State of the Art and Challenges in Accelerator Technologies – Past and Present

Akira Yamamoto
(CERN and KEK)

A Plenary Talk at CERN Council Open Symposium on the Update of European Strategy for Particle Physics (ESPP)
13-16 May, 2019 – Granada, Spain
Monday Plenary Session

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>30'</td>
<td>State of the Art and Challenges in Accelerator Technology — Past and Present</td>
<td>Akira Yamamoto (CERN/KEK)</td>
</tr>
<tr>
<td></td>
<td>- HEP today</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Technology — mainly rf and magnets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Lessons learnt</td>
<td></td>
</tr>
<tr>
<td>30'</td>
<td>Future — path to very high energies</td>
<td>Vladimir Shiltsev (Fermilab)</td>
</tr>
</tbody>
</table>
Outline

• **Introduction**
 – Advances in Accelerator Technology in Particle Physics

• **State of the Art in Accelerator Technologies, focusing on**
 – Nano-beam, Superconducting Magnet and RF, and Normal-conducting RF

• **Challenges for future**
 – Superconducting Technologies for future Lepton and Hadron Colliders

• **Summary**

A. Yamamoto, 190505b
High-energy and High-Intensity frontier accelerators are relying on superconductivity as core technology to be focused in this talk.
Accelerator Technologies advanced in Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Accelerator</th>
<th>Op. Years</th>
<th>Beam Energy (TeV)</th>
<th>B [T]</th>
<th>E [MV/m]</th>
<th>Pioneering/Key Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Tevatron</td>
<td>1983-2011</td>
<td>2 x 0.5</td>
<td>4 T</td>
<td></td>
<td>Superconducting Magnet (SCM)</td>
</tr>
<tr>
<td>CC</td>
<td>HERA</td>
<td>1990 -2007</td>
<td></td>
<td>4.68 T</td>
<td></td>
<td>SCM, e-p Collider,</td>
</tr>
<tr>
<td>hh</td>
<td>RHIC</td>
<td>2000 ~</td>
<td></td>
<td>3.46 T</td>
<td></td>
<td>SCM</td>
</tr>
<tr>
<td>hh</td>
<td>SPS LHC</td>
<td>1981-1991 2008 ~</td>
<td>2 x 0.42</td>
<td>(NC mag.)</td>
<td>7.8T -->8.4 11~12</td>
<td>P-bar Stochastic cooling SCM (NbTi) at 1.8 K, SRF SCM (Nb₃Sn), SRF, e-cooling</td>
</tr>
<tr>
<td>hh</td>
<td>LHC HL-LHC</td>
<td>Under constr.</td>
<td>2 x (6.5 >> 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>TRISTAN</td>
<td>1986-1995</td>
<td>2 x 0.03</td>
<td>5</td>
<td></td>
<td>SRF (Nb-bulk), SCM-IR-Quad (NbTi)</td>
</tr>
<tr>
<td>ee</td>
<td>LEP</td>
<td>1989-2000</td>
<td>2 x 0.55</td>
<td>5</td>
<td></td>
<td>SRF (Nb-Coating) , SCM-IRQ</td>
</tr>
<tr>
<td>ee</td>
<td>KEKB Super-KEKB</td>
<td>1998~2010 2018 ~</td>
<td>0.002+0.008 0.003+0.007</td>
<td>5</td>
<td></td>
<td>Luminosity, SRF Crabbing, SCM-IRQ Luminosity, Nano-beam, SCM-IRQ</td>
</tr>
<tr>
<td>ee</td>
<td>SLC/PEP-II</td>
<td>1988/98~2009</td>
<td>2 x 0.5</td>
<td></td>
<td></td>
<td>SRF (Nb-bulk)</td>
</tr>
<tr>
<td>ee</td>
<td>(Eu-XFEL)</td>
<td>(2018 ~)</td>
<td>(0.0175)</td>
<td></td>
<td>(23.6)</td>
<td>Normal conducting RF</td>
</tr>
</tbody>
</table>

A. Yamamoto, 190505b
Outline

• Introduction
 – Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on
 – Nano-beam, Superconducting Magnet and RF, and Normal-conducting RF
 >>>> To be discussed by V. Shiltsev and S. Steinar, and the information in Appendix

• Challenges for future, focusing on
 – Superconducting technologies for future Lepton and Hadron Colliders

• Summary
Low-emittance achieved in past 10 years to be discussed more by V. Shlitsev and S. Stapnes

- **Low emittance beam** sufficiently advanced for future colliders

More to be discussed by V. Shlitsev in next talk
Develop nano-beam technology for ILC/CLIC

- Goal: Realize small beam-size and stabilize beam position

<table>
<thead>
<tr>
<th>B Energy [GeV]</th>
<th>Vertical Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILC-250</td>
<td>125 7.7 nm</td>
</tr>
<tr>
<td>CLIC-380</td>
<td>190 2.9 nm</td>
</tr>
<tr>
<td>ATF2 (achieved)</td>
<td>1.3 41 nm (-->8 nm eq. at ILC)</td>
</tr>
</tbody>
</table>

1.3 GeV S-band e- LINAC (~70m)

Damping Ring (140m)
Low emittance e-beam

Courtesy: N. Terunuma
Outline

• Introduction
 – Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on
 – Nano-beam, Superconducting Magnet and RF, and Normal-conducting RF

• Challenges for future, focusing on
 – Superconducting Technologies for future Lepton and Hadron Colliders

• Summary
Advances in SC Magnets for Accelerators

Past:
- ISR-IR
- Tevatron (Fermilab)
- TRISTAN-IR (KEK)
- HERA (DESY)
- Nuclotron (JINR)
- LEP-IR (CERN)
- KEKB-IR (KEK)

Present:
- RHIC (BNL)
- LHC (CERN)
- SRC (RIKEN) *SC-Cyclotron*

Under Construction
- FAIR (GSI) *Fast-cycle Shmchr.*
- HL-LHC (CERN)
- NICA (JINR)

Future:
- EIC (e-ion)
- FCC-hh / HE-LHC
- SppC

11 T Dipole

IR Quadrupole
NbTi, Nb$_3$Sn Superconducting Magnets and MgB$_2$ SC Links for HL-LHC

- **Nb$_3$Sn Quad. (MQXF)**
- **NbTi Mag. (D1, and …)**
- Large aperture

Service gallery (UR)

Nb3Sn Dipoles w/ Collimator
MgB$_2$ 18.5 kA Superconducting Link Demonstrated

- Innovative system supplying current to Interaction Region magnets.
- Several circuits in parallel with lengths in excess of 100 m.
- Multi-stage MgB$_2$ cable carrying up to ~129 kA @ 25 K, cooled by forced flow of GHe at 4.5-17 K.

A demonstrator (2 x 60-m long, 18 kA cables) tested in Dec. 2018, exceeding requirements - T_{CS} at 18 kA of 31.3 K

A. Yamamoto, 190505b

12 March 2019
HL-LHC, **11T** Dipole Magnet

- The **1st Series**, 5.5 m long Dipole, powered as a single aperture in the initial test: Reached
- $B_c = 11.2$ T (at nominal current)
 - I_{nominal}, after 1 quench,
- $B_c = 12.1$ T (at ultimate current)
 - I_{ultimate}) after 6 quenches.

