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Outline

• Introduction 
– Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on 
– Nano-beam*, Superconducting Magnet and RF, and  Normal-conducting RF 

* to be covered by V. Shiltsev and S. Stapnes

• Challenges for future
– Superconducting Technologies for future Lepton and Hadron Colliders

• Summary 
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Frontier Accelerators based on SC Technology 

Courtesy,  A.  Ballarino
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High-energy and High-Intensity frontier 

accelerators are relying on superconductivity 
as core technology to be focused in this talk. 



Accelerator Technologies advanced in Particle Physics
Type Acclerator Op. Years Beam Energy (TeV) B [T] E  [MV/m] Pioneering/Key Technology

CC

hh

Tevatron 1983-2011 2 x 0.5 4 T Superconducting Magnet (SCM)

HERA 1990 -2007 4.68 T SCM, e-p  Collider, 

RHIC 2000 ~ 3.46 T SCM

SPS
LHC
HL-LHC

1981-1991
2008 ~ 
Under constr.

2 x 0.42
2 x ( 6.5 >> 7) 

(NC mag.)
7.8T -->8.4 

11~12

P-bar Stochastic cooling
SCM (NbTi) at 1.8 K, SRF
SCM (Nb3Sn), SRF, e-cooling

CC
ee

TRISTAN 1986-1995 2 x 0.03 5 SRF (Nb-bulk), SCM-IR-Quad (NbTi) 

LEP 1989-2000 2 x 0.55 5 SRF (Nb-Coating) , SCM-IRQ 

KEKB
Super-KEKB

1998~2010
2018 ~

0.002+0.008
0.004+0.007

5
5

Luminosity, SRF Crabbing, SCM-IRQ 
Luminosity, Nano-beam, SCM-IRQ 

LC
ee

SLC/PEP-II 1988/98~2009 2 x 0.5 Normal conducting RF

(Eu-XFEL) (2018 ~) (0.0175) (23.6) SRF (Nb-bulk) 
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Advances in SC Magnets for Accelerators
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Past:

• ISR-IR

• Tevatron (Fermilab)

• TRISTAN-IR (KEK)

• HERA (DESY)

• Nuclotron (JINR)

• LEP-IR (CERN)

• KEKB-IR (KEK)

Present:

• RHIC (BNL)

• LHC (CERN)

• SRC (RIKEN) …..

Under Construction

• FAIR (GSI) …......

• HL-LHC (CERN)

• NICA (JINR)

Future:

• EIC (e-Ion)

• FCC-hh / HE-LHC

• SppC
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Dipole 

IR Quadrupole

Tevatron-D.   HERA-D. RHIC-D. LHC.D (NbTi) HL-LHC 11T-D  (Nb3Sn)

ISR-IRQ, LEP-IRQ    TRISTAN/KEKB-IRQ LHCC-IRQ (NbTI)                HL-LHC-IRQ (Nb3Sn)

SC-Cyclotron

Fast-cycleShnchr.

A. Yamamoto, 190512



Courtesy, L. Rossi, E. Todesco

Nb3Sn Dipoles w/ Collimator

11

SC 
Links D1 CP Q3 Q2b Q2a Q1

Service gallery
(UR)

DFM
DFX

NbTi, Nb3Sn Superconducting Magnets

and MgB2 SC Links for HL-LHC

Nb3Sn Quad.

(MQXF)

NbTi Mag. 

(D1, and …)

Large aperture
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MgB2 18.5 kA Superconducting Link Demonstrated

Courtesy: A. Ballarino,

A demonstrator (2 x 60-m long, 18 kA cables) tested 

inDec. 2018, exceeding requirements 

- TCS at 18 kA of 31.3 K.

3 kA
(6.5 mm)

18 kA
(19 mm)

18.5 kA

12 March 2019

• Innovative system supplying current to Interaction Region  magnets.

• Several circuits in parallel with lengths in excess of 100 m.

• Multi-stage MgB2 cable carrying up to ~129 kA @ 25 K, cooled by  forced flow of GHe at 4.5-17 K, 

Layout of SC link cable 
A. Yamamoto, 190512 12



HL-LHC,  11T Dipole Magnet

13

Courtesy,  A. Devred, F. Savary, G. Willering

• The 1st Series, 5.5 m long Dipole, powered as a 
single aperture in the initial test:  Reached 
- Bc = 11.2 T  (at nominal current)

I-nominal, after 1 quench, 
- Bc = 12.1 T (at ultimiate current)

I-ultimate) after 6 quenches.

