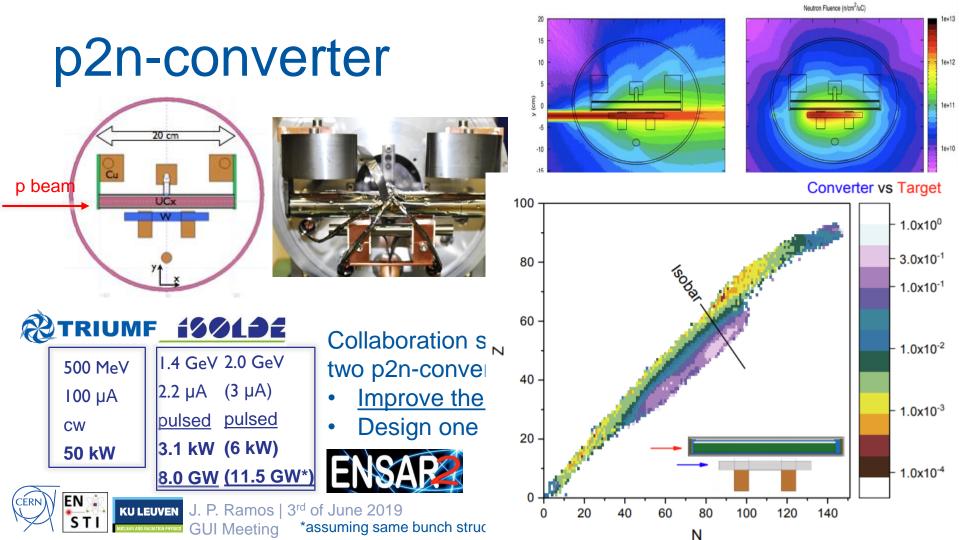


Target group: J.P. Ramos, S. Rothe, D. Leimbach, J. Ballof, F. B. Pamies, T. Stora, E. Barbero, B. Crepieux
Beam manipulation: T. Giles, S. Warren
RILIS: B. Marsh, K. Chrysalidis, S. Wilkins, C. Granados
ISOLTRAP: M. Mongeot, J. Karthein
SCK-CEN: D. Houngbo, L. Popescu, M. Dierckx
TRIUMF: L. Egoriti, A. Gottberg
ISOLDE: G. Neyens, K. Johnston, R. Catherall, A. Dorsival, A.P. Bernardes

GUI Meeting

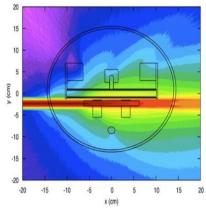
3rd of June 2019


Results from tests with the new p2n converter

Simulations and concepts

Offline developments

Online run



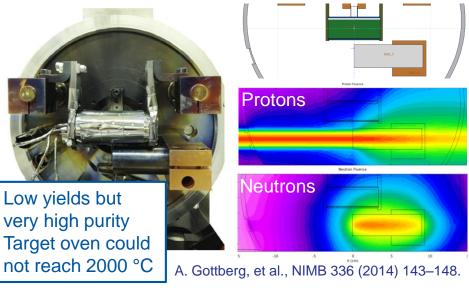
Concept history

Problem: scattered protons

isotope intensity loss (70-80%)

Main ideas:

- Thick converter reduce "proton cone"
- Short target and shifted (annular) – avoid the proton scattering zone



R. Luis, et al., , et al., EPJA 48 (2012) 90

VID Covert Covert

Simple prototype was designed and tested

Converter optimization has two directions:

- Avoid as much as possible the scattered protons for <u>low proton flux</u>
- Have the converter as close as possible to the 2000 °C target for <u>high neutron flux</u>

Project management

Converter is very relevant:

- 53 INTC documents where p2nconverter is mentioned (up to March 2018)
- 10/83 INTC documents for 2016/2017 where p2n-converter is requested

Project board:

Person	Affiliation	Role		
R. Catherall	CERN (EN/STI)	Chairperson/funding/expertise		
G. Neyens	CERN (EP/SME)	Users representative		
K. Johnston	CERN (EP/SME)	Users representative		
T. Stora	CERN (EN/STI)	Technical expert		
A.P. Bernardes	CERN (EN/STI)	Safety expert		
A. Dorsival	CERN (HSE/RP)	Radioprotection expert		
J.P. Ramos	CERN (EN/STI)	Project responsible/secretary		
KU LEUVEN J. P. Ramos 3 rd of June 2019				

3 boards (project steering and reporting):