![Dipole Magnet Diagram](image)

![Quench Current Graph](image)

Courtesy, A. Devred, F. Savary, G. Willering
CERN and US-LARP/AUP Cooperation for Nb3Sn IR Quadrupoles

- **US-LARP Collaboration** taking a critical role for leading R&D:
 - Magnet science and technology
 - Nb3Sn accelerator magnet-technology beyond 10 T,
 - overcoming the very brittle feature (like ceramic),
 - with winding, reacting, and impregnating, and
 - Mechanical structuring w/ Bladder technology for
 - Rigid support of *magnetic pressure* proportional to B^2,

- **CERN** leading HL-LHC global collaboration and qualifying the Nb$_3$Sn accelerator magnet technology:
 - Being experienced with the project realization for future collider accelerators.
Nb$_3$Sn Quadrupole (MQXF) at IR

US: 4.5 m Prototype:
- Completed and tested

CERN: 1-m short Models:
- Successfully demonstrated the performance

CERN: 7 m Prototype under development

US: 4.5 m Prototype

CERN: 1 m Model

CERN: 7 m long prototype under development
Outline

• **Introduction**
 – Advances in Accelerator Technology in Particle Physics

• **State of the Art in Accelerator Technologies, focusing on**
 – Nano-beam, **Superconducting RF**, and **Normal-conducting RF**

• **Challenges for future, focusing on**
 – Superconducting Technologies for future Lepton and Hadron Colliders

• **Summary**
Features of Normal- and Superconducting RF

<table>
<thead>
<tr>
<th>Normal conducting (CLIC)</th>
<th>Superconducting (ILC)</th>
</tr>
</thead>
</table>
| **Gradient:** 72 to 100 MV/m
- Higher energy reach, shorter facility | **Gradient:** 31.5 to 35 (to 45) MV/m,
- Higher power efficiency, more steady state beam power from rf input power |
| **RF Frequency:** 12 GHz
- High efficiency RF peak power
- Precision alignment & stabilization to compensate wakefields | **RF Frequency:** 1.3 GHz
- Large aperture gives low wakefields |
| **Q@:** order < 10^5,
- Resistive copper wall losses compensated by strong beam loading – 40% steady state rf-to-beam efficiency | **Q@:** order 10^{10},
- High Q
- Losses at cryogenic temperatures |
| **Pulse structure:** 180 ns / 50 Hz | **Pulse structure:** 600 µs / 5 Hz |
| **Fabrication:**
- driven by micron-level mechanical tolerances
- High-efficiency rf peak power production through long-pulse, low frequency klystrons and two-beam scheme | **Fabrication**
- driven by material (purity) & clean-room type chemistry
- High-efficiency rf also from long-pulse, low-frequency klystrons |

A. Yamamoto, 190505b

Courtesy: W. Wuensch
Normal Conducting Linac Technology Landscape

Components:

- Laboratory with commercial
 - Accelerating structures
 - pulse compressors
 - alignment
 - Stabilization, etc.

- Full commercial supply
 - X-band klystrons
 - solid state modulator,

~ 100 (+/-20) MV/m

Systems Facilities:
(100 MeV-range)
- XBoxes at CERN
 - (NEXTEF KEK)
 - Frascati
 - NLCTA SLAC
 - Linearizers at Electra, PSI, Shanghai and Daresbury
 - Test stand at Tsinghua
 - Deflectors at SLAC, Shanghai, PSI and Trieste
 - NLCTA
 - SmartLight
 - FLASH

C-band (6 GHz), low-emittance GeV-range facilities
Operational:
- SACLA
- SwissFEL (8 GeV)

X-band (12 GHz)
GeV-range facilities
Planning:
- Eu-Praxia
- eSPS
- CompactLight

CLIC

A. Yamamoto, 190505b

Courtesy: W. Wuensch
Advances in SRF Technology and Accelerators

Progress (1988~)
- TRISTAN
- LEP-II
- HERA
- CEBAF
- CESR
- KEKB
- BES
- cERL

In Operation: \# cavities
- SNS: 1 GeV
- CEBAF 12 GeV: 80
- ISAC-II, ARIEL
- Super-KEKB
- Eu-XFEL: 800

Under Construction:
- LCLS-II: 300
- FRIB: 340
- PIP-II: 115
- ESS: 150
- Shine: 600

To be realized:
- HL-LHC-Crab: 20
- EIC
- ILC-250: 8,000
- FCC
- CEPC/SPPS

> 2,000 SRF cavities realized, in last 10 years!
Advances in L-band (~ 1GHz) SRF Cavity Field Gradient

Field Gradient

\[E_{\text{acc}}^{\text{max}} = d \cdot \frac{\kappa \cdot H_{\text{crit,RF}}}{\beta_{\text{MAG}} \cdot (H_{pk} / E_{\text{acc}})} \]

Material

Surface

Thermal conductance

Surface, Shape

A. Yamamoto, 190505b
European XFEL, SRF Linac Completed

Progress:
- **2013:** Construction started
- **2016:** E-XFEL Linac completion
- **2017:** E-XFEL beam start
- **2018:** 17.5 GeV achieved

1.3 GHz / 23.6 MV/m
800+4 SRF acc. Cavities
100+3 Cryo-Modules (CM)
: ~ 1/10 scale to ILC-ML

After Retreatment:
E-usable: 29.8 ± 5.1 [MV/m]

>10 % (47/420, RI) cavities exceeding 40 MV/m

A. Yamamoto, 190505b
Fermilab, KEK achieving ILC Gradient Goal ≥ 31.5 MV/m with beam

Beam Acc. : 260 MeV by 8 Cavities,
<\(G\rangle = 32.3 \text{ MV/m}

Beam Acc. : 230 MeV by 7 Cavities,
<\(G\rangle = 32 \text{ MV/m}

Fermilab-FAST Progress, 2017

KEK-STF2 Progress, 2019

Courtesy: V. Shiltsev, S. Michizono
LCLS-II SRF Linac (SLAC/Fermilab/JLab Collaboration)

1 km SCRF-CW Linac

SRF e-Linac Parameters
- Beam: 4 (+4) GeV, up to 0.3 mA
- Frequency: 1.3 GHz, CW
- G: 18 ~21 MV/m
- Q: > 2.7 e10 (av.)
- # cavity = 280 (+160)
- # CM 35 (+20)
To be completed in 2020 (~2026)

A. Yamamoto, 190505b

- > x 2 Q achieved,
- N-doping at 800°C, discovered by A. Grassellino et al., (Fermilab)

Anti-Q-slope

N-doped

Standard treatment

E_{acc} (MV/m)

T= 2K

σ

10^{11}

10^{10}

10^{9}

0 5 10 15 20 25 30 35 40

10^{8}

Remove SLAC Linac from Sectors 0-10
New Injector and New Superconducting Linac
New Cryoplant

Existing Bypass Line

New Transport Line

Two New Undulators And X-Ray Transport

Exploit Existing Experimental Station

Courtesy, M. Ross
Nb SRF Crab Cavities for HL-LHC

CERN, US-AUP, STFC, TRIUMF Collaboration

Crabbing p beam demonstrated at SPS, 2018

A. Yamamoto, 190505b

Courtesy,
R. Calaga, O.Capatina
A. Ratti, L. Ristori
Outline

• Introduction
 – Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on
 – Nano-beam, Superconducting Magnet and RF, and Normal-conducting RF

• Challenges for future, focusing on
 – Superconducting Technologies for future Lepton and Hadron Colliders