1-m short Models

A. Yamamoto, 190512



CERN and US-LARP/AUP Cooperation for 
Nb3Sn IR Quadrupoles 

• US-LARP Collaboration taking a critical role for leading R&D:  

– Magnet science and technology

– Nb3Sn accelerator magnet-technology beyond 10 T, 

• overcoming the very brittle feature (like ceramic),  

• with winding, reacting, and impregnating, and 

– Mechanical structuring w/ Bladder technology for 

• Rigid support of magnetic pressure proportional to  B2 ,

• CERN leading HL-LHC global collaboration and qualifying the 

Nb3Sn accelerator magnet technology:

– Experienced with the project realization  for future collider 

accelerators.  

14A. Yamamoto, 190512

Bladder, as a  key technology  



Nb3Sn Quadrupole (MQXF) at IR

15A. Yamamoto, 190512

Courtesy, 
G. Ambrosio,  G. Chlachidze

E. Todesco, P. Ferracin

CERN: 7 m long prototype 
under development 

US: 4.5 m Prototype:
- Completed and tested

CERN: 1-m short Models: 
- Successfully demonstrated the performance
CERN:  7 m Prototype under development

CERN: 1 m ModelUS: 4.5 m Prototype



Outline
• Introduction 

– Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on 
– Nano-beam, Superconducting RF, and  Normal-conducting RF 

• Challenges for future, focusing on 
– Superconducting Technologies for future Lepton and Hadron Colliders

• Summary 
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Features of Normal conducting and Superconducting RF

17A. Yamamoto, 190512

Normal conducting (CLIC) Superconducting (ILC)

Gradient: 72 to 100 MV/m
- Higher energy reach, shorter facility

Gradient: 31.5 to 35 (to 45) MV/m, 
- Higher efficiency,  steady state beam power from RF input

RF Frequency: 12 GHz

- High efficiency RF peak power 
- Precision alignment & stabilization to compensate wakefields

RF Frequency: 1.3 GHz 
- Large aperture gives low wakefields

Q0: order < 105, 

- Resistive copper wall losses compensated by strong 

beam loading – 40% steady state rf-to-beam efficiency

Q0: order 1010, 

- High Q

- losses at cryogenic temperatures

Pulse structure: 180 ns / 50 Hz Pulse structure: 700 µs / 5 Hz

Fabrication:

- driven by micron-level mechanical tolerances

Fabrication

- driven by material (purity) & clean-room type chemistry

- High-efficiency RF peak power production through 

long-pulse, low freq. klystrons and two-beam scheme

- High-efficiency RF also from long-pulse, low-frequency 

klystrons

Courtesy: W. Wuensch



Components:

Laboratory with 
commercial
• Accelerating structures
• pulse compressors
• alignment
• Stabilization, etc.

Full commercial supply
• X-band klystrons
• solid state modulator, 

Systems Facilities: 
(100 MeV-range)

• XBoxes at CERN
• (NEXTEF KEK)
• Frascati
• NLCTA SLAC
• Linearizers at Electra, PSI, 

Shanghai and Daresbury
• Test stand at Tsinghua
• Deflectors at SLAC, Shanghai, 

PSI and Trieste 
• NLCTA
• SmartLight
• FLASH

C-band (6 GHz), 
low-emittance
GeV-range facilities
Operational:
• SACLA
• SwissXFEL (8 GeV)

CLIC

Normal Conducting Linac Technology Landscape

X-band (12 GHz)
GeV-range facilities
Planning:
• Eu-Praxia
• e-SPS
• CompactLight

A. Yamamoto, 190512 18

~ 100 (+/-20) MV/m

Courtesy: W. Wuensch



Advances in SRF Technology and Accelerators 
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Progress (1988~)

• TRISTAN

• LEP-II

• HERA

• CEBAF

• CESR

• KEKB

• BES

• cERL

In Operation:  # cavities
• SNS: 1 GeV

• CEBAF 12 GeV  80 

• ISAC-II, ARIEL 

• Super-KEKB

• Eu-XFEL  800

Under Construction:
• LCLS=II  300

• FRIB  340

• PIP-II  115

• ESS 150

• Shine  600

To be realized: 

• HL-LHC-Crab  20

• EIC

• ILC-250  8,000

• FCC

• CEPC/SPPS

19> 2,000 SRF cavities realized, in  last 10 years !
A. Yamamoto, 190512



Advances in L-band (~ 1GHz) SRF Cavity Gradient 

Courtesy: R. Geng,

20
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MaterialSurface

Surface,        Shape  
Thermal 

conductance

Field

Gradient

ILC 250 spec.

