TISD possibilities in LS2 vs INTC requests Sebastian ROTHE EN-STI-RBS ### ISOLDE Target and Ion Source Development team 2018 David Leimbach Ferran Boix Pamies Joao Pedro Ramos Thierry Stora Jochen Ballof Yisel Martinez Sebastian Rothe ### ISOLDE Target and Ion Source Development team LS2 David Leimbach Thierry Stora Jochen Ballof Sebastian Rothe + 30% of R.Heinke, VISC from ~2020 ## 60Zn | | xp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |---|------------|---------|---------------|---------------|------------|----------------|------------------|--| | F | P448 | 60Zn | ZrO2/Y
2O3 | RILIS | Miniball | 2.1e5
pps | 4.20E+04 | Physics case interesting. However INTC recommended TISD as isobaric contaminants could hinder physics. | - Y2O3 nano: derogation process successful, possible to produce again - Matches well with Zn case | 23/05/2016 12:55 | DAY ISO HRS | | isoop@CWO-197-REX | |----------------------------------|---|-----------------|-------------------| | on mass 60, there is mostly 60Cu | , but also some 60Zn. Finished on mass 60, cycling to 71Se16O | ZrO target #551 | | | | | | | ### 146Ce / 148Ce | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|-----------------|--------|---------------|------------|----------------|------------------|---| | LOI169 | 146Ce;
148Ce | UC/ThC | VD5 | Miniball | TISD | TISD | Molecular beam. Flourination of beam. Currently low on Miniball priorities but still of interest. | Fluorides (or oxides) 146Ce19F 1.9 E7 146Ba19F 2.3 E4 (under estimated) 146La19F 6.2 E6 (tbc.) 148Ce19F 1.3 E6 148Ba19F 4.7 E3 (under estimated) 148La19F 1.1 E4 (under estimated) Further tests at REX ? ## 77-83Ge | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|---------|----------------------|-----------------|------------|----------------|------------------|--| | LOI170 | 77-83Ge | UC +
34S;
ThO2 | VD5 or
RILIS | COLLAPS | TISD | TISD | Request for exploration of production of neutron rich Ge isotopes. Neutron deficient ran in 2018. Control of molecular beams still difficult | - Sulphide molecular beams in development (J.Ballof, FELL) - Molecular breakup to be studied (TISD+RBS) - Laser scheme exists ## 17-26F | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|---------|--------|---------------|------------|----------------|------------------|--| | LOI171 | 17-26F | SiC? | MK4? | CRIS | TISD | TISD | Request for neutron rich F isotopes (perhaps negative) for CRIS. | - Kenis ion source being reconstructed / investigated (D.Leimbach, DOCT) - SiC nanofibers collaboration w/ TRIUMF ## 211Po; 212Po; 219Po; 220Po | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|-------------------------------------|--------|---------------|------------|--------------------|------------------|---| | IS456 | 211Po;
212Po;
219Po;
220Po | UC | LIST
(new) | Windmill | 2e4;2e4;
3e1;10 | | Long standing request for these Po isotopes. RILIS + quartz line or modfified LIST. | - Goal: After LS2, LIST shall be standard ion source and available at GPS and HRS - R.Heinke (KU Leuven, VISC) hired to work on MELISSA / LIST integration and Development ## 98Zr | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|---------|--------|---------------|------------|----------------|------------------|---| | LOI179 | 98Zr | Ucx | Surface | Miniball | TISD | TISD | Request for measurement of characteristics of this beam (via decay of 98Rb, 98Sr or 98Y). | - Technique should be studied and established - COMPLIS? ## 80Zr | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|---------|--------|---------------|------------|----------------|------------------|---| | LOI207 | 80Zr | TBD | VD5 | Miniball | TISD | TISD | Highly refractive 80Zr isotopes requested. "similar to Hf development" i.e. via flourination. | - Tricky - JPR working on concept ### 229Pa and 228Th | Exp/
LOI | Isotope | Target | lon
source | Experiment | Yield (target) | Yield
(setup) | Status/comment | |-------------|--------------|--------|---------------|--------------|----------------|------------------|---| | LOI173 | 228X