• Summary
Technical Challenges in Energy-Frontier Colliders proposed

<table>
<thead>
<tr>
<th>Major Challenges in Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-field SC magnet (SCM)</td>
</tr>
<tr>
<td>- Nb3Sn: Jc and Mechanical stress</td>
</tr>
<tr>
<td>Energy management</td>
</tr>
<tr>
<td>High-field SCM</td>
</tr>
<tr>
<td>- IBS: Jcc and mech. stress</td>
</tr>
<tr>
<td>Energy management</td>
</tr>
<tr>
<td>High-Q SRF cavity at < GHz, Nb Thin-film Coating</td>
</tr>
<tr>
<td>Synchrotron Radiation constraint</td>
</tr>
<tr>
<td>Energy efficiency (RF efficiency)</td>
</tr>
<tr>
<td>High-Q SRF cavity at < GHz, LG Nb-bulk/Thin-film</td>
</tr>
<tr>
<td>Synchrotron Radiation constraint</td>
</tr>
<tr>
<td>High-precision Low-field magnet</td>
</tr>
<tr>
<td>High-G and high-Q SRF cavity at GHz, Nb-bulk</td>
</tr>
<tr>
<td>Higher-G for future upgrade</td>
</tr>
<tr>
<td>Nano-beam stability, e+ source, beam dump</td>
</tr>
<tr>
<td>Large scale production of Acc. Structure</td>
</tr>
<tr>
<td>Two-beam acceleration in a prototype scale</td>
</tr>
<tr>
<td>Precise alignment and stabilization. timing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 100</td>
<td>~ 100</td>
<td>CDR</td>
<td>~ 100</td>
</tr>
<tr>
<td>< 30</td>
<td>< 30</td>
<td>CDR</td>
<td>< 30</td>
</tr>
<tr>
<td>580</td>
<td>580</td>
<td>CDR</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
</tr>
<tr>
<td>24 or</td>
<td>24 or</td>
<td>CDR</td>
<td>24 or</td>
</tr>
<tr>
<td>+17 (aft. ee) [BCHF]</td>
</tr>
<tr>
<td>~ 16</td>
<td>~ 16</td>
<td>CDR</td>
<td>~ 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18 -</td>
<td>0.18 -</td>
<td>CDR</td>
<td>0.18 -</td>
</tr>
<tr>
<td>0.37</td>
<td>0.37</td>
<td>CDR</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>CDR</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>CDR</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>10.5</td>
<td>10.5</td>
<td>CDR</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>[BCHF]</td>
<td>[BCHF]</td>
<td>CDR</td>
<td>[BCHF]</td>
<td>[BCHF]</td>
<td>[BCHF]</td>
<td>[BCHF]</td>
<td>[BCHF]</td>
<td>[BCHF]</td>
<td>[BCHF]</td>
</tr>
<tr>
<td>5~10</td>
<td>5~10</td>
<td>CDR</td>
<td>5~10</td>
<td>5~10</td>
<td>5~10</td>
<td>5~10</td>
<td>5~10</td>
<td>5~10</td>
<td>5~10</td>
</tr>
<tr>
<td>(0.4 / 0.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 (-1)</td>
<td></td>
</tr>
<tr>
<td>1.35 (- 4.9)</td>
<td></td>
</tr>
<tr>
<td>129 (- 300)</td>
<td></td>
</tr>
<tr>
<td>5.3 [BILCU]</td>
<td></td>
</tr>
<tr>
<td>31.5 – (45) (1.3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38 (- 3)</td>
</tr>
<tr>
<td>1.5 (- 6)</td>
</tr>
<tr>
<td>160 (- 580)</td>
</tr>
<tr>
<td>5.9 [BCHF]</td>
</tr>
<tr>
<td>72 – 100 (12)</td>
</tr>
</tbody>
</table>
Technical Challenges in Energy-Frontier Colliders proposed

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CC hh FCC- hh CDR</td>
<td>CDR</td>
<td>~ 100</td>
<td>< 30</td>
<td>580</td>
<td>24 or +17 (aft. ee) [BCHF]</td>
<td>~ 16</td>
<td></td>
</tr>
<tr>
<td>CC ee CERC CDR</td>
<td>CDR</td>
<td>0.046 ± 0.014</td>
<td>32 ± 5</td>
<td>150 ± 270</td>
<td>5</td>
<td>20 ± 40 (0.65)</td>
<td></td>
</tr>
<tr>
<td>L Ce ILT LU LBC</td>
<td>LU</td>
<td>(- 5)</td>
<td>(- 8)</td>
<td>(- 580)</td>
<td>[BILCU]</td>
<td>72 ± 10 (12)</td>
<td></td>
</tr>
</tbody>
</table>

Major Technical Challenges:

Hadron Colliders:
- High-field magnet
- Energy management

Lepton Colliders:
- SRF cavity: High-Q and -G (to prepare for future)
- NRF acc. Struct.: large scale, alignment, tolerance, timing
- Energy management

Major Challenges in Technology

- High-field SC magnet (SCM)
 - Nb3Sn: Jc and Mechanical stress
 - Energy management
- High-field SCM
 - IBS: Jcc and mech. stress
 - Energy management
- High-Q SRF cavity at < GHz, Nb Thin-film Coating
 - Synchrotron Radiation constraint
 - Energy efficiency (RF efficiency)
- High-Q SRF cavity at < GHz, LG Nb-bulk/Thin-film
 - Synchrotron Radiation constraint
 - High-precision, Low-field magnet
- High-G and high-Q SRF cavity at GHz, Nb-bulk
 - Higher-G for future upgrade
 - Nano-beam stability, e+ source, beam dump
- Large scale production of Acc. Structure
 - Two-beam acceleration in a prototype scale
 - Precise alignment and stabilization, timing

A. Yamamoto, 190505b
State of the Art in
High-Q and High-G (1.3 GHz, 2K)

- **N-doping (@ 800C for 48h)**
 - Q>3E10, 35 MV/m
- **Baking w/o N (@ 75/120C)**
 - Q>1E10, 49 MV/m (Bpk-210 mT)
- **N-infusion (@ 120C for 48h)**
 - 1E10, 45 MV/m
- **Baking w/o N (@ 120C for xx h)**
 - 7E9, 42 MV/m
- **EP (only)**
 - 1.3E10, 25 MV/m

High-Q by N-Doping has been well established, and
High-G by N-infusion and Low-T baking still need to be well reproduced, worldwide.
State of the Art in High-Q and High-G (1.3 GHz, 2K)

The performance also confirmed by Cornell, JLab, and DESY, and expected to be confirmed by other laboratories

Repeated on second cavity TE1AES009 (fine grain, AES, WC)

https://arxiv.org/abs/1806.09824
Challenges in SRF Cavity Technology

- **Bulk-Nb**: High-G and High-Q optimization
 - Low-T treatment w/ or w/o N-infusion.
- **Bulk-Nb**: Large-Grain directly sliced from ingot
 - For possible less contamination and cost-reduction
- **Thin-film Coating**
 - Nb thin film coating on Cu-base cavity structure
 - Nb3Sn/MgB2 film coating on Bulk-Nb or Cu structure
 - Much higher G, w/ high-Bc (Bsh)
 - Important for lower frequency and/or low-beta application.
 - A New approach by using **High Impulse Power Magnetron Sputtering (HiPIMS)**, instead of **DC Magnetron Sputtering (DCMS)**, resulting flatter Q-slop, resulting better thermal efficiency.
DC Magnetron Sputtered Nb/Cu Films

• Q = 1x10^{10} @ 15 MV/m is a value that would make film cavities a competitive option in several future projects.
• Current R&D is focused on improving the “slope”, applying films to new geometries, new materials

HiPIMS coatings – QPR Sample

• HiPIMS Nb/Cu films appear to be comparable to bulk Nb on quadrupole resonator sample at 400MHz, 800MHz and 1.2GHz.
• Q-slope phenomenon seems to disappear and support the effort to evolve this technology into real cavities, and High-Q resulting Power Saving,
• Projected performance > 2x better than LHC specifications