ILC upgrade



European XFEL,  SRF Linac Completed and in Operation 

Progress:
2013: Construction started

2016: E- XFEL Linac completion

2017: E-XFEL beam start

2018: 17.5 GeV achieved 

A. Yamamoto, 190512

Courtesy, H. Weise, N. Walker

1.3 GHz / 23.6 MV/m

800+4 SRF acc. Cavities

100+3 Cryo-Modules (CM)

:  ~ 1/10 scale to ILC-ML
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As Received

>10 % (47/420, RI) cavities 
exceeding 40 MV/m

After Re-treatment: 

E-usable: 29.8 ± 5.1  [MV/m]

DESY 



Capture CM

CM1 + CM2a

22A. Yamamoto, 190512

Courtesy: V. Shiltsev, S. Michizono

e- Source

Beam Dump

KEK-STF2 Progress, 2019 

Fermilab, KEK achieving ILC Gradient Goal ≥ 31.5 MV/m with beam 

Fermilab-FAST Progress, 2017 

Beam Acc. : 260 MeV by 8 Cavities, 
<G> = 32.3 MV/m

Beam Acc. : 230 MeV by 7 Cavities, 
<G> = 32 MV/m



LCLS-II SRF Linac (SLAC/Fermilab/JLab Collaboration)
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T= 2K

Anti-Q-slope

Standard treatment

N-doped
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A, Grassellino et al, Supercond. 

Sci. Technol. 26 10200 (2013) 

SRF e-Linac Parameters
Beam:  4 (+ 4) GeV, up to 0.3 mA
SRF cavity: 
- Frequency : 1.3 GHz, CW
- G: 18 ~21 MV/m
- Q: > 2.7 e10 (av.)
- # cavity = 280 (+160) 
- # CM 35 (+20) 
To be completed in 2020 (~2026)

1 km SCRF-CW Linac

Courtesy, M. Ross

• > x 2 Q achieved, 

• N-doping at 800C,discovered by A. 
Grasellino et  al.

-- LCLS-Q Spec.

LCLS-II CM production in progress



Courtesy,
R. Calaga, O. Capatina,
A. Ratti, L. RistoriNb SRF Crab Cavities for HL-LHC

24

Crabbing p beam demonstrated at SPS, 2018
A. Yamamoto, 190512

CERN, US-AUP, STFC, TRIUMF Collaboration

DQW RFD
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Technical Challenges in Energy-Frontier Colliders proposed
Ref. E  

(CM)

[TeV]

Lumino

sity

[1E34]

AC-

Power

[MW]

Value

[Billion]

B  

[T]

E: 

[MV/m]

(GHz)

Major Challenges in Technology

C

C
hh

FCC-

hh

CDR ~  100 < 30 580 24 or 

+17  (aft. ee)

[BCHF] 

~ 16 High-field SC magnet (SCM)

- Nb3Sn: Jc and Mechanical stress 

Energy management

SPPC (to be 

filled)
75 –

120 

TBD TBD TBD 12 -

24

High-field SCM

- IBS: Jcc and  mech. stress

Energy management

C

C
ee

FCC-

ee

CDR 0.18 -

0.37 

460 –

31

260 –

350 

10.5

[BCHF]

5~10

(0.4 / 0.8) 

High-Q SRF cavity at < GHz, Nb Thin-film 

Coating

Synchrotron Radiation constraint

Energy efficiency (RF efficiency)

CEPC CDR 0.046 -

0.24 

(0.37)

32~

5

150 –

270

5

[B$]

20 ~ 40 

(0.65)

High-Q SRF cavity at < GHz, LG Nb-bulk/Thin-

film

Synchrotron Radiation constraint

High-precision Low-field magnet

L

C
ee

ILC TDR 

update
0.25

( -1)

1.35 

(– 4.9)

129 

(– 300)

5.3 

[BILCU]

31.5 – (45) 

(1.3)

High-G and high-Q SRF cavity at GHz, Nb-bulk

Higher-G for future upgrade

Nano-beam stability, e+ source, beam dump

CLIC CDR 0.38 

(- 3)

1.5 

(- 6)

160

(- 580)

5.9 

[BCHF] 

72 – 100 

(12)

Large-scale production of Acc. Structure

Two-beam acceleration in a prototype scale

Precise alignment and stabilization. timing
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Technical Challenges in Energy-Frontier Colliders proposed

A. Yamamoto, 190512

Major Technical Challenges:
Hadron Colliders: 
- High-field magnet
- Energy management

Lepton Colliders:  
- SRF cavity: High-Q and -G (to prepare for upgrade)
- NRF acc. Struct.: large scale, alignment, tolerance, 

timing
- Energy management 

27



State of the Art in 

High-Q and High-G (1.3 GHz, 2K)

EP

• High-Q by N-Doping well established, and 

• High-G by N-infusion and Low-T baking  still to be understood and reproduced, worldwide. 

• N-doping (@ 800C for ~2 min.) 

