CMS Status Report

Louise Skinnari (Northeastern University) on behalf of the CMS Collaboration 138th LHCC Open Meeting, June 5, 2019

Outline

CMS

- Activities during LS2
- Subsystem status
- Planning toward Run-3 & HL-LHC
- Physics highlights
- Conclusions

Activities during LS2

Good progress on planned work @ P5

Completed Phase-1 upgrades

- new L1 trigger
- new pixel detector
- HCA'L endcap
- muon electronics & detector upgrades

Civil engineering on P5 surface to prepare for Phase-2 assembly and logistics

• SXA5 building

Keep strip tracker cold to

avoid reverse annealing

temporary buildings for storage/utility

Near beam & Forward Systems

- BRIL BCM/PLT refit
- New TOTEM T2 track detector
- PPS: RP det & mechanics upgrade

Coarse schedule:

- 2019: Muons and HCAL interleaved
- 2020: beam pipe installation, then pixel installation

Pixel detector:

• replace barrel layer 1

5Gbps readout

• replace all DCDC converters

HCAL barrel (last Phase-1):

install SiPM+QIE11-based

highlighted → discussed in next slides

MAGNET (stays cold!) & Yoke Opening

- Cooled freewheel thyristor+power/cooling
- New opening system (telescopic jacks)
- New YE1 cable gantry (Phase2 services)

Muon system (already Phase-2):

- install GEM GE1/1 chambers
- Upgrade CSC FEE for HL-LHC trigger rates
- Shielding against neutron background

1/2 CMS Phase-1 barrel pixel

<u>New barrel layer 1</u>

- Received all wafers of readout ASICs (PROC600 + TBM10)
 - Latest version of PROC600 to be validated before summer closure of company: last but one version is already production ready
- + Sensor module production will start soon after company summer closure
- <u>Replace all DCDC converters</u>
 - + Received (by CERN EP-ESE) latest version of ASIC (FEAST v2.3)
 - To be validated by end of August
 - + DCDC converter modules will be produced in Fall/Winter 2019
- On track for detector ready for installation in Fall 2020

Radiation tolerance through Run-3 (+ improved readout ASICs)

HCAL

- Barrel electronics upgrade, last Phase-1 upgrade
 - Corresponding endcap upgrade completed in 2018
- Replacement of HPDs with SiPM
 - Improve noise levels, light yield & radiation tolerance
 - Maintain physics performance for jets & MET
- HCAL segmentation: Run3 (post-LS2) HCAL segmentation: pre-2018 HCAL segmentation: 2018 RING 2 13 12 11 10 9 8 7 6 5 4 3 2 1 RING 2 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RING 2 13 12 11 10 9 8 7 6 5 4 3 2 1 15 🛌 14 HCAL HO HCAL HO MAGNET COIL MAGNETCOIL MAGNETCOIL HCAL HB HCAL HB HCAL HB HCAL HCAL HCAL HE HE ΗE
- On track to complete installation & commissioning before Dec 2019

HPD=Hybrid PhotoDetectors **SiPM**=Silicon Photo-Multipliers

Muons (1)

- Maintenance work
 - RPC gas leak repair campaign ongoing
 - Shielding to reduce background on top part of detector
 - Progressing well & according to schedule
- <u>CSC electronics</u> upgrade
 - Longest LS2 work for CMS
 - First station (minus side) extracted & brought to surface, now being. tested+reinstalled
 - 26/36 already reinstalled, 3 fully commissioned
 - + Work on schedule!

Phase-2 upgrade!