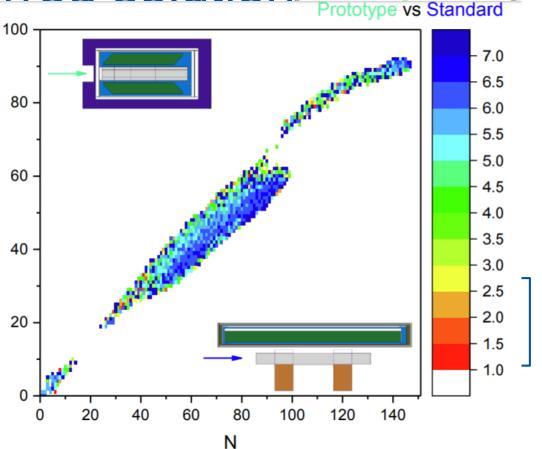
- 20th March 2018
- 12th June 2018
- 25th October 2018
- Last board (soon)

This project used:

OPense
cern.ch/opense

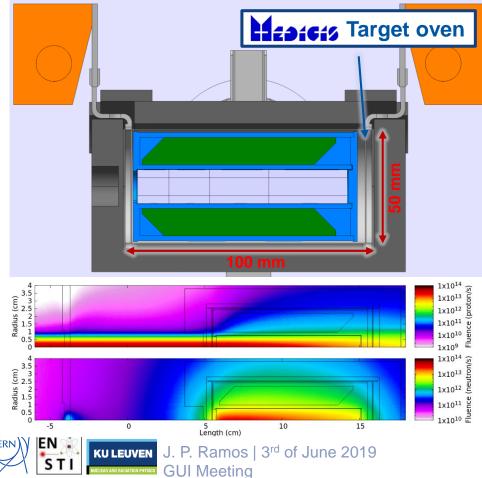
Scientific project management framework

For development

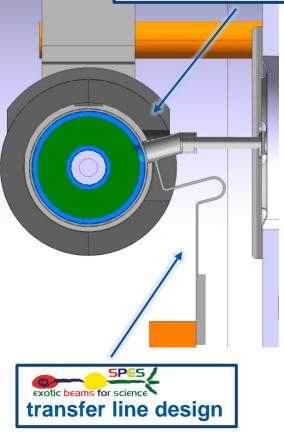

Funding (resources)	EN/STI-RBS	
Users	EP/SME (representing EP/UIS)	
Regulators	HSE/RP and ISOLDE safety	
Expertise (feasibility)	EN/STI-RBS	
Project manager	Appointed project responsible	
Str	ategic decisions	6

Analysis – preferred solution

	n-ind fissions (/s)	p-ir		
Standard converter	7.05E10	1.2		
Raul	5.01E10 (0.71)	1.4		
Compromise*	1.57E11 (2.23)	1.1		
High Intensity*	4.19E11 (5.94)	5.8	N	
(T RIUMF concept)	3.85E11 (5.46)	3.1		
*for new prototypes assumed smaller density (material manua				


*for new prototypes assumed smaller density (material manu pressed but powder manually compacted

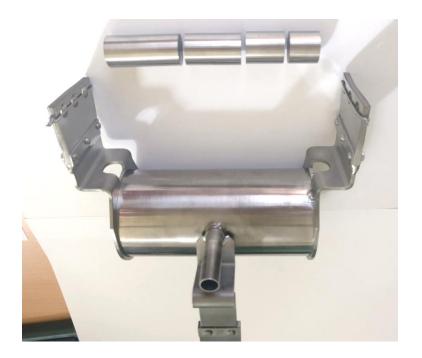
Brings roughly 2 - 4x more yield in all isotopes than



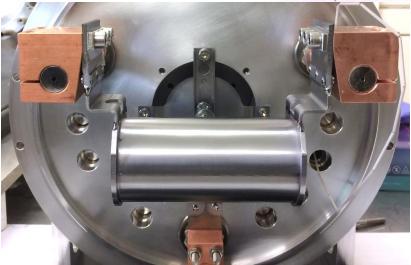
The final concept

Sigratherm (graphite foam) thermal shielding

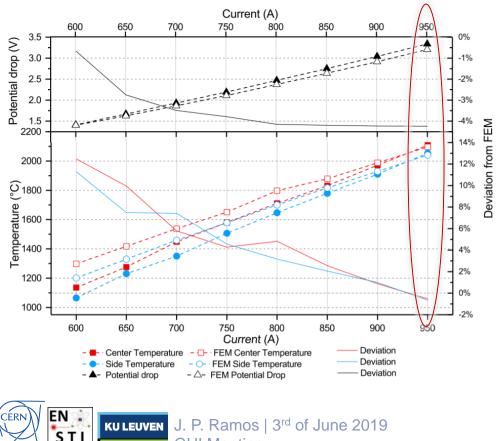
J.P. Ramos, et al., EMIS 2019 Proceedings, to be published