A. Yamamoto, 190505b
Outline

• Introduction
 – Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technology, focusing on
 – Nano-beam, Applied Superconductivity, and RF

• Challenges for future, focusing on
 – **Superconducting technology** for future Lepton and **Hadron Colliders**

• Summary
Advances in Nb₃Sn Magnet Development

2003: LBNL HD1
(16 T at 4.2 K)

2015: CERN RMC
(16.2 T at 1.9 K)

2018: FRESCA2
(100 mm aperture, 14.6/14.95 T bore/peak at 12.1 kA, 1.9 K)

A. Yamamoto, 190505b

Courtesy: G. De Rijk, A. Devred
16 T Dipole Options and R&D Cooperation

Cos-\(\theta\)

Common coils

Blocks

Canted Cos-\(\theta\) (CCT)

Pioneering work at BNL

CHART2
Swiss Acc. Research and Technology
See; Appendix

CCT,
Pioneering work at LBNL

Courtesy, M. Benedikt, L. Bottura, D. Tommasini, S. Prestemon
Artificial Pinning Center (APC) approach has been successful, for

- $J_c (16T, 4.2K)$ to have reached $\sim 1500 \text{ A/mm}^2$ in pure research,
- **Industrialization and cost-reduction is yet to come!!**

$$B = \frac{2\mu_0}{\pi} J w \sin(\phi)$$

Main development goals:
- $J_c (16T, 4.2K) > 1500 \text{ A/mm}^2$
 - 50% higher than HL-LHC

Global cooperation:
- CERN/KEK/Tohoku/JASTEC/Furukawa
- CERN/Bochvar High-tec. Res. Inst
- CERN/KAT
- CERN/Brucker
- T.U. Vienna, Geneve U., U. Twente,
- Florida S.U. - Appl. Superc. Center
- US-DOE-MDP, Fermilab

Progress in APC approach:
X. Xu et al (Fermilab)

https://arxiv.org/abs/1903.08121
Mechanical Constrain to consider Operating Margin

- Reversible I_c reduction already at 150 MPa (~15% at 11.6 T);
- Irreversible I_c degradation onset, around at 160-170 MPa.

Magnetic pressure (p):
- Mechanical stress (σ)

$$ F \mu B^2 $$

$$ w \mu \frac{B}{J} $$
MDP taking Steps to realize 16 T

MDP Goals:
1. Explore Mb_3Sn magnet limit
2. Demonstrate HTS magnet (5 T – self field)
3. Investigate fundamentals for performance and cost reduction
4. Pursue Nb_3Sn and HTS conductor R&D

For strands:

- L1-L2: 28 strands, 1 mm RRP 150/169
- L3-L4: 40 strands, 0.7 mm RRP 108/127

• **Step 1:** We are here in 2019
 – Realize 14 T w/ mechanical design for 16 T

• **Step 2:**
 – Realize 15 T w/ pre-stress optimization

• **Step 3:**
 – Challenge to realize 16 T,
 – with SC conductor satisfying 1,500 A/mm² and sufficiently controlled mechanical design

See Appendix

Courtesy: S. Prestemon
MDP: SC Magnet R&D at Fermilab: 15 T Dipole

- The 15 T dipole demonstrator magnet assembly is finished
- The dipole is in being prepared for the first test expected to start in a week

Courtesy: S. Belomstnykh
HTS Superconductor, focusing on Bi2212 (in MDP)

Application expected for CCT coil
High-Field Superconductor and Magnets, focusing on IBS

Iron Based Superconductor (IBS) in China.

Iron-Based Layered Superconductor: LaOFeP

To be applied for Common Coil in SPPC

IBS- Iron Based Superconductor
Much lower cost and better mechanical properties expected

To be applied for Common Coil in SPPC

Modified version by Q. Xu in Oct. 2017
High-Field Superconductor and Magnets

Conductor property summarized by P. Lee

A. Yamamoto, 190505b

Eucard2: HTS-insert to be tested in 2019
3~5 + 13.5 T : > 16 T
Three HTS inserts (CERN and Collaborations)

EuCARD1: insert (CEA-CNRS-CERN), racetrack, ReBCO 4 tape stack cable, stand alone tested Sept 2017: Reached 5.37 T @ 4.2K (I=3200A)

EuCARD2: Feather-M2 (CERN), flared ends coil ReBCO, Roebel cable, stand alone tested Apr 2017: Reached 3.37 T @ 4.2K (I=6500A)

EuCARD2: cosθ insert (CEA), cosθ coil, ReBCO, Roebel cable, being fabricated, stand alone test in autumn 2019

Eucard2+ HTS-insert to be tested in 2019

A. Yamamoto, 190505b

Courtesy: G. De Rijk
Some Cost References for High-field Conductors

- An approach for cost consideration:
 - Superconductor cost to be 30% of the total cost for the LHC NbTi dipole magnet assembled.
 - It gives a general guideline for acceptable superconductor cost.
 - The currently available HTS cost is still too far, except for Iron-based-SC (IBS) potential.

- Goal for Nb₃Sn for FCC or HE-LHC:
 - 3.5 €/kA.m at 16 T and 1.9 K
 - Corresponding to 500...600 €/kg, a factor 2.5 ~ 3 lower than the present cost 1300 ~ 1500 EUR/kg for HL-LHC (RRP)

* Note: 16-T magnet requires x 2 conductor to that of 14 T.
Further challenges in Accelerator Technologies

• Vacuum,
• Targetting,
• Beam collimator,
• Beam dump,
• Radiation hardness,
• Others

Some Information in Appendix
Outline

• Introduction
 • Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on
 • Nano-beam, Superconducting Magnet and RF, and Normal-conducting RF

• Challenges for future, focusing on
 • Key technologies and energy management for future Lepton and Hadron Colliders

• Comments on
 • Complementarity for Energy-Frontier vs. Intensity-Frontier, and Energy Management

• Summary
Questions given by EPPSU2020 Acc. Session Conveners:
Lenny Rivkin (PSI) and Caterina Biscari (ALBA)

Open Symposium

Big Questions

Accelerator Science and Technology

• What is the best implementation for a Higgs factory? Choice and challenges for accelerator technology: linear vs. circular?

• Path towards the highest energies: how to achieve the ultimate performance (including new acceleration techniques)?

• How to achieve proper complementarity for the high intensity frontier vs. the high-energy frontier?

• Energy management in the age of high-power accelerators?
Intensity frontier vs. Energy frontier

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS*</td>
<td>450</td>
<td></td>
<td>Synchrotron</td>
<td></td>
</tr>
<tr>
<td>Fnal M. Injector</td>
<td>120</td>
<td>0.7</td>
<td>Synchrotron</td>
<td></td>
</tr>
<tr>
<td>J-PARC*</td>
<td>3, 30</td>
<td>1, 0.49 ~ 1.3</td>
<td>Linac/Synchrotron</td>
<td>SCM</td>
</tr>
<tr>
<td>PIP-II</td>
<td>60 - 120</td>
<td>.2</td>
<td>Linac (SRF) Synchrotron</td>
<td>SRF</td>
</tr>
<tr>
<td>PSI-HIPA*</td>
<td>0.59</td>
<td>1.4</td>
<td>Cycrotron</td>
<td></td>
</tr>
<tr>
<td>FAIR (SIS100)</td>
<td>29</td>
<td>0.2</td>
<td>Synchrotron</td>
<td>SCM</td>
</tr>
<tr>
<td>(ESS) ESSnuSB *</td>
<td>2, 2</td>
<td>2 ~ 5 (+5) 2 x 5</td>
<td>Linac</td>
<td>SRF</td>
</tr>
<tr>
<td>CEBAF</td>
<td>12</td>
<td>1</td>
<td>LINAC+Ring</td>
<td>SRF</td>
</tr>
<tr>
<td>Super-KEKB</td>
<td>---</td>
<td>---</td>
<td>Collider</td>
<td></td>
</tr>
<tr>
<td>HL-LHC</td>
<td>2 x 7,000</td>
<td>---</td>
<td>Collider</td>
<td>SCM, SRF</td>
</tr>
<tr>
<td>EIC*</td>
<td>---</td>
<td>---</td>
<td>Collider</td>
<td>SCM, SRF</td>
</tr>
</tbody>
</table>

Common Issues:
- SC Mag. & SRF technology
- Target, Collimator, Beam Dump
- Radiation
- Energy Management

Science is complementary, and Technology is based on common core technology, Let us work together and maximize synergy!!