Muons (1)

- <u>Maintenance</u> work
 - RPC gas leak repair campaign ongoing
 - Shielding to reduce background on top part of detector
 - Progressing well & according to schedule

- <u>CSC electronics</u> upgrade
 - Longest LS2 work for CMS
 - First station (minus side) extracted
 & brought to surface, now being tested+reinstalled
 - 26/36 already reinstalled, 3 fully commissioned
 - + Work on schedule!

next

Muons (2)

- Install GEM GE1/1 chambers
 - Chambers
 - All built & validated
 - + FE electronics
 - Design change to improve spark protection, production underway
 - Two chamber assembly (super chamber=SC)
 - 7/72 assembled with final electronics: cooling, gas, etc. OK
 - Final validation on cosmic test stand expect to test 10 SC per month
 - + Services (power, gas, cooling, cables)
 - Production on schedule
 - On schedule to start installation in July

First full Phase-2 detector,

installing already now

GEMs to improve muon capabilities around $1.5 < |\eta| < 2.0$

Computing & PPD

- Since last LHCC, focus on ...
 - MC production for full Run-2 analyses
 - Preparation for <u>ultra legacy</u> full Run-2 processing & MC with best possible alignments, calibrations, performance
 - Also started processing B-parking dataset
- Preparations for Run-3 & Phase-2
 - MC production
 - ... to study physics performance with luminosity/PU/aging detectors corresponding to end of Run-3
 - ... for Phase-2 L1 trigger TDR (PU=200)
 - + Upgrade infrastructures for Run-3
 - New Run Registry, monitoring systems, ML integration to DQM, ...
 - + Phase-2: Adapt to GPUs, FPGAs, via a heterogeneous framework

Physics Performance and Dataset

L1 trigger plans for Run 3

No major upgrades planned for Run 3, but significant improvements foreseen

Phase-1 upgrades already completed Continue exploiting these to improve algorithms

- Algorithms and menu
 - + Preserve core trigger menu while creating <u>new seeds for unexplored physics</u>
 - New displaced muon trigger in barrel, develop targeted multi-object paths
 - + Use <u>upgraded detector inputs</u> to reduce rate in high-pileup conditions
 - e.g. depth segmentation in HCAL, extra GEM muon detectors in endcap
- Operations and monitoring
 - With HLT, overhaul <u>trigger menu editor</u> to enable fast modifications
 - Integrate monitoring data from trigger systems with central monitoring
 - + Build <u>automated tests</u> for monitoring data, pointing to appropriate actions

HLT plans for Run 3

- <u>Trigger strategy in Run 2 worked well, review & improve for Run 3</u>
 - Main challenge: control rate/CPU time, while ensuring physics perf.
 - GPU-based HLT reconstruction may help in this direction
 - First tests on pixel tracking, ECAL/HCAL local reconstruction promising
- <u>Reconstruction performance on GPUs</u> (pixel tracking)
 - A single Tesla T4 GPU has better performance than a full HLT node (dual) Xeon Gold 6130 with a total of 32 cores) at a fraction of the cost

HL-LHC upgrade overview

Technical proposal CERN-LHCC-2015-010 <u>https://cds.cern.ch/record/2020886</u> Scope Document CERN-LHCC-2015-019 <u>https://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf</u>

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \approx 3.8$

New paradigms (design/technology) for an HEP experiment to fully exploit HL-LHC luminosity

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to η ≈ 3

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure https://cds.cern.ch/record/ 2020886

MIP Timing Detector

https://cds.cern.ch/record/2296612

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

MTD: MIP Timing Detector

- High precision time measurement of MIP particles
 - 30-50 ps precision with nearly hermetic coverage (up to $|\eta| < 3.0$)
 - + Identify which pp interaction vertex track is coming from
 - + Provide other unique features: sensitivity to slow particles, particle ID, etc

MTD performance studies

- Significant impact on the HL-LHC program from pileup reduction
 - 20-30% increase in effective integrated luminosity, leveraging gains over full pseudo-rapidity coverage and cross a wide range of observables
- Unique discovery potential for long-lived particles
- Extended potential for heavy-ion physics through particle ID

Recent physics highlights

Publication status

- CMS recently submitted its <u>900th</u> paper!!
- Now at 907 submitted papers, of which 882 on collider data
- First full Run-2 paper published
 - Highlighted as
 PRL Editors' suggestion

