TISD possibilities in LS2 vs INTC requests

Sebastian ROTHE EN-STI-RBS

ISOLDE Target and Ion Source Development team 2018

David Leimbach Ferran Boix Pamies Joao Pedro Ramos

Thierry Stora Jochen Ballof Yisel Martinez Sebastian Rothe

ISOLDE Target and Ion Source Development team LS2

David Leimbach
Thierry Stora

Jochen Ballof

Sebastian Rothe

+ 30% of R.Heinke, VISC from ~2020

60Zn

	xp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
F	P448	60Zn	ZrO2/Y 2O3	RILIS	Miniball	2.1e5 pps	4.20E+04	Physics case interesting. However INTC recommended TISD as isobaric contaminants could hinder physics.

- Y2O3 nano: derogation process successful, possible to produce again
- Matches well with Zn case

23/05/2016 12:55	DAY ISO HRS		isoop@CWO-197-REX
on mass 60, there is mostly 60Cu	, but also some 60Zn. Finished on mass 60, cycling to 71Se16O	ZrO target #551	

146Ce / 148Ce

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
LOI169	146Ce; 148Ce	UC/ThC	VD5	Miniball	TISD	TISD	Molecular beam. Flourination of beam. Currently low on Miniball priorities but still of interest.

Fluorides (or oxides)

146Ce19F 1.9 E7 146Ba19F 2.3 E4 (under estimated) 146La19F 6.2 E6 (tbc.)

148Ce19F 1.3 E6 148Ba19F 4.7 E3 (under estimated) 148La19F 1.1 E4 (under estimated)

Further tests at REX ?

77-83Ge

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
LOI170	77-83Ge	UC + 34S; ThO2	VD5 or RILIS	COLLAPS	TISD	TISD	Request for exploration of production of neutron rich Ge isotopes. Neutron deficient ran in 2018. Control of molecular beams still difficult

- Sulphide molecular beams in development (J.Ballof, FELL)
- Molecular breakup to be studied (TISD+RBS)
- Laser scheme exists

17-26F

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
LOI171	17-26F	SiC?	MK4?	CRIS	TISD	TISD	Request for neutron rich F isotopes (perhaps negative) for CRIS.

- Kenis ion source being reconstructed / investigated (D.Leimbach, DOCT)
- SiC nanofibers collaboration w/ TRIUMF

211Po; 212Po; 219Po; 220Po

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
IS456	211Po; 212Po; 219Po; 220Po	UC	LIST (new)	Windmill	2e4;2e4; 3e1;10		Long standing request for these Po isotopes. RILIS + quartz line or modfified LIST.

- Goal: After LS2, LIST shall be standard ion source and available at GPS and HRS
- R.Heinke (KU Leuven, VISC) hired to work on MELISSA / LIST integration and Development

98Zr

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
LOI179	98Zr	Ucx	Surface	Miniball	TISD	TISD	Request for measurement of characteristics of this beam (via decay of 98Rb, 98Sr or 98Y).

- Technique should be studied and established
- COMPLIS?

80Zr

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
LOI207	80Zr	TBD	VD5	Miniball	TISD	TISD	Highly refractive 80Zr isotopes requested. "similar to Hf development" i.e. via flourination.

- Tricky
- JPR working on concept

229Pa and 228Th

Exp/ LOI	Isotope	Target	lon source	Experiment	Yield (target)	Yield (setup)	Status/comment
LOI173	228X 229X	UC/ThC	Surface	Test then MB	TISD	TISD	Beam composition of Mass = 228 and 229.