Discussed by V. Shiltsev in Parallel Session

Courtesy: N. Saito, S. Belomestnykh, R. Garoby

A. Yamamoto, 190505b
Energy Management
Major issue in Energy- and Intensity-frontier Accelerators

• Energy Saving
 • Superconducting technology (partly covered in this talk)
 • Magnet
 • RF cavity -> further contribution by High-G and High-Q

• System Efficiency Improvement
 • Power system efficiency (to be covered by E. Jensen in Acc. Session)
 • RF modulator, Klystron,
 • Two beam acceleration
 • Cryogenics system efficiency
 • Further optimization depending on the operational temperature (eg; Ne-He refrigerator for SR heat removal)
 • Efficient beam dynamics (to be covered by V. Shiltsev)
 • Low-emittance/nano-beam,
 • Novel, further efficient accelerator scheme (to be covered by V. Shiltsev)

• Dynamic Energy Balance
 • Important issue: not power (W) efficiency, but energy (W-hour) efficiency
 • Accelerator operation in best harmonized condition in season/day/time.
 • Energy re-use/recycling more communicated with surrounding community/industry

More in Appendix
Outline

• **Introduction**
 • Advances in Accelerator Technology in Particle Physics

• **State of the Art in Accelerator Technology, focusing on**
 • Nano-beam, Applied Superconductivity, and RF

• **Challenges for future, focusing on**
 • Superconducting technology for future Lepton and/or Hadron Colliders

• **Comments on**
 • Complementarity of Energy-Frontier and Intensity-Frontier, and Energy Management

• **Summary**
Summary: State of the Art – RF and SC Magnet

NRF, SRF:
- **NRF** (~ 12 GHz, 20 cm unit):
 - E (CLIC R&D: 12 GHz): 70 ~ 100 MV/m
- **SRF** (1.3 GHz, 9-cell cavity)
 - \(<E> \) (Eu-XFEL): 30 MV/m, (~ 800 cavities)
 - **SRF** (Crab cavity)
 - Experienced at KEK-B, and demonstrated at CERN-SPS

SC Magnet:
- **NbTi**: LHC (Main Dipole)
 - \(B_{\text{bore}} = \sim 8 \ T \) at 1.9 K
 - Re-training aft. thermal cycling (TC) still a critical issue
- **Nb3Sn**: HL-LHC (11 T Dipole)
 - \(B_{\text{bore}} = \sim 11 \ T \) at 1.9 K
 - Good memory after TC, but more statistic needed
 - Loadline-ratio, however, should stay lower (< 80%)
Summary:
Challenges - SRF and SC Magnet

• **Superconducting RF:**
 • **Nb-bulk** (for > 1 GHz)
 • High-Q (> 3E10) and High-G (> 45 MV/m), w/Low-T treatment w/ or w/o N-infusion.
 • Large-Grain SRF cavity for cleaner condition with cost-reduction,
 • **Thin-Film** (for wider applications)
 • Potential thin-film on Nb to improve effective Bsh, resulting higher gradient, and further Potential for new SC material such as NB3Sn/MgB2 to much/drastically improve Bc.

• **Superconducting Magnet:**
 • **Nb3Sn** technology, to reach 16 T, requires much longer steps for much improvement of SC current density, mechanical property, control for field quality and limited training quenches, and industrialization effort.
 • “**Nb3Sn + HTS-insert**” technology will be required, beyond 16 T, and cost effective HTS will be essentially required for practical accelerator applications.
Personal Prospect

• Accelerator Technologies are ready to go forward for lepton colliders (ILC, CLIC, FCC-ee, CEPC), focusing on the Higgs Factory to start the construction in 5 ~ 7 years.

• SRF accelerating technology is well matured for the realization including cooperation with industry.

• Continuing R&D effort for higher performance is very important for future project upgrades.

• Nb_3Sn high-field superconducting magnet, as a core technology for energy-frontier hadron colliders, still requires step-by-step development efforts to reach 14, 15, and 16 T.

• A field range of 14 -16 T, with accelerator quality, would requires much longer time:
 – 12~14 T, 5~10 years for short model work, and next 5~10 years for prototype/pre-series work in cooperation with industry, resulting 10 – 20 yrs to reach the production stage
 – 14~16 T: 10-15 years for short model work, and next 10 ~ 15 years for prototype/pre-series work in cooperation with industry, resulting 20 – 30 yrs to reach the production stage. It would be consistent with the FCC- integral time scale.

• NbTi Superconducting magnet technology at 8~9 T is well proven with LHC, and Nb_3Sn magnet at 10 – 11 T is being demonstrated with HL-LHC. A hadron collider with either technology should be practical to start the construction in 5 ~ 7 years.

• Continuing R&D effort for the high-field magnet, present to future, should be critically important, to realize highest energy frontier hadron accelerators in future.

• High-energy and Intensity-frontier needs to work together on energy management including energy-efficiency improvement, energy-saving, energy-recycling, in wider networks with surrounding communities.
Personal View for possible, Relative Timelines

<table>
<thead>
<tr>
<th>Timeline</th>
<th>~ 5</th>
<th>~ 10</th>
<th>~ 15</th>
<th>~ 20</th>
<th>~ 25</th>
<th>~ 30</th>
<th>~ 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Colliders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRF-LC/CC</td>
<td>Proto/pre-series</td>
<td>Construction</td>
<td>Operation</td>
<td>Upgrade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRF—LC</td>
<td>Proto/pre-series</td>
<td>Construction</td>
<td>Operation</td>
<td>Upgrade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadron Collier (CC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8~(11)T NbTi/Nb3Sn</td>
<td>Proto/pre-series</td>
<td>Construction</td>
<td>Operation</td>
<td>Upgrade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12~14T Nb₃Sn</td>
<td>Short-model R&D</td>
<td>Proto/Pre-series</td>
<td>Construction</td>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14~16T Nb₃Sn</td>
<td>Short-model R&D</td>
<td>Prototype/Pre-series</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Yamamoto, 190505b
Acknowledgments

• This talk has been prepared in communication with
 – HiLumi-LHC, and US-LARP/AUP collaboration
 – Euro-CirCol (FCC study body),
 – EUCARD-2 succeeded by ARIES,
 – US-DOE Magnet Development Program (MDP),
 – US-General Accelerator SRF R&D program (GARD-SRF),
 – Tesla Technology Collaboration (TTC), European XFEL, and LCLS-II,
 – Linear Collider Collaboration (LCC) for ILC and CLIC,
 – FCC Study at CERN,
 – CEPC-SPPC study at IHEP, and
 – SC magnet and SRF accelerator laboratories:
 • Fermilab, BNL, JLab, Cornell, SLAC, CERN, CEA-Saclay, LAL-Orsay, DESY, STFC, KEK, ...

