60 GeV $\leq p_T^{\gamma\gamma} \leq 120$ GeV
- 1-jet, $p_T^{\gamma\gamma} < 60$ GeV
- 1-jet, $p_T^{\gamma\gamma} \geq 200$ GeV
- 1-jet, $p_T^{\gamma\gamma} \leq 120$ GeV
- 1-jet, $p_T^{\gamma\gamma} \leq 60$ GeV
- 1-jet (2 categories)

Boosted
- 1-jet, $p_T^{\gamma\gamma} < 30$ GeV, $p_T^{4\ell} < 20$ GeV
- 1-jet, $p_T^{\gamma\gamma} \geq 30$ GeV, $p_T^{4\ell} \geq 20$ GeV
- 0-jet, $p_T^{\gamma\gamma} < 30$ GeV, $p_T^{4\ell} < 20$ GeV
- 0-jet, $p_T^{\gamma\gamma} \geq 30$ GeV, $p_T^{4\ell} \geq 20$ GeV

Other Conditions
- 2ℓ, $75 \leq p_T^{V} < 150$ GeV, $N_{jets} = 2$
- 2ℓ, $75 \leq p_T^{V} < 150$ GeV, $N_{jets} \geq 3$
- 1ℓ, $p_T^{V} \geq 150$ GeV, $N_{jets} = 2$
- 1ℓ, $p_T^{V} \geq 150$ GeV, $N_{jets} \geq 3$
- 0ℓ, $p_T^{V} \geq 150$ GeV, $N_{jets} = 2$
- 0ℓ, $p_T^{V} \geq 150$ GeV, $N_{jets} = 3$

Additional Information
- VBF, two central jets
- VBF, four central jets
- VBF $+\gamma$
W’ Efficiency

- Decrease at high mass due to low mass off-shell component becoming dominant.
\[\mathbf{B}_s \rightarrow J/\psi \phi \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Statistical uncertainty</th>
<th>Systematic uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\phi_s[\text{rad}]]</td>
<td>-0.076</td>
<td>0.034</td>
<td>0.019</td>
</tr>
<tr>
<td>[\Delta \Gamma_s[\text{ps}^{-1}]]</td>
<td>0.068</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>[\Gamma_s[\text{ps}^{-1}]]</td>
<td>0.669</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>[</td>
<td>A_\parallel(0)</td>
<td>^2]</td>
<td>0.220</td>
</tr>
<tr>
<td>[</td>
<td>A_0(0)</td>
<td>^2]</td>
<td>0.517</td>
</tr>
<tr>
<td>[</td>
<td>A_5</td>
<td>^2]</td>
<td>0.043</td>
</tr>
<tr>
<td>[\delta_\perp [\text{rad}]]</td>
<td>3.075</td>
<td>0.096</td>
<td>0.091</td>
</tr>
<tr>
<td>[\delta_\parallel [\text{rad}]]</td>
<td>3.295</td>
<td>0.079</td>
<td>0.202</td>
</tr>
<tr>
<td>[\delta_\perp - \delta_\parallel [\text{rad}]]</td>
<td>-0.216</td>
<td>0.037</td>
<td>0.010</td>
</tr>
</tbody>
</table>

ATLAS-CONF-2019-009

<table>
<thead>
<tr>
<th>Tag method</th>
<th>Efficiency [%]</th>
<th>Effective Dilution [%]</th>
<th>Tagging Power [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight muon</td>
<td>4.50 ± 0.01</td>
<td>43.8 ± 0.2</td>
<td>0.862 ± 0.009</td>
</tr>
<tr>
<td>Electron</td>
<td>1.57 ± 0.01</td>
<td>41.8 ± 0.2</td>
<td>0.274 ± 0.004</td>
</tr>
<tr>
<td>Low-(p_T) muon</td>
<td>3.12 ± 0.01</td>
<td>29.9 ± 0.2</td>
<td>0.278 ± 0.006</td>
</tr>
<tr>
<td>Jet</td>
<td>5.54 ± 0.01</td>
<td>20.4 ± 0.1</td>
<td>0.231 ± 0.005</td>
</tr>
<tr>
<td>Total</td>
<td>14.74 ± 0.02</td>
<td>33.4 ± 0.1</td>
<td>1.65 ± 0.01</td>
</tr>
</tbody>
</table>
SUSY Trilepton Distributions

ATLAS Simulation Preliminary

$\frac{m(\tilde{\chi}_2^0/\tilde{\chi}_1^\pm)}{(200,100) \text{ GeV}}$

$\frac{p_T^{\text{jet}}}{[\text{GeV}]}$
• Chargino/slepton production
 - final state 2ℓ (e/μ) + MET
 - $m(\ell\ell) > 100$ GeV (eμ) / 121.2 GeV (ee/$\mu\mu$), b-jet veto, MET > 110 GeV, no more than one jet
 - SRs binned in m_{T2}, # jets, flavor
ALFA SD: background modeling