– Q >3E10, G = 35 MV/m

• Baking w/o N (@ 75/120C) 

– Q >1E10, G =49 MV/m (Bpk-210 mT)

• N-infusion (@ 120C for 48h)

– Q >1E10, G = 45 MV/m

• Baking w/o N  (@ 120C for xx h ) 

– Q >7E9, G = 42 MV/m

• EP (only)

– Q >1.3E10, G = 25 MV/m

N-doping

Baking 75/120C

Baking 120C
N-infusion

Courtesy: Anna Grassellino

- TTC Meeting, TRIUMF, Feb., 2019
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State of the Art in 

High-Q and High-G (1.3 GHz, 2K)

EP

N-doping

Baking 120C
N-infusion

Courtesy: Anna Grassellino

- TTC Meeting, TRIUMF, Feb., 2019

29A. Yamamoto, 190512

Repeated on second cavity TE1AES009 (fine grain, AES, WC)

• Performance at Fermilab confirmed by Cornell, DESY, and JLab.https://arxiv.org/abs/1806.09824

Baking 75/120C

https://arxiv.org/abs/1806.09824


Progress in Nb3Sn-Coating Research
reported at Fermilab 1-day Workshop, May 2019

A. Yamamoto, 190512 30

Courtesy: A. Grasselion, S. Posen



Challenges in SRF Cavity Technology

• Bulk-Nb: 
– High-G and -Q optimization

• Low-T treatment w/ or w/o N-infusion. 

– Large-Grain (LG) directly sliced from ingot
• For possible less contamination and cost-reduction

• Thin-film Coating 
– Nb thin film coating on Cu-base cavity structure

• Important for lower frequency and/or low-beta application. 
• A New approach to realize flatter Q-slope (higher-Q)

• High Impulse Power Magnetron Sputtering (HiPIMS) ,   

instead of 

• DC Magnetron Sputtering (DCMS)

– Nb3Sn / MgB2 film coating on Nb or Cu
• To reach much higher G,  with higher Bc (Bsh)

31A. Yamamoto, 190512



DC Magnetron Sputtered Nb/Cu Films

1.5 GHz Nb/Cu cavities, sputtered with Kr @ 1.7 K (Q0=295/Rs)

• Q = 1x1010 @ 15 MV/m, for thin-film cavities:

• competitive option in several future projects.

• R&D focused on:

• improving the “slope”

10
9

10
10

10
11

0 5 10 15 20 25 30

Q
0
 (

1
.7

 K
)

E
acc

 [MV/m]

Nb bulk 1.3 GHz 

Nb/Cu films

LHC 400MHz @ 2.5 K

30

Hs[mT]45 900 135

NIM A463 (2001) 1-8

Courtesy: S. Calatroni
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• HiPIMS Nb/Cu to be comparable to bulk Nb on quadrupole 
resonator sample at 400, 800 and 1,300 MHz.

• Q-slope seems to be flatter
--> High-Q, resulting  Power Saving,

• Projected performance > 2x better than LHC specifications 

HiPIMS coatings – QPR Sample

DCMS HiPIMS

700 MHz b=0.65 Single 
Cell Cavity profile

HiPIMS

DCMS

Nb-bulk

Nb Thin-film

To be important challenge for < 600 MHz (FCC) 



Outline
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– Advances in Accelerator Technology in Particle Physics
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– Nano-beam, Applied Superconductivity, and RF 
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– Superconducting technology for future Lepton and Hadron Colliders

• Summary 
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Advances in Nb3Sn Magnet Development 

2003: LBNL HD1
(16 T at 4.2 K)

2015:CERN RMC
(16.2 T at 1.9K)

2018: FRESCA2
(100 mm aperture,  14.6/14.95 T bore/peak  at 12.1 kA. 1.9 K)

A. Yamamoto, 190512 34

Courtesy: G. De Rijk, A. Devred
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Main development Target:

• Jc (16T, 4.2K) > 1500 A/mm2

- 50% higher than HL-LHC  

Global cooperation: 
• CERN/KEK/Tohoku/JASTEC/Furukawa

• CERN/Bochvar High-tec. Res. Inst

• CERN/KAT 

• CERN/Bruker

• T.U. Vienna, Geneve U., U. Twente, 

• Florida S.U. - Appl. Superc. Center

• US-DOE-MDP, Fermilab

Nb3Sn Conductor Progress

36

Courtesy, A. Ballarino, X. Xu, T. Ogitsu, D. Schoerling
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 



sin

2 0 wJB 

j
w

Scaled to
1.9 K

• Achieved by a ternary approach:

K. Saito/T. Ogitsu et al. 

(JASTEC/KEK)

 Achieved by APC approach: 

X. Xu et al (Fermilab)

Jop/Jc: 86 % @ 1.9K

Jc Target @ 4.2K

• Artificial Pinning Center (APC) approach reached: Jc (16T, 4.2K)  ~ 1500 A/mm2

• Mas-Production and cost-reduction is yet to come !!

https://arxiv.org/abs/1903.08121
A. Ballriono et al., ASC-2018, DOI 10.1 109/IEEE TASC-2019, 2896469. 