- Fits well to LISA Network
- 2 DOCT students working on actinide beams at ISOLDE from ~2020
- Pa and Th laser schemes exist
- Molecular beams + breakup to be investigated

70,72Se

- IS597
- Se(CO)x molecular beams or laser ionized
- Molecular route followed by J.Ballof (FELL)
- Requires improved infrastructure

Developments towards the delivery of selenium ion beams at ISOLDE

K. Chrysalidis^{1,2a}, J. Ballof^{1,3b}, Ch.E. Düllmann^{3,4,5}, V.N. Fedosseev¹, C. Granados¹, B.A. Marsh¹, Y. Martinez Palenzuela^{1,6}, J.P. Ramos¹, S. Rothe¹, T. Stora¹, and K. Wendt²

- CERN, 1211 Geneva, Switzerland
- Institut f
 ür Physik, Johannes Gutenberg-Universit
 ät, 55099 Mainz, Germany
- ³ Institiut f
 ür Kernchemie, Johannes Gutenberg-Universit
 ät, 55099 Mainz, Germany
- 4 Helmholtz-Institut Mainz, 55099 Mainz, Germany
- ⁵ GSI Helmholtzzentrum f
 ür Schwerionenforschung, 64291, Darmstadt, Germany
- KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

Submitted, in review

8B, RaF, BaF etc.

- Fluorination generally works well
- Moving from SF6 to CF4 improves stability
- Other reactive gases under investigation (J.Ballof, FELL)
- Irradiation at MEDICIS point, then careful fluorination + extraction worked well for RaF at CRIS

Studying molecular beam formation

Concept for a dedicated development unit for molecular beams

J.Ballof

Study chemical reactions

- Injection of gases and vapor of solid samples into reaction volume
- Suppression by quartz and other materials

Parameters

- 2 gases, controllable flow rates
- 2 mass markers
- Controllable temperatures in reaction volume and chromatography column
- Materials for chromatography and
- Materials in reaction volume (target matrix)

Faraday

Cup

RGA

Studying molecular beam formation

Concept for a dedicated development unit for molecular beams

Studying molecular beam formation

Concept for a dedicated development unit for molecular beams

- Add Multi Reflection Time of Flight (MR-ToF) mass spectrometer: allows ISOBAR separation.
- Collaboration with MIRACLS experiment launched

Example TOF spectrum on mass 46

Sc

THE ISOLDE Yield station

- To be used to establish yields at beginning and at end of experiment
- P.scan
- Target and ion source optimization
 T.Giles, S.Warren

Proposal: install spare at GLM

- Used for beam development
- Can be used in p.sharing mode with minimal impact to ISOLDE physics
- Opportunistic development, in-source laser spectroscopy
- Upgrade (LS3...): integrate MT-ToF-MS

Molecular tin beams: 132Sn34S

 Comparing gamma spectra of ¹³²Sn and ¹³²Sn³⁴S

Mass marker design for 34-Sulphur as reactant

Observed problem:

- Yield drops over time as S continues to evaporate from conventional oven
- -> Uncontrolled release.

New design:

- Sulphur reservoir placed in water cooled base plate.
- No line of sight with hot surfaces.
- Ohmic heating through Ta wire heats BN chamber
- -> Controlled release.
- Tested at ISOLDE
- Design now further tested at SPES

Sulphur mass marker on-line

08/09/2018 16:30

DAY ISO HRS

Significant increase in total current after heating up Oven2 from 5 to 6.5 A.

/JAR/Miniball

- Reacts at relatively low currents
- Heater can be optimized to allow finer steps

SnS beams next steps

 Further testing of SnS extraction planned at ALTO

LoI for Radioactive online yield and release measurements of SnS

T. Stora, S. Rothe, J-P. Ramos, J. Ballof

CERN, CH-1211 Genève 23, Switzerland

M. Cheikh-Mhamed, D. Verney, B. Roussière

Institut de Physique Nucléaire d'Orsay, F-91406 Orsay, France

A. Andrighetto, M. Manzolaro

Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy

P. Delahaye

GANIL, Caen, France

Target Materials

started

in progress

started

in progress

started

in progress

done

What	Why	How	Where	Who
Ensure non-actinide nano material production	faster release/higher yields	Derogation / Collaboration / Initiate non-actinide nano lab at CERN	Offline chemical lab /?/?	JPR
Optimize target heating	Reproducibility Uniformity of temperature	Collaboration w. SPES	Offline Pump stand	DOCT1 / FELL1
Investigate UCx sintering	Optimize Release	Sequential thermal treatment + characterization / on- line sintering at synchrotron beam line	Class A + MME labs / tbd	JPR,srr
Investigate Material Pre-treatment	Avoid contamination	Chemical reactions (etching etc)	Chemical lab Offline	Srr, Collaborations?
Study Molecular beam chemistry	Volatilization and/or Purification	Develop dedicated setup	Offline /ext.	JB Collaborations
Optimize UCx production	Reproducibility	More observables during production	Class A	srr
Investigate ThCx	Higher yields in specific regions	FLUKA, reactivating procedures	Class A	BC,JPR