• Special thanks to: F. Bordry, L. Rossi, S. Steinar, J. M. Jimenez, L. Bottura, A. Devred,
 G. De Rijk, A. Ballarino, E. Todesco, D. Tommasini, F. Savary, D. Schoeling, E. Jensen,
 W. Wuensch, S. Cataloni, B. Foster, B. List, N. Walker, H. Weise, S. Prestemon
 S. Belomestnkh, A. Grassellino, H. Padamsee, M. Ross, N. Saito, S. Michizono, K. Yokoya,
 N. Terunuma, T. Ogitsu, T. Taylor, L. Evans, L. Revkin, C. Biscari, and V. Shiltsev,
 for their kindest cooperation to provide various information and discussion.
Appendix
Goal 1: Establish the FF method with same optics and comparable beamline tolerances

- **ATF2 Goal:** 37 nm → 7.7 nm@ILC250GeV
- **Achieved:** 41 nm (2016)

Goal 2: Develop nm position stabilization at FF:

- **FB latency 133 ns achieved** (target: < 300 ns)
- **Position jitter at IP:** 410 → 67 nm (2015) (limited by the BPM resolution)

History of ATF2 small beam

- 1 Skew Sextupole Installed
- 4 Skew Sextupoles
- 4 FF Sextupoles
- Orbit Stabilization
- 5 FF sextupole Modification
- FONT FB ON

A. Yamamoto, 190505b
Progress in Normal Conducting RF Acc. Structure

• Achieved 100 MV/m gradient in main-beam RF cavities

Curtesy: S. Stapnes, P. Barlow, W. Wuensch
NRF Technology for CLIC-380 and beyond

- Linear e^+e^- collider, staged $\sqrt{s} = 0.38$ TeV

- 70 MV/m accelerating gradient needed for compact (~11 km) machine based on:
 - normal-conducting accelerating structures
 - two-beam acceleration scheme

Issue remaining:
- Power efficiency at higher energies
- Large scale production experience for Acc. Structures
- System-level alignment and stabilization
Better Cavity Shapes to Beat the Limit:
Lower H_{pk} even if you have to raise E_{pk}

\[E_{acc} = \frac{H_{RF}^{CR}}{H_{pk} / E_{acc}} \]

<table>
<thead>
<tr>
<th>Shape</th>
<th>TTF</th>
<th>LL/Ichiro</th>
<th>RE</th>
<th>LSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-iris [mm]</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>E_{p}/Eacc</td>
<td>1.98</td>
<td>2.36</td>
<td>2.28</td>
<td>1.98</td>
</tr>
<tr>
<td>H_{p}/Eacc [Oe/MV/m]</td>
<td>41.5</td>
<td>36.1</td>
<td>35.4</td>
<td>37.1</td>
</tr>
<tr>
<td>$G*R/Q$ [Ω^2]</td>
<td>30840</td>
<td>37970</td>
<td>41208</td>
<td>36995</td>
</tr>
<tr>
<td>E_{acc}-max [MV/m]</td>
<td>42.0</td>
<td>48.5</td>
<td>49.4</td>
<td>47.2</td>
</tr>
</tbody>
</table>
New potential breakthrough: very high Q at very high gradients with low temperature (120°C) nitrogen treatment.

Achievements at Fermilab:
- G-max = 45.6 MV/m → 194 mT
- Q (at 35 MV/m) : ~ 2.3e10

Improvements:
- G : ~ 15 %
- Q : x 2 → Cryogenics saving

The recipe discovered and demonstrated at Fermilab (by A. Grassellino et al.).
- Global collaboration extends the R&D and demonstrate the statistics.
Possible Consideration and Models

- 120C bake is known to manipulate mean free path at very near surface (~nm) on clean bulk Nb.

- The Nitrogen (N) infusion is a variation of the 120 C bake where N dopes the near surface w/o working lossy nitrides.

- A dirty (doped) layer at the surface seems beneficial in order to increase the quench field above Bc1.

Surface current is suppressed:
- means an enhancement of the field limit, because of the theoretical field limit to be determined by the current density.

(Figure above)
HiPIMS principle / setup

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse duration (us)</td>
<td>1-200</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>20-500</td>
</tr>
<tr>
<td>Power (W)</td>
<td>100 peak, 2 avg</td>
</tr>
<tr>
<td>Gas</td>
<td>Ar, Kr</td>
</tr>
<tr>
<td>Pressure (mbar)</td>
<td>8.10^-5-5.10^-2</td>
</tr>
</tbody>
</table>

Same setup as DCMS
- Only the power supply changes
- High level of ionization of the sputtered species (up to 70%)
- High instantaneous power (100’s kW) for same average power as in DCMS.
- Possibility to densify the layer using a negative voltage (biasing) on the substrate.
- Lower coating rate than in DCMS (ions re-attracted at the cathode surface)

DC Magnetron Sputtering vs. HiPIMS

HiPIMS allows densifying Nb thin film on any substrate shape and complexity.

Coating with ionized Nb⁺ can be easily directed on the substrate with an electric field (bias).

Paves the way toward Q-slope mitigation.

700 MHz β=0.65 Single Cell Cavity profile, coating at 150 °C

Courtesy: S. Cteroni
State of the art biased HiPIMS coatings: QPR sample

Extrapolation of surface resistance of biased HiPIMS Nb/Cu film as measured at 400 MHz with quadrupole resonator, to the LHC cavity geometry

Q-slope phenomenon strongly suppressed and support the effort to evolve this technology into real cavities.

Projected performance > 2x better than LHC specifications

Second conclusion

- Film crystalline structure has an impact on the “slope”

- Directions for future research lines (FCC 400 MHz):
 - Improve film crystal structure at any angle of incidence
 - Densify films
 - Pursue efforts to mitigate hydrogen effects (high-temperature coatings, N₂ treatments [?])
Progress in Nb$_3$Sn-Coating Research
reported at TTC meeting, Vancouver, Feb. 2019

New Progress in Nb$_3$Sn: Fermilab 1.3 GHz Cavity

- Meets LCLS-II spec at 2 K
- World record CW gradient for Nb$_3$Sn accelerator cavities!

- $Q_0 > 10^{10}$ at 20 MV/m at 4.4 K

Comparison to Other Cavities

- World record CW gradient for Nb$_3$Sn accelerator cavities! Higher by 4 MV/m (~25% increase)

B$_{sh}$ = practical limit for SRF

- $B_{sh-Nb} : 210$ mT
- $B_{sh-Nb3Sn} : 430$ mT
- $B_{sh-MgB2} : 310$ mT

Courtesy: S. Posen
Training Quench in NbTi Magnets (LHC)

Nb–Ti Work Horse: the LHC

- LHC remains the largest superconducting magnet system ever assembled and is now operating reliably at 6.5 TeV, corresponding to a dipole magnet current of 10,980 A and a bore/peak field of 7.73/7.95 T.

- Although all magnets were cold tested prior to tunnel installation, a training campaign is required after each warm-up/cool-down.

- Bringing the machine up to 7 TeV (11,850 A and a bore/peak field of 8.33/8.57 T) is expected to require several hundred quenches.

(Courtesy of MP3, chaired by A. Verweij, CERN)
• Mission with regard to applied superconductivity:
 – Develop a sustainable and Swiss-based expertise in applied superconductivity and superconducting magnets for HEP, in view of a possible FCC-hh or HE-LHC. This shall be anchored in the existing institutes and universities, and further developed thanks to additional recruitment and hands-on training of applied scientists and technicians in the practical objectives described below (R&D, prototyping and testing).

• High-field magnets:
 – prove (or disprove) CCT technology for Nb₃Sn 16-T dipoles,
 – develop an up to 2-m-long high-field demonstrator – possibly of different coil geometry.
 – contribute to the development of Nb₃Sn conductors that match the performance targets […] and of the cable optimization and test.