• Another ternary approach w/  Hf rto Nb4Ta in progress: S. Balachandran et al., 
https://arxiv.org/pdf/1811.08867.pdf

https://arxiv.org/abs/1903.08121
https://arxiv.org/pdf/1811.08867.pdf


Mechanical Constrain to consider Operating Margin 

A. Yamamoto, 190512 36

Attention, Ic (Jc) reduction:
• reversible at <150 MPa (~15% at 11.6 T), 

• irreversible at >170 MPa.

as a critical constraint because of fundamental mechanical property.

Courtesy: L. Bottura, A. Devred
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Measurement at Univ. Geneve
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Cos-q

Blocks

Common coils

Canted Cos-q (CCT)

16 T Dipole R&Ds in Europe and US 

38

Cos-q
CCT,

Pioneering  work at LBNL

Courtesy, M. Benedikt, L. Bottura, D. Tommasini, S.  Prestemon

Pioneering work at BNL

A. Yamamoto, 190512

CHART2
Swiss Acc. Research & Technology

Europe

US



US-DOE MDP taking Steps to realize 16 T
• Step 1: (we are here in 2019)  

– Realize 14 T w/ mechanical design for 16 T

– Will be tested soon (2019). 

• Step 2:  
– Realize 15 T w/ pre-stress optimization 

• Step 3:  
– Challenge to realize 16 T,  with SC conductor satisfying 

1,500 A/mm2 and sufficiently controlled  mechanical 
design 
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L1-L2: 28 strands, 1 mm RRP 150/169
L3-L4: 40 strands, 0.7 mm RRP 108/127

A. Yamamoto, 190512

Courtesy: S. Prestemon S. Belomstnykh

MDP Goals:
1. Explore Mb3Sn magnet limit
2. Demonstrate HTS magnet 

(5 T – self fied)
3. Investigate fundamentals 

for performance and cost 
reduction

4. Pursue Nb3Sn and HTS 
conductor R&D

See Appendix
Before test, at Fermilab



HTS, focusing on Bi2212 in the US

40

Courtesy, P. Lee, S. Prestemon

A. Yamamoto, 190512

Bi-2212

Application expected for CCT by using B2212



High-Field Superconductor and Magnets

41

Courtesy, P. Lee, L. Rossi, G. De RIjk

Conductor property
summarized by P. Lee

YBCO

A. Yamamoto, 190512

Eucard2: HTS-insert

to be tested in 2019

3~5 + 13.5 T :  > 16 T 



High-Field Superconductor and Magnet with IBS in China
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Courtesy, P. Lee, Q. Xu

A. Yamamoto, 190512

Y. Mao et al., Supercond. Sci. Technol. 

31 (2018) 015017

Iron Based Superconductor 
(IBS) development in China
toward 12 --> 24 T 

IBS 

IBS

Y. Kamihara et al., 



Some Cost References for High-field Conductors
• An approach for cost consideration:

• Superconductor cost to be 30 % of the total cost for the LHC NbTi dipole magnet assembled. 
• It gives a general guideline for acceptable superconductor cost.
• The currently available HTS cost is still too far, exept for Iron-based-SC (IBS) potential

Courtesy: F. Bordry, L. Bottura,  A. Devred
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* Note: 16-T magnet requires x 2 conductor to that of 14 T.   

≈ 30 ~ 100

Goal for Nb3Sn for FCC or HE-LHC: 
- 3.5 €/kA.m at 16 T and 1.9 K

- Corresponding to 500...600 €/kg, 
- a factor 2.5 ~ 3 lower than the present 

cost 1300 ~ 1500 EUR/kg for HL-LHC (RRP)1                   10 100
€/kA.m

≈ 5 ~ 10

≈ 3 ~ 10

NbTi Magnet Cost

(~ 8 T, 1.9K)



List of further AT Challenges in 
Vacuum, Target, Collimator, and Beam Dump

• Vaccum: 

• Target for future high intensity facilities challenges:
• CERN specific requirements : ~355 kW average power, 2.5 MW pulse power , and 

extraction from SPS without increasing losses.
• In general High cumulated radiation doses and radiation damage on materials

• Collimators
• Absorb large amount of energy deposition without long term damage
• Thermo-mecanical and temperature management with innovative production techniques
• Material with high mechanical resistance to impact and high electrical conductivity

• Dumps: 
• sustain single impact of full beam without compromising the overall material integrity.
• CLIC/ILC requirement: 3~5 MW/beam, DC, in main dump, 

A. Yamamoto, 190505a 45

More in Appendix



Outline
• Introduction 

• Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technologies, focusing on 
• Nano-beam, Superconducting Magnet and RF, and  Normal-conducting RF 

• Challenges for future, focusing on 
• Key technologies and energy management for future Lepton and Hadron Colliders

• Comments on
• Complementarity for Energy-Frontier vs. Intensity-Frontier, and 
• Energy Management

• Summary 

46A. Yamamoto, 190512



Questions given by EPPSU2020 Acc. Session Conveners: 
Lenny Rivkin (PSI) and Caterina Biscari (ALBA) 

A. Yamamoto, 190512 47



Intensity frontier vs. Energy Frontier

A. Yamamoto, 190512 48

Intensity –

Acc.