• Full details: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>

16

LUM-18-002

Run-2 luminosity

- Several results presented using full 2016-2018 dataset (**137 fb⁻¹**)
- Thanks to the LHC for the excellent performance!
- <u>Preliminary</u> uncertainties
 - 2.3-2.5% for pp collisions @ 13 TeV in single year
 - 2018 dominant systematics due to x-y correlation
 - Study ongoing to measure bias, expect improved uncertainty after correction

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 13 TeV

Physics highlights

- >50 new results since last LHCC, including 9 results with full Run-2 data
- Next slides highlighting a few recent results
 - Highlight from heavy ions
 - Precision EW measurement
 - + SM ZZ & $H \rightarrow ZZ$ production
 - ◆ Update on ttH (with $H \rightarrow bb$) & SM tt+bb production
 - Select new physics searches
 - + Emphasis on maximizing physics potential through ...
 - Unconventional triggering
 - Innovative strategies & probing new topologies
 - Precision measurements with full Run-2 dataset

Highlight from heavy ion

- Measurement of Λ_c baryons in pp & PbPb collisions at 5.02 TeV
 - Hint of suppression in central PbPb collisions compared to pp (R_{AA})
 - + Λ_c/D_0 ratio consistent between pp & PbPb
 - Coalescence process may not play a significant role in Λ_c baryon production for $10{<}p_T{<}20~GeV$

Decay: $\Lambda_c^+ \rightarrow pK^-\pi^+$ **p_T range studied: pp** 5-20 GeV **PbPb** 10-20 GeV

Precision EW

- Z/γ^* production cross section @ 13 TeV
 - SM precision test, constrain PDFs, input to m_W
 - + Fiducial + differential measurements vs p_T , y, ϕ^* (incl. double-diff!)
 - Systematic uncertainties: luminosity (2.5%) + lepton ID (ee 1.4%, μμ 0.8%)
 - Compare to state of the art (N)NLO calculations

- Measurements utilizing 137 fb⁻¹
- <u>SM ZZ</u> production cross section
 - ◆ $\sigma_{tot}(pp \rightarrow ZZ) = 17.1 \pm 0.3(stat) \pm 0.4(syst)$
 - consistent with SM predictions, total measure
- $H \rightarrow ZZ$ fiducial + differential measureme

dơ_{fid} /dly(H)l (fb)

ttH, H→bb

22

- <u>ttH production with $H \rightarrow bb$ </u>, challenging final state 0/1/2 lep channels
 - Sophisticated MVA techniques to distinguish signal from background
 - Several improvements in 2017 data analysis w.r.t. previous result (2016 data): new b-tagging, refined analysis methods, ...
 - + Main systematic: tt+HF modeling, QCD background, b-tagging
- Best-fit signal strength (combining 2016+2017): $\hat{\mu} = 1.15 + 0.15 +$

SM ttbb

- Measurement of SM ttbb production
 - Important background to ttH(bb) & tttt, test QCD predictions
 - + Fully hadronic final state (35.9 fb⁻¹)

- ____ 1st measurement in this channel!
- Various MVA techniques to reduce multijet background & identify signal
- 2D fit to b-tagging discriminator scores to extract cross section
- Measurement high w.r.t. theory predictions -- input needed from theory community to improve modeling

Probing the very rare

- **<u>SM four top production</u>**, yet unobserved process (σ_{SM} ~0.01pb)
 - Same-sign + multileptons with 137fb⁻¹, highest LHC sensitivity search
 - + Observed (expected) significance of 2.6 σ (2.7 σ)
 - Measure $\sigma = 12.6 + 5.8/-5.2$ fb
 - Constrain top Yukawa coupling: $|y_t / y_t^{SM}| < 1.7$

Searches with 137 fb⁻¹

Dark photons

- Massless dark photons coupling to a Higgs boson through charged dark sector particles
 - + Signal extraction from fitting m_T in $|\eta^{\gamma}|$ regions + background control regions
- EXO-19-007 Z/γ^* photon+Z recoil against missing E_T