Target Materials

done

in progress

To do

What	Why	How	Where	Who
Neutron converter (s)	High Purity High Production	Design iteration	ISOLDE	JPR, coll. With TRIUMF
Mass marker development	More control, Avoid cold spots	Simulation, Iterative testing	Pump stand + RGA	DL, FELL Collaboration
Autopsy of used targets	Learn from failure, improve future designs	List of priorities, Open targets in hot cell	ISOLDE Hot cell	PGH

Ion sources

in progress

in progress

started

done

To do

in progress

What	Why	How	Where	Who
VADLIS 2.0	Improve RILIS mode Validate reliability	Simulations Design iterations Testing	Offline	DL, ISBM
COLD VD7	CO beams, fragile molecules	review design (from PS), construct, test	Offline	DOCT2, FELL2
Ion source simulation	Starting point for optimization	VSIM Collaboration	in silico	DL, FELL SCK
TOFLIS	Beam purity	High ohmic cavity Drift region Fast beam gating Integrate LIST	Offline ISOLDE	SW, Fell1, ISBM
2 Photon laser ionization	Resolution for in source spectroscopy isomer selectivity Accessibility to other elements	Mirror in ion source PI-LIST	offline	KC, RH
Negative ion source	Yield, purity Rectify design	Simulation, testing. Develop new low work-function materials	offline	DL, FELL

Ion sources

in progress

Dedicated session in next GUI

Infrastructure

started

started

started

started

in progress

What	Why	How	Where	Who
Improve VADIS gas distribution system	Measure pressure Ensure purity	Add gas loop, recirculation pump & filters	OFFLINE, then ISOLDE	JB, FELL
Upgrade beam gate switches	No spares. No high frequency possible	Test fast BG during 2018 at GPS Specify product with manufacturer	OFFLINE, ISOLDE	SW, srr ISBM
Build second pump stand	Dedicated ion source test stand Lifetime tests + integrated yield measurements	Copy of existing Pump stand	LARIS, then OFFLINE	DL, BC
Intensify use of RGA	Monitor Target and ion source behavior already during heating process	Survey, then purchase .	Offline, Pumpstands, Class A	Srr, LV support
Improving YIELD database	Link to target documentation Add yield prediction Add user interface Add interface to CRIBE	Test during 2018, collect feature requests	CERN	JB, FELL2, srr, Users

Infrastructure

started

started

in progress

in progress

in progress

To do

What	Why	How	Where	Who
Improve target documentation	Spread of information -> Single entry document required. Track target location, link to control system	EDMS, infor, Link databases	ISOLDE	srr, BE-OP, Target production, RP, Users, LV support
Upgrade Isolde Timing System	Not very user friendly	Review specification	ISOLDE	TG
Lasers at OFFLINE 2 and MEDICIS	RILIS is most efficient and selective ion source.	Install full laser systems	Offline 2 Medicis	RILIS, KU LEUVEN/PROMED, Umz,
RILIS control system upgrade	Current system not easy to maintain by LV support	Employ (shared) PJAS Refactoring of RILIS control software	RILIS	BM, PJAS @ LV support
Development of unified controls system for Offline machines	Synergies, Still features missing Improve stability More automation	Employ (shared) PJAS Dedicated development time at offline machines.	OFFLINE	srr, PJAS@LV Support
Improve target health monitoring	Enable preventive actions	Link production rates from experiments permanent yield checks set up display for target health	OFFLINE, ISOLDE	srr, Users, BE-OP, LV support