Energy 

[GeV]

Power 

[MW]

Acc. Tech. 

Feature

SC

Tech.

SPS* 450 Synchrotron

Fnal M. Injector 120 0.7 Synchrotron

J-PARC* 3

30

1

0,49 ~ 1.3

Linac/Synchr

Ext. Beam SCM

PIP-II 60 -120 .2 Linac (SRF)

Synchrotron

SRF

PSI-HIPA* 0.59 1.4 Cycrotron

FAIR  (SIS100) 29 0.2 Synchrotron SCM

(ESS)

ESSnuSB *

2

2

2 ~ 5 (+5)

2 x 5

Linac SRF

CEBAF 12 1 LINAC+Ring SRF

Super-KEKB --- Collider

HL-LHC 2 x 7,000 --- Collider SCM. SRF

EIC* --- Collider SCM, SRF

En
er

gy

Power

Common Issues:
• SC Mag. & SRF technology
• Target, Collimator, Beam Dump
• Radiation
• Energy Management

• Science is complementary, and 
• Technology is based on common technology, 
• Let us work together and maximize synergy !! 

Discussed by V. Shiltsev in Parallel Session

* More in Appendix

Courtesy: N. Saito, S. Belomestnykh, R. Garoby

FCC
CEPC/SPP

C
CLIC
ILC

HL-LHC
Super-
KEKB
EIC

JPARC
PIP-II

PSI
ESS-nuSB



Key Issues in Energy Management 
in both Energy- and Intensity-frontier Accelerators 

A. Yamamoto, 190512 49

Courtesy: Ph. Lebrun, S. Claude

• Energy Saving
• Superconducting technology (partly covered in this talk)

• Magnet --> high field

• RF cavity -> High-G and High-Q 

• System Efficiency Improvement  
• Power system efficiency (to be covered by E. Jensen in Acc. Session)

• RF modulator and Klystron, 

• Two beam acceleration

• Cryogenics system efficiency
• Further optimization depending on the operational temperature (eg; Ne-He refrigerator 

for SR heat removal)

• Efficient beam dynamics (to be covered by V. Shiltsev)
• Low-emittance/nano-beam,

• Novel, further efficient accelerator scheme (to be covered by V. Shiltsev)

• Dynamic Energy Balance
• Important issue:  not power (W) efficiency, but energy (W-hour) efficiency 

• Accelerator operation in best harmonized condition in season/day/time. 

• Energy re-use/recycling more communicated with surrounding 
community/industry 

More in Appendix



Outline
• Introduction 

• Advances in Accelerator Technology in Particle Physics

• State of the Art in Accelerator Technology, focusing on 
• Nano-beam, Applied Superconductivity, and RF 

• Challenges for future, focusing on 
• Superconducting technology for future Lepton and/or Hadron Colliders

• Comments on
• Complementarity of Energy-Frontier and Intensity-Frontier, and Energy Management

• Summary

50A. Yamamoto, 190512



Summary: State of the Art – RF and SC Magnet
NRF, and SRF:
• NRF ( ~ 12 GHz, 20 cm unit): (CLIC R&D: 12 GHz): 70 ~ 100 MV/m 

• SRF (1.3 GHz, 9-cell cavity):  (Eu-XFEL) :  30 MV/m,  

• SRF (Crab cavity); Experienced at KEK-B, an at CERN-SPS

SC Magnet:
• NbTi:  LHC (Main Dipole)

– B bore = ~ 8 T at 1.9 K . Re-training aft. thermal cycling (TC) still a 
major issue

• Nb3Sn: HL-LHC (11 T Dipole)
– B bore = ~ 11 T at 1.9 K. Good memory  after TC, but more 

statistic needed

Note: Loadline-ratio, however, should be  conservative 

51A. Yamamoto, 190512

NbTi

Nb3Sn  



Summary:  Challenges - SRF and SC Magnet

• Superconducting RF: 
• Nb-bulk (for > 1 GHz)  

• High-Q   (> 3E10) and High-G (> 45 MV/m) , w/Low-T treatment w/ or w/o N-infusion. 

• Large-Grain SRF cavity for cleaner condition with cost-reduction, 

• Thin-Film (for wider applications) 
• Thin-film on Nb to improve effective Bsh, resulting higher gradient, and further Potential

• New material such as NB3Sn/MgB2 to drastically improve performance. 