137.4 fb⁻¹ (13 TeV)

m_н [GeV]

- No excess observed
 - For $m_H = 125$ GeV: BR(H \rightarrow inv+ γ) < 4.6% (3.6^{+2.0}_{-1.2}% expected) at 95% CL, vs $m_H =$

Searches with 137 fb⁻¹

Delayed jets

- BSM scenarios (SUSY, hidden valley, ...) with long-lived particles may result in "delayed" jets
 - + First search for such jets using ECAL timing!
 - Dedicated reconstruction to extract jet timing
 - "Unusual" backgrounds
 - No excess, interpret in context of **GMSB**

Tracker

ECAL

0

HCAL

150 200

x (cm)

100

50

-50

-100

-150

-200 -200 -150

-100

-50

Searches with 137 fb⁻¹

Disappearing tracks

- Search for prompt & long-lived SUSY particles
 - Exploit p_T imbalance w. M_{T2} in jets+MET events
 - Long-lived particle that decays in tracker volume
- No excess, constrain:
 - <u>Displaced</u>: gluinos ~2.5 TeV
 - <u>Prompt</u>: gluinos ~2.1 TeV, stop/sbottom ~0.9 TeV

chargino

<u>... and more</u>

- Search for SUSY with two same-sign dileptons or \geq 3 leptons & jets
- Search for new physics in multilepton final states (\geq 3 leptons)

<u>SUS-19-008</u>

EXO-19-002

esonances

EXO-18-012

q

q

ISR

 $V, A(M_{\rm med})$

boosted

resonance

- Generic vector resonance coupling to quarks
 - Predicted in SM extensions, incl. DM models
 - Boosted dijet + ISR tag => trigger to probe low-mass ,
 - 95% CL upper limits on quark coupling g_q' vs resonance mass for leptophobic Z'

Conclusions

- Much work on different fronts for CMS!
 - LS2 activities
 - Ongoing work (pixel, HCAL, muons) progressing well
 - Detectors on track for re-installation as scheduled
 - + <u>Preparation for Run-3</u> underway
 - Both preparing detector & physics analysis
 - Installing first upgrades for <u>HL-LHC</u>

- ... and in parallel, <u>analyzing Run-2 dataset</u>!
 - + Already several new physics results using full Run-2 data
 - + Exploit innovative strategies, probe new topologies, ...

BACKUP

Control room UPS fire

- Overnight between May 25-26, UPS battery rack providing assured power to CMS control room at P5 caught fire
 - + On surface, in separate room adjacent to CMS control room
 - As consequence of fire, subsequent cut to DSS, etc, water mist system was triggered in control room & upstairs DAQ/server computer farm
 - Temporary fully-functional control room in place
- Many thanks to especially CERN Fire Brigade & EN-EL/CV for their prompt response & difficult work in extinguishing the fire

UPS = Uninterruptible Power Supplies SCX = Surface Control eXperiment building

• CMS will fully recover from this incident within a few weeks

Impact on LS2 program will be very limited and mostly due to delays in test and commissioning activities inhibited while the SCX DAQ area is recovered

SM ZZ, H => ZZ

32

Run-2 luminosity

• <u>Preliminary</u> systematic uncertainties for 13 TeV pp luminosity measurement

	Systematic	Correction (%)	Uncertainty (%)
Normalization	Length scale	-0.8	0.2
	Orbit drift	0.2	0.1
	<i>x-y</i> nonfactorization	0.0	2.0
	Beam-beam deflection	1.5	0.2
	Dynamic-β*	-0.5	
	Beam current calibration	2.3	0.2
	Ghosts and satellites	0.4	0.1
	Scan to scan variation		0.3
	Bunch to bunch variation		0.1
	Cross-detector consistency		0.5
	Background subtraction	0 to 0.8	0.1
Integration	Afterglow (HFOC)	0 to 4	$0.1{\oplus}0.4$
	Cross-detector stability		0.6
	Linearity		1.1
	CMS deadtime		<0.1
	Total		2.5