229X | UC/ThC | Surface | Test then MB | TISD | TISD | Beam composition of Mass = 228 and 229. | - Fits well to LISA Network - 2 DOCT students working on actinide beams at ISOLDE from ~2020 - Pa and Th laser schemes exist - Molecular beams + breakup to be investigated ## 70,72Se - IS597 - Se(CO)x molecular beams or laser ionized - Molecular route followed by J.Ballof (FELL) - Requires improved infrastructure # Developments towards the delivery of selenium ion beams at ISOLDE K. Chrysalidis^{1,2a}, J. Ballof^{1,3b}, Ch.E. Düllmann^{3,4,5}, V.N. Fedosseev¹, C. Granados¹, B.A. Marsh¹, Y. Martinez Palenzuela^{1,6}, J.P. Ramos¹, S. Rothe¹, T. Stora¹, and K. Wendt² - CERN, 1211 Geneva, Switzerland - Institut f ür Physik, Johannes Gutenberg-Universit ät, 55099 Mainz, Germany - ³ Institiut f ür Kernchemie, Johannes Gutenberg-Universit ät, 55099 Mainz, Germany - 4 Helmholtz-Institut Mainz, 55099 Mainz, Germany - ⁵ GSI Helmholtzzentrum f ür Schwerionenforschung, 64291, Darmstadt, Germany - KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium Submitted, in review ## 8B, RaF, BaF etc. - Fluorination generally works well - Moving from SF6 to CF4 improves stability - Other reactive gases under investigation (J.Ballof, FELL) - Irradiation at MEDICIS point, then careful fluorination + extraction worked well for RaF at CRIS # Studying molecular beam formation Concept for a dedicated development unit for molecular beams J.Ballof #### Study chemical reactions - Injection of gases and vapor of solid samples into reaction volume - Suppression by quartz and other materials #### **Parameters** - 2 gases, controllable flow rates - 2 mass markers - Controllable temperatures in reaction volume and chromatography column - Materials for chromatography and - Materials in reaction volume (target matrix) Faraday Cup **RGA** ## Studying molecular beam formation Concept for a dedicated development unit for molecular beams # Studying molecular beam formation Concept for a dedicated development unit for molecular beams - Add Multi Reflection Time of Flight (MR-ToF) mass spectrometer: allows ISOBAR separation. - Collaboration with MIRACLS experiment launched Example TOF spectrum on mass 46 Sc ### THE ISOLDE Yield station - To be used to establish yields at beginning and at end of experiment - P.scan - Target and ion source optimization T.Giles, S.Warren #### Proposal: install spare at GLM - Used for beam development - Can be used in p.sharing mode with minimal impact to ISOLDE physics - Opportunistic development, in-source laser spectroscopy - Upgrade (LS3...): integrate MT-ToF-MS ## Molecular tin beams: 132Sn34S Comparing gamma spectra of ¹³²Sn and ¹³²Sn³⁴S ## Mass marker design for 34-Sulphur as reactant #### Observed problem: - Yield drops over time as S continues to evaporate from conventional oven - -> Uncontrolled release. #### New design: - Sulphur reservoir placed in water cooled base plate. - No line of sight with hot surfaces. - Ohmic heating through Ta wire heats BN chamber - -> Controlled release. - Tested at ISOLDE - Design now further tested at SPES ## Sulphur mass marker on-line 08/09/2018 16:30 DAY ISO HRS Significant increase in total current after heating up Oven2 from 5 to 6.5 A. /JAR/Miniball - Reacts at relatively low currents - Heater can be optimized to allow finer steps ## SnS beams next steps Further testing of SnS extraction planned at ALTO #### LoI for Radioactive online yield and release measurements of SnS T. Stora, S. Rothe, J-P. Ramos, J. Ballof CERN, CH-1211 Genève 23, Switzerland M. Cheikh-Mhamed, D. Verney, B. Roussière Institut de Physique Nucléaire d'Orsay, F-91406 Orsay, France A. Andrighetto, M. Manzolaro Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy P. Delahaye GANIL, Caen, France # **Target Materials** started in progress started in progress started in progress done | What | Why | How | Where | Who | |--|---|--|-----------------------------|----------------------| | Ensure non-actinide nano material production | faster release/higher yields | Derogation / Collaboration / Initiate non-actinide nano lab at CERN | Offline chemical lab /?/? | JPR | | Optimize target heating | Reproducibility Uniformity of temperature | Collaboration w. SPES | Offline
Pump stand | DOCT1 / FELL1 | | Investigate UCx sintering | Optimize Release | Sequential thermal
treatment +
characterization / on-
line sintering at
synchrotron beam
line | Class A + MME labs
/ tbd | JPR,srr | | Investigate Material
Pre-treatment | Avoid contamination | Chemical reactions (etching etc) | Chemical lab