• Superconducting Magnet:
• Nb3Sn requires much longer steps to reach 16 T, for improvement of SC 

current density, mechanical property, field quality control, training quenches, 
magnet protection, and industrialization. 

• “Nb3Sn + HTS-insert” be inevitably required, beyond 16 T, and cost effective 
HTS will be essentially required for practical accelerator applications. 

52A. Yamamoto, 190512



General Summary: Personal Prospect (1/2)

• RF Accelerator Technologies are ready to go forward for lepton colliders 
(ILC, CLIC, FCC-ee, CEPC), focusing on the Higgs Factory construction to 
begin in > ~5  years.  

• SRF accelerating technology is well matured for the realization including 
cooperation with industry.  

• Continuing R&D effort for higher performance is very important for future 
project upgrades. 

53A. Yamamoto, 190512



Personal Prospect (2/2)
• Nb3Sn superconducting magnet technology for hadron colliders, still requires step-by-

step development to reach 14, 15, and 16 T.   

• It would require the following time-line (in my personal view):

– Nb3Sn, 12~14 T, 5~10 years for short-model R&D, and  the following  5~10 years for 

prototype/pre-series with industry. It will result in 10 – 20 yrs for the construction to start, 

– Nb3Sn, 14~16 T: 10-15 years for short-model  R&D, and the following 10 ~ 15 years for 

protype/pre-series with industry.  It will result in 20 – 30 yrs for the construction to start, 

(consistently to the FCC-integral time line). 

– NbTi , 8~9 T:  proven by LHC and Nb3Sn, 10 ~ 11 T  being demonstrated. It may be feasible  for the 

construction to begin in > ~ 5 years.

• Continuing R&D effort for high-field magnet, present to future, should be critically 

important, to realize highest energy frontier hadron accelerators in future. 
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Personal View on Relative Timelines

Timeline ~ 5 ~ 10 ~ 15 ~ 20 ~ 25 ~ 30 ~ 35

Lepton Colliders

SRF-LC/CC
Proto/pre-

series
Construction Operation Upgrade

NRF—LC Proto/pre-series Construction Operation Upgrade

Hadron Collier (CC)

8~(11)T 
NbTi /(Nb3Sn)

Proto/pre-

series
Construction Operation Upgrade

12~14T
Nb3Sn

Short-model R&D Proto/Pre-series Construction Operation

14~16T

Nb3Sn
Short-model R&D Prototype/Pre-series Construction

55A. Yamamoto, 190512

Note: LHC magnet R&D, NbTi for 10 T at 1.9 K, started in 1980’s and the production  started in  late 1990’s, in ~ 15 years 



Appendix

•
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Personal Prospect (2/3)

• Energy- and Intensity-frontier need to work together on energy management 

including energy-efficiency improvement, energy-saving, energy-recycling, in 

wider networks with surrounding communities. 
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Goal 1: Establish the FF method with same 
optics and comparable beamline 
tolerances

 ATF2 Goal : 37 nm  7.7nm@ILC250GeV 

 Achieved 41 nm (2016)

Progress in FF Beam Size and Stability at ATF2 

59

Goal 2: Develop nm position stabilization at FF:

 FB latency 133 ns achieved   (target: < 300 ns) 

 positon jitter at IP: 410  67 nm (2015) (limited by 
the BPM resolution)

Nano-meter 
stabilization at FF

History of ATF2 small beam 

A. Yamamoto, 190512



Progress in Normal Conducting RF Acc. Structure

60

• Achieved 100 MV/m gradient in main-beam RF cavities

Curtesy: S. Stapnes, P. Barlow, W. Wuensch

A. Yamamoto, 190512 100 MV/m



NRF Technology for CLIC-380 and beyond 

61

• Linear e+e- collider, staged √s = 0.38 TeV

• 70 MV/m accelerating gradient needed for compact 
(~11 km ) machine based on :

- normal-conducting accelerating structures 
- two-beam acceleration scheme

• Issue remaining:
• Power efficiency at higher energies

• Large scale production experience for Acc. Structures

• System-level alignment and stabilization 

A. Yamamoto, 190512

Curtesy: S. Stapnes, P. Barlow, W. Wuensch



Better Cavity Shapes to Beat the Limit: 
Lower Hpk even if you have to raise Epk

A. Yamamoto, 190512

Shape TTF LL/Ichiro RE LSF

D-iris [mm] 70 60 60 60

Ep/Eacc 1.98 2.36 2.28 1.98

Hp/Eacc
[Oe/MV/m]

41.5 36.1 35.4 37.1

G*R/Q [W2] 30840 37970 41208 36995

Eacc-max 
[MV/m]

42.0 48.5 49.4 47.2

62A. Yamamoto, 17/05/15c



New potential breakthrough: very high Q at very high 

gradients with low temperature (120C) nitrogen treatment

4/12/16Alexander Romanenko | FCC Week 2016 - Rome34

- Record Q at 
fields > 30 
MV/m 

- Preliminary 
data indicates 
potential 15% 
boost in 
achievable 
quench fields

- Can be game 
changer for ILC!