• HTS magnets:
 – develop technologies for HTS based accelerator magnets,
 – design, build, and test an HTS variant of the SLS 2.0 superbend magnet.
 – design, build, and test several periods of an HTS undulator magnet.

• Infrastructure:
 – To establish the infrastructure needed to build and test all aspects of FCC-hh, HE-LHC magnets and other SC accelerator magnets.
after 10 years of development the US and EU development gave us the Nb$_3$Sn conductor for HILUMI.

Nb₃Sn conductor program

- **Nb₃Sn** is one of the *major cost & performance* factors for FCC-hh
- **Highest attention** is given

\[B = \frac{2\mu_0}{\pi} J_w \sin(\phi) \]

Main development goals:
- \(J_c \) (16T, 4.2K) > 1500 A/mm²
 - 50% higher than HL-LHC

Global cooperation:
- CERN/KEK/Tohoku/JASTEC/Furukawa
- CERN/Bochvar High-tec. Res. Inst
- CERN/KAT
- CERN/Bruker
- T.U. Vienna, Geneve U., U. Twente,
- Florida S.U. - Appl. Superc. Center
- New US-DOE-MDP

Requirement (FCC)

- **Non-Cu**
 - \(J_c : 1,137 \text{ A/mm}^2 \) @ 16T
- **Non-Cu**
 - \(J_c : \sim 1,450 \text{ A/mm}^2 \) @ 16T

Figures to be updated

https://arxiv.org/abs/1903.08121

Ternary add. Approach:
K. Saito et al. (JASTEC/KEK)

Artificial Pinning Center (APC) approach:
X. Xu et al (Fermilab)
The US Magnet Development Program was founded by DOE-OHEP to advance superconducting magnet technology for future colliders.

Strong support from the Physics Prioritization Panel (P5) and its sub-panel on Accelerator R&D.

A clear set of goals have been developed and serve to guide the program.

Technology roadmaps have been developed for each area: LTS and HTS magnets, Technology, and Conductor R&D.
Magnets start with the superconductor: we are about to put Nb$_3$Sn into a collider for the first time, and are investigating the potential of HTS.
A Cos(t) 4-layer design led by FNAL is being pursued with the ultimate goal of achieving ~15T

- Design minimizes midplane stress for highest field
- A technical challenge is to provide adequate prestress on inner coils
 - Intrinsic difficulty with 4 layers
 - Collared-structure approach includes new features that provide some prestress increase during cool down

- Status:
 - Coils fabricated
 - Structure designed, fabricated
 - Mechanical model assembly completed
 - Assembly readiness review completed
 - Assembly underway now

Thanks to CERN!

- Thin StSt coil tube space
- Vertically split iron laminations
- Aluminum I-clamps
- 12-mm thick StSt coil
- Thick end plates and StSt foot

60-mm aperture, 4-layer graded coil

Courtesy: S. Prestemon
On the HTS magnet front, Bi2212 has matured to become a magnet-ready conductor

- Bi2212 has made dramatic strides in Jc over last 3 years => ready for magnets
 - Wire has been cabled and tested in racetrack configuration (RC5)
 - First Bi2212 CCT dipoles have been wound and await reaction and testing soon
 - Roadmap integrates Bi2212 CCT in a high-field hybrid magnet design

- Nano-spray combustion powder technology
- 55x18 wire design
- At 15 T, Jc ~1365 A/mm², twice the target desired by the FCC Nb3Sn strands
- At 27 T, Jc ~1000 A/mm², adequate for 1.3 GHz NMR.
FRESCA2 + HTS-Insert

Fresca2 a 13T Nb3Sn dipole

- $B_{\text{center}} = 13.0 \, \text{T}$
- $I_{\text{F3T}} = 10.7 \, \text{kA}$
- $B_{\text{peak}} = 13.2 \, \text{T}$
- $E_{\text{mag}} = 3.6 \, \text{MJ/m}$
- $L = 47 \, \text{mH/m}$
- Aperture = 100 mm
- L coils = 1.5 m
- L straight = 700 mm
- L yoke = 1.6 m
- Φ magnet = 1.03 m

13T nominal field dipole for the CERN cable test station, reached 14.6T (record field)

HTS insert test in Fresca2

To approach 20T the 3 HTS inserts will be tested in Fresca2 in a 13T background field.

1. EuCARD2 Feather2, second magnet with high perf. tape, (end summer 2019)
2. EuCARD1 flat racetrack (end 2019)
3. EuCARD2 cost: (spring 2020)

- Questions to be answered: maximum insert field in a background field, tolerance of the tapes for high fields, transition behavior at high field (quench), mechanical issues.
Three HTS inserts (CERN and collaborations)

EuCARD1: insert (CEA-CNRS-CERN), flat racetrack, ReBCO 4 tape stack cable, stand alone tested Sept 2017: Reached 5.37 T @ 4.2K (I=3200A)

EuCARD2: Feather-M2 (CERN), flared ends coil ReBCO, Roebel cable, First magnet (low perf tape), stand alone tested Apr 2017: Reached 3.37 T @ 4.2K (I=6500A)

EuCARD2: cosθ insert (CEA), cosθ coil, ReBCO Roebel cable, being fabricated, stand alone test in autumn 2019

Courtesy: G. de Rick
Technical Challenge: Vacuum

Trend in vacuum technology for particle accelerators

- Extinction of gas sources
- Eradication of eclouds
- Remote handling of vacuum components
- Smaller aperture and thinner walls
- Detailed simulation

Extinction of gas sources

- Innovative surface modifications and coatings
- Innovative mechanical design and materials
- Taylor-made Monte Carlo methods

Non Evaporable Getter (NEG) thin film coatings transform beampipes into pumps.
- After activation at 180°C, they provide very low beam induced desorption and low secondary electron yield.
- E.g more than 1500 vacuum chambers coated at CERN.

Eradication of eclouds: carbon coatings

Reduction of synchrotron-radiation desorption yield after NEG activation

MAX IV vacuum chamber: before and after NEG coating

Courtesy: Paolo Chiggiato

Advanced Technology for particle accelerators

Courtesy: F. Bordry
Challenges in Target, Collimator, and Beam Dump

• To be filled:
Technical Challenges: Radiation Hardness

Material Challenges in Future Accelerators

- **Future machines** are set to reach unprecedented **Energy** and **Energy Density**.
- No existing material can meet extreme requirements for Beam Interacting Devices (Collimators, Absorbers, Windows ...) as to **robustness** and **performance**.
- New materials are being developed to face such extreme challenges, namely **Metal-and Ceramic-Matrix Composites** with **Diamond** or **Graphite** reinforcements.
- **Molybdenum Carbide - Graphite** composite (MoGr) is the most promising candidate material with outstanding thermo-physical properties.

<table>
<thead>
<tr>
<th>MoGr Key Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [g/cm³]</td>
</tr>
<tr>
<td>Melting Point Tm [°C]</td>
</tr>
<tr>
<td>CTE [10⁻⁶ K⁻¹]</td>
</tr>
<tr>
<td>Thermal Conductivity [W/mK]</td>
</tr>
<tr>
<td>Electrical Conductivity [MS/m]</td>
</tr>
</tbody>
</table>

- Understanding of **unexplored conditions** call for state-of-the-art numerical simulations complemented by advanced tests in dedicated facilities.

e.g. HiRadMat Experiments

- Test of complete devices and materials under extreme beam impact conditions with comprehensive acquisition systems.
- Benchmark of experimental measurements with results of state-of-the-art numerical codes.