Offline | Srr, Collaborations? | | Study Molecular beam chemistry | Volatilization and/or Purification | Develop dedicated setup | Offline /ext. | JB
Collaborations | | Optimize UCx production | Reproducibility | More observables during production | Class A | srr | | Investigate ThCx | Higher yields in specific regions | FLUKA, reactivating procedures | Class A | BC,JPR | # **Target Materials** done in progress To do | What | Why | How | Where | Who | |-------------------------|--|--|------------------|---------------------------| | Neutron converter (s) | High Purity
High Production | Design iteration | ISOLDE | JPR, coll. With TRIUMF | | Mass marker development | More control,
Avoid cold spots | Simulation, Iterative testing | Pump stand + RGA | DL, FELL
Collaboration | | Autopsy of used targets | Learn from failure, improve future designs | List of priorities,
Open targets in hot
cell | ISOLDE Hot cell | PGH | ## Ion sources in progress in progress started done To do in progress | What | Why | How | Where | Who | |---------------------------|--|--|-------------------|-----------------| | VADLIS 2.0 | Improve RILIS mode
Validate reliability | Simulations Design iterations Testing | Offline | DL, ISBM | | COLD VD7 | CO beams, fragile molecules | review design (from PS), construct, test | Offline | DOCT2, FELL2 | | Ion source simulation | Starting point for optimization | VSIM
Collaboration | in silico | DL, FELL
SCK | | TOFLIS | Beam purity | High ohmic cavity Drift region Fast beam gating Integrate LIST | Offline
ISOLDE | SW, Fell1, ISBM | | 2 Photon laser ionization | Resolution for in source spectroscopy isomer selectivity Accessibility to other elements | Mirror in ion source
PI-LIST | offline | KC, RH | | Negative ion source | Yield, purity
Rectify design | Simulation, testing. Develop new low work-function materials | offline | DL, FELL | ### Ion sources in progress Dedicated session in next GUI ## Infrastructure started started started started in progress | What | Why | How | Where | Who | |---------------------------------------|---|--|---------------------------------|--------------------------| | Improve VADIS gas distribution system | Measure pressure
Ensure purity | Add gas loop, recirculation pump & filters | OFFLINE, then ISOLDE | JB, FELL | | Upgrade beam gate switches | No spares.
No high frequency
possible | Test fast BG during
2018 at GPS
Specify product with
manufacturer | OFFLINE,
ISOLDE | SW, srr
ISBM | | Build second pump stand | Dedicated ion source
test stand
Lifetime tests +
integrated yield
measurements | Copy of existing Pump stand | LARIS, then OFFLINE | DL, BC | | Intensify use of RGA | Monitor Target and ion source behavior already during heating process | Survey, then purchase . | Offline, Pumpstands,
Class A | Srr, LV support | | Improving YIELD database | Link to target documentation Add yield prediction Add user interface Add interface to CRIBE | Test during 2018, collect feature requests | CERN | JB, FELL2, srr,
Users | ## Infrastructure started started in progress in progress in progress To do | What | Why | How | Where | Who | |---|--|--|----------------------|--| | Improve target documentation | Spread of information -> Single entry document required. Track target location, link to control system | EDMS, infor,
Link databases | ISOLDE | srr, BE-OP, Target
production, RP, Users,
LV support | | Upgrade Isolde
Timing System | Not very user friendly | Review specification | ISOLDE | TG | | Lasers at OFFLINE 2 and MEDICIS | RILIS is most efficient and selective ion source. | Install full laser systems | Offline 2
Medicis | RILIS, KU
LEUVEN/PROMED,
Umz, | | RILIS control system upgrade | Current system not easy to maintain by LV support | Employ (shared) PJAS Refactoring of RILIS control software | RILIS | BM, PJAS @ LV support | | Development of unified controls system for Offline machines | Synergies, Still features missing Improve stability More automation | Employ (shared) PJAS Dedicated development time at offline machines. | OFFLINE | srr, PJAS@LV Support | | Improve target health monitoring | Enable preventive actions | Link production rates from experiments permanent yield checks set up display for target health | OFFLINE,
ISOLDE | srr, Users, BE-OP, LV support |