Achievements at Fermilab: 
G-max = 45.6 MV/m 194 mT

Q (at 35 MV/m) : ~ 2.3e10

Improvements:
G :  ~ 15 % 
Q :  x 2  Cryogenics saving

Courtesy, A. Grassellino

• The recipe discovered and demonstrated at Fermilab (by A. Grassellino et al. ). 
• Global collaboration extends the R&D and demonstrate the statistics.
• US-DOE and JP-MEXT  support the cost-reduction R&D based on the N-infusion technology.   
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arXiv:1701.06077

“N infusion” during 120C bake, improving both G and Q 

A. Yamamoto, 190512

https://arxiv.org/abs/1701.06077


Possible Consideration and Models

• 120C bake is known to manipulate 
mean free path at very near surface 
(~nm) on clean bulk Nb.  

• The Nitrogen (N) infusion is a variation 
of the 120 C bake where N dopes the 
near surface w/o working lossy nitrides.

• A dirty (doped) layer at the surface 
seems beneficial in order to increase 
the quench field above Bc1. 
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Courtesy, R. Laxdal, T. Kubo  

λ1 (> λ2) λ2

Slope corresponds to 
the current density. 

• C.Z. Antoine, et al. APL 102, 102603 (2013).

• T. Kubo et al, Appl. Phys. Lett. 104, 032603 (2014).   

• A. Gurevich, AIP Advances 5, 017112 (2015).

• T. Kubo, Supercond. Sci. Technol. 30, 023001 (2017) .. 

(Figure above)A. Yamamoto, 190512

Surface current is suppressed:
- means an enhancement of  the field limit, 

because of the theoretical field limit to be 
determined by the current density.
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Courtesy: S. Cteroni
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Courtesy: S. Cteroni



• Nb3Sn is one of the major cost & performance factors for FCC-hh
• Highest attention is given

Main development goals:

• Jc (16T, 4.2K) > 1500 A/mm2

- 50% higher than HL-LHC  

Global cooperation: 
• CERN/KEK/Tohoku/JASTEC/Furukawa

• CERN/Bochvar High-tec. Res. Inst

• CERN/KAT 

• CERN/Bruker

• T.U. Vienna, Geneve U., U. Twente, 

• Florida S.U. - Appl. Superc. Center

• New US-DOE-MDP

Nb3Sn conductor program

67

Courtesy, A. Ballarino, A. Devred, T. Ogitsu

A. Yamamoto, 190512

Artificial Pinning Center 

(APC) approach:

X. Xu et al (Fermilab)

Requirement
(FCC)

Ternary add. Approach:
K. Saito et al. (JASTEC/KEK)

Non-Cu

Jc : 1,137 A/mm2@16T

Non-Cu 

Jc : ~ 1,450 A/mm2@16T

 



sin

2 0 wJB 

j
w

Figures to be updated 

https://arxiv.org/abs/1903.08121

https://arxiv.org/abs/1903.08121
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Courtesy: S. Prestemon
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Courtesy: S. Prestemon
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Courtesy: S. Prestemon



MDP: SC Magnet R&D at Fermilab: 15 T Dipole 

• The 15 T dipole demonstrator magnet assembly is finished

• The dipole is in being prepared for the first test expected to start in a week

A. Yamamoto, 190512 71

Courtesy: S. Belomstnykh
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Courtesy: S. Prestemon



FRESCA2 + HTS-Insert

A. Yamamoto, 190512 73

Courtesy: G. de Rick
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Courtesy: G. de Rick



Technical Challenge: Vacuum
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Courtesy: F. Bordry



Beam Dump and Collimators for FCC-hh– a first insight

A. Yamamoto, 190512 76

Courtesy: S. Gilardoni



Collimator:   Future Proposal
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Courtesy: S. Gilardoni



Technical Challenges: Radiation Hardness

Courtesy: F. Bordry
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Courtesy: N. Saito



Intensity Frontier Accelerators

A. Yamamoto, 190512 80

Courtesy: N. Saito
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ESSnuSB: An Intensity-frontier ACC. for PP in future 
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Courtesy: R. Garoby



Energy Efficiency and Management in Accelerators 
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Energy Efficiency and Management in Accelerators 
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Energy Efficiency and Management in Accelerators 
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Energy Management
to be discussed by E. Jensen (Acc. Session)

A reference: Outlook – Strategies  pointed out by Ph. Lubrun (EUCARD2 study) 

A. Yamamoto, 190512 87

Courtesy: Ph. Lebrun, V. Shiltsev