SR

CR1

CR2
TDAQ Phase-I Upgrade

FELIX:
- Significant stability improvements in firmware and software.
- FPGA utilisation under control.
- Pre-production of 20 boards testing found issues, under evaluation, final PRR foreseen May-19 is delayed.
- Target for installation Q3 2019

L1Calo:
- Prototype boards exist for all FEXs.
- Being tested in Surface Test Facility (STF)@CERN aiming for full FEX-Hub-ROD-FELIX data path.
- Baseline algorithms established for all FEXs.
- Results from latency tests are within envelopes.
- System Testing integration of modules in STF at CERN until October 2019.
- some Production Readiness Reviews, depending on inter-module tests and FW readiness have delays.
- No technical problems found so far.
- Installation Q4-2019 until Q1-2020.

L1Muon
- Barrel+Endcap Muon Sector Logic (SL) installation planned for July 2019. Then cabling to MuCTPi.
- MuCTPi: final tests to make choice between two Prototypes ongoing (different SoC).
- Tests of connection between BW Trigger Processor (TP) and SL successful.
- Installation from Q4 2019 onwards.

L1Calo Module

<table>
<thead>
<tr>
<th>L1Calo Module</th>
<th>Review</th>
<th>Planned/HELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>gFEX</td>
<td>PRR</td>
<td>Dec-17</td>
</tr>
<tr>
<td>eFEX</td>
<td>PRR</td>
<td>Aug-19</td>
</tr>
<tr>
<td>jFEX</td>
<td>PRR</td>
<td>Jun-19</td>
</tr>
<tr>
<td>Topo</td>
<td>PRR</td>
<td>Jul-19</td>
</tr>
<tr>
<td>Hub</td>
<td>PRR</td>
<td>Dec-18</td>
</tr>
<tr>
<td>ROD</td>
<td>PRR</td>
<td>Jul-19</td>
</tr>
<tr>
<td>TREX</td>
<td>PRR</td>
<td>Oct-19</td>
</tr>
<tr>
<td>FOX</td>
<td>PRR</td>
<td>May-18</td>
</tr>
<tr>
<td>TopoFOX</td>
<td>FDR</td>
<td>Apr-19</td>
</tr>
</tbody>
</table>
High Granularity Timing Detector (HGTD) for HL-LHC

- $\sigma_{t}/\text{track} \sim 30-50 \text{ ps} \text{ up to end HL-LHC}$
- $2.4 < |\eta| < 4.0; Z \sim +3.5 \text{ m from IP}$
- < 10% occupancy
- $1.3 \times 1.3 \text{ mm}^2$ LGAD pixels (6.4 m2)
- 3.6×10^6 channels
- Luminosity (hit counting) detector
- $< (3-5) \times 10^{15} \text{n}_{eq}/\text{cm}^2$

TP approved in June 2018: (CERN-LHCC-2018-023)

Deliver TDR to LHCC by April 2020
Recent Developments in the ITk Strip Sub-system (WBS 2.2)

- ITk Strip System consists of 4 barrel cylinders and 2 end-cap with 6 disks each
 - 165 m2 of silicon (61 m2: ID), ~18 k modules (~4k modules ID)
- Adopted multi-modular approach (staves/petals)
 - Designed manufacturability and mass production into components from the start
- The ITk Strip project is undergoing the transition from prototyping to pre-production
- Some highlights:
 - Last prototype readout ASIC (ABCstar) and Hybrid Control Chip (HCCstar) have >90% grade A yield
 - Excellent module performance matches expectations
 - First End of Substructure (EoS) cards with lpGBT and VTRX+ working well
 - First double sided (ABC130-based) stave completed and tested
- This coming year will have most of our technical reviews allowing for pre-production (FDR)
 - First FDR to allow for sensor preproduction finished this April

EC Global Support
Demonstrator + Petal Insertion
Barrel Mechanics
Thermal Studies
The Muon Phase-II Upgrade

- The design of new electronics for MDT / TGC / RPC is progressing: New ASICs are either in pre-production phase (MDT ASD, TGC PP ASIC) or we have first prototypes (MDT TDC, RPC FE).

- BIS78, a pilot project for Barrel-Inner (BI) chambers (<10% of total), is on track for installation in LS2: first RPC production module has very good quality. Half of sMDT chambers.

- The design of the new BI chambers is progressing well. New baseline for RPCs includes two-sided h-h strip readout (instead of h-j) and staggered chambers in the large sectors, to improve acceptance and simplify layout and services.