[Images of material properties and experiment setup]

A. Yamamoto, 190505b
- High Intensity Accelerator requires investigation of radiation damage of target and beam window
- RaDIATE: an internat’l collab. of scientists and engineers from acc. and reactor facilities to solve the problems
- J-PARC has joined the team since 2014. MOU is in preparation.

Neutrino Beam Window
Ti Alloy ~1x10^{21} pot
~ 1 Displacement Per Atom
(Existing data up to ~0.3DPA)

NuMI graphite broken target
Post-Irradiation Examination (PIE)
at PNNL: Swelling effect observed

New Irradiation Run at BNL (2017 February ~)
Intensity Frontier Accelerators

Hi-Intensity P-driver

- 1 MW class
- Multi-MW potential

- J-PARC, KEK&JAEA: 3-GeV RCS, 1 MW
- 38-GeV MR, 750 kW
- Spallation Neutron Source, ORNL: 1-GeV AR, 1.4 MW

- HIPA, PSI: 590 MeV/u cyclotron, 1.4 MW

- Main Injector, FNAL: 120-GeV Synchrotron, 700 kW

- SPS, CERN: 460-GeV Synchrotron

A Quest for High Intensity

- High Intensity
- High Statistics
- More Precision
- More Rare Searches
- More Materials
- Discovery!

Jie Wei / Y. Yamazaki

Courtesy: N. Saito
US Electron-Ion Collider

National Academy of Sciences : 2018 Assessment of US EIC
The committee finds the scientific case compelling, fundamental and timely.

“EIC can address three profound questions..
- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense system of gluons?”

US DOE Budget Justification

Volume 4, Page 272:
“(EIC). Critical Decision-0, Approve Mission Need, is planned for FY 2019.”

Requirements from the EIC Whitepaper
- Highly polarized (~70%) electron and nucleon beams [as well as light ions]
- Ion beams from deuteron to the heaviest nuclei (uranium or lead)
- Variable center of mass energies from ~20 - ~100 GeV, upgradeable to ~140 GeV
- High collision luminosity ~10^{33-34} cm^{-2} s^{-1}
- Possibilities of having more than one interaction region

Two realization concepts being developed. Realization could be as early as 2026-2030.
EIC Accelerator Sci Tech & Synergies with European projects

Accelerator R&D ongoing with strong cooperation between several DOE labs under DOE NP guidance

Collaboration from international partners is welcome!

Common areas of sci-technological advances:
- Unprecedented collider that needs to maintain high luminosity and high polarization
- Combine challenges of Super-B factories & hadron colliders
- Crab cavities, hadron beam cooling, high field magnets for the interaction points

Common areas of synergy with European projects:
- HL-LHC and EIC crab cavities
- PERLE ERL and ERL for hadron cooling
- High voltage DC cooling for EIC and for HESR/FAIR GSI
- Nb3Sn and thin film cavities for cost-effective SRF
- Highly HOM-damped SRF cavities
- IR SC magnets for HE-LHC, FCC, EIC
- General accelerator beam dynamics and simulations

EIC accelerator technology development is synergistic with the projects (HL-LHC, HE-LHC, FCC, etc.) discussed within the European Strategy update process.
Encourage creating a global world-wide collaboration on EIC accelerator and machine-detector interface R&D
ESSnuSB: An Intensity-frontier ACC. for PP in future

ESS proton linac

- The ESS will be a copious source of spallation neutrons.
- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10^{15} protons).
- Duty cycle 4%.
- 2.0 GeV protons
 - up to 3.5 GeV with linac upgrades
- $>2.7 \times 10^{23}$ p.o.t/year.

How to add a neutrino facility?

- The neutron program must not be affected and if possible synergetic modifications.
- Linac modifications: double the rate (14 Hz → 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few μs the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
 - H^+ source (instead of protons),
 - space charge problems to be solved.
- \sim300 MeV neutrinos.
- Target station (studied in EUROv).
- Underground detector (studied in LAGUNA).
- Short pulses (~μs) will also allow DAR experiments (as those proposed for SNS) using the neutron target.
Energy Efficiency and Management in Accelerators

- The good news: power consumption grows slower than collision energy
- The bad news: future projects need hundreds of MW

Beam power, particle energy, intensity

- **Average beam power**
 \[P_{\text{beam}} = \frac{\delta I E}{e} = f_{\text{rep}} N_{\text{pulse}} E \]
 - Beam current
 - \(E \) = 2 GeV
 - \(I \) = 62.5 mA
 - \(\delta \) = 4 %
 - \(P_{\text{beam}} = 5 \text{ MW average} \)

Ph. Lebrun
Energy Efficiency and Management in Accelerators

Collider efficiencies

Grid-to-beam efficiency [%]
Accelerator systems efficiency [%]

Infrastructure systems: cryogenics
COP of cryogenic helium refrigerators (installed)

C.O.P. [W/W @ 4.5K]

LHC HL-LHC CLIC 500 ILC 500 CLIC 3000

TORE SUPRA RHIC TRISTAN CEBAF HERA LEP LHC

Ph. Lebrun 4th W Energy for Sustainable Science
Energy Efficiency and Management in Accelerators

Cryogenic Refrigeration for FCC-hh

The real cost of intrinsic losses

- **RH**: resistive heating
- **BGS**: beam-gas scattering
- **BS**: beam screen
- **CM**: cold mass heat-inleaks
- **CL**: current leads
- **BS cir.**: Beam screen circulator (RT)
- **TS**: thermal shield
- **IC**: image current
- **SR**: synchrotron radiation

Carnot efficiency:
- Ne-He plants: 40 %
- Helium plants: 28.8 %

Isentropic efficiency:
- Cold compressors: 75 % per stage
- Warm circulator: 83 %

Summary

Reasons for low efficiency

- For all types of accelerators, the average beam power is proportional to the product of particle energy and luminosity or delivered particle flux.
- The energy-luminosity performance, and possibly the physics reach of a collider can be represented by a single “coefficient of performance”.
- The ratio of “coefficient of performance” to beam power quantifies the relation between collider performance and beam parameters: it is lower for single-pass machines than for circular colliders.
- “Intrinsic” losses due to basic physics processes add up to the beam power and often exceed it (synchrotron radiation).
- Accelerator systems and infrastructure represent the bulk of electrical power consumption.
- Comparing total power consumption and average beam power yields very low values for overall “grid-to-beam” efficiency.
- Linear colliders show higher overall “grid-to-beam” efficiencies than circular colliders. This partly compensates for their much lower COP/beam power ratio.
Energy Management
to be discussed by E. Jensen (Acc. Session)

A reference: Outlook – Strategies pointed out by Ph. Lubrun (EUCARD2 study)

- Maximize energy-luminosity performance per unit of beam power
 - Minimize circumference for a given energy (high-field magnets)
 - Operate at beam-beam limit
 - Low-emittance, high-brilliance beams
 - Low-beta insertions, small crossing angle (“crabbing”)
 - Short bunches (beamstrahlung)

- Contain “intrinsic” losses
 - Synchrotron radiation
 - Beam image currents
 - Electron-cloud

- Optimize accelerator systems
 - RF power generation and acceleration (deceleration)
 - Low-dissipation magnets (low current density, pulsed, superconducting, permanent)

- Optimize infrastructure systems
 - Efficient cryogenics (heat loads, refrigeration cycles & machinery, distribution)
 - Limit electrical distribution losses (cables, transformers)
 - Absorb heat loads preferably in water rather than air
 - Recover and valorise waste heat

Ph. Lebrun
Workshop on Magnet Design Nov 2014

Courtesy: Ph. Lebrun, V. Shiltsev