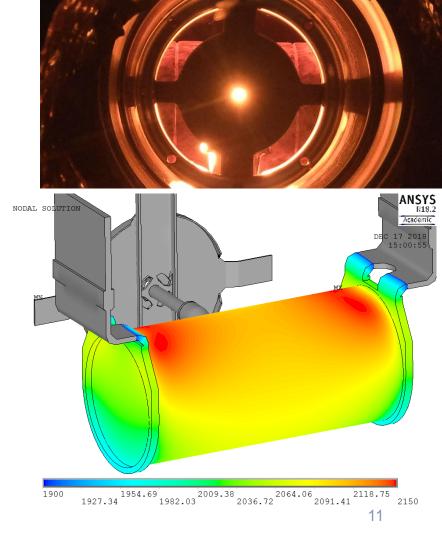

Simulations and concept

Offline developments


Online run

Material acquirement





Oven tests

GUI Meeting

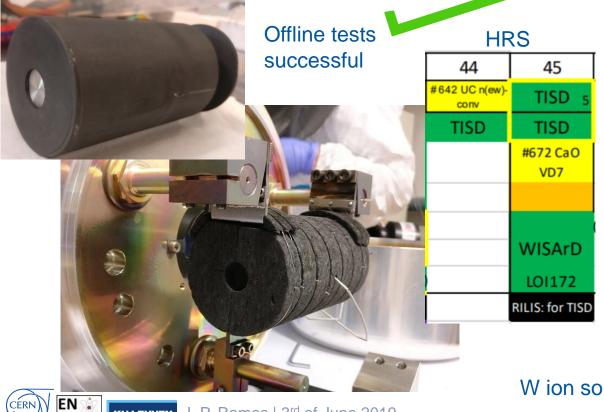
Material compatibility

KU LEUVEN

EAR AND RADIATION PHYSICS

GUI Meeting

W not water cooled, but at >2000 °C)



<u>After (2200 °C – 16 h)</u> – no change

Online target ready

J. P. Ramos | 3rd of June 2019

GUI Meeting

KU LEUVEN

LEAR AND RADIATION PHYSICS

S T

W ion source installed

Everything up to here is published

ARTICLE IN PRESS

Nuclear Inst. and Methods in Physics Research B xxx (xxxx) xxx-xxx

Design and tests for the new CERN-ISOLDE spallation source: an integrated tungsten converter surrounded by an annular UC_x target operated at 2000 °C

J.P. Ramos^{a,*}, M. Ballan^c, L. Egoriti^{b,c}, D. Houngbo^d, S. Rothe^a, R.S. Augusto^{a,f,1}, A. Gottberg^b, M. Dierckx^d, L. Popescu^d, S. Marzari^a, T. Stora^a

* Europeon Organization for Nuclear Research (CERN), Epidande des Particules 1, 1211 Genéve 23, Switzerland * PIRUME, 4004 Webrook Mall, Vancouver, Briths Chamila Vol 7 182, Canada * University of Briths Columbia, Department of Chemistry, Vancouver, British Columbia Vol 7 121, Canada * SCK CER, 32-400 Mol, Belgian * INFN, Laboratori Nazionali di Legiaro, viale del Ultiversita 2, 35202 Legiaro (PD), Indy * Lubergi Accimitions-Universita Multich Focality of Physics, Schellingsarase, 4, 80790 Munich, Germany

ARTICLE INFO

ABSTRACT

Keywords: Spallation neutron source Proton-to-neutron converter Isotope separation on-line (ISOL) ISOLDE Radioactive ion beams (RIB) The production of high intensity and isobarically pure neutron-rich fission fragments is of high importance for the physics research program of the ISOLDE facility at CERN. This is typically done in a two step method where a tungsten converter, positioned parallel and below the UC₄ target, is irradiated with 1.4 GeV protoss. This will produce spallation neutrons which irradiate a UC₄ target producing the isotopes of interest. Currently, the intarget production is limited by the geometrical overlap of the neutron fluence and the target material and suffers from low production yield. In this work, a prototype is proposed where the tungsten converter is positioned in the center of an annular UC₄ target. FLUKA simulations were conducted to optimize the geometry, maximizing the production of isobarically pure neutron-rich fission fragments which determined that a large diameter target is necessary (5 cm). Thermo-electric ANSVs⁺ simulations were conducted in order to develop a large Ta target over which can reach 2000⁻ Can d tests were conducted to pottimations. A prototype design was validated, for ISOLDE operation, with offline tests which shows that the tungsten-graphite-tantalum assembly is fully stable up to 2200⁻ C.

https://doi.org/10.1016/j.nimb.2019.04.060

14

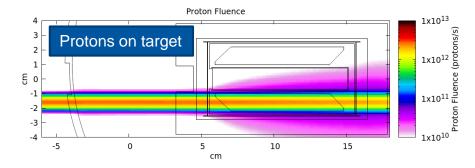
Online run

Simulations and concept

Online run

Online run

Run split in two


First part:

- Proton scan
- Cs yields
- Rb yields

EN 🛸

Second part (laser ionized)

- Zinc
- Gallium
- Indium
- High proton intensity tests

Measure full isotope chains

Protons on target and on converter

Laser on/off

<u>Gamma detector was</u> <u>broken – only beta</u> <u>detector was available</u>

FCup and ISOLTRAP

Proton scan

KU LEUVEN

LEAR AND RADIATION PHYSICS

GUI Meeting

80 -

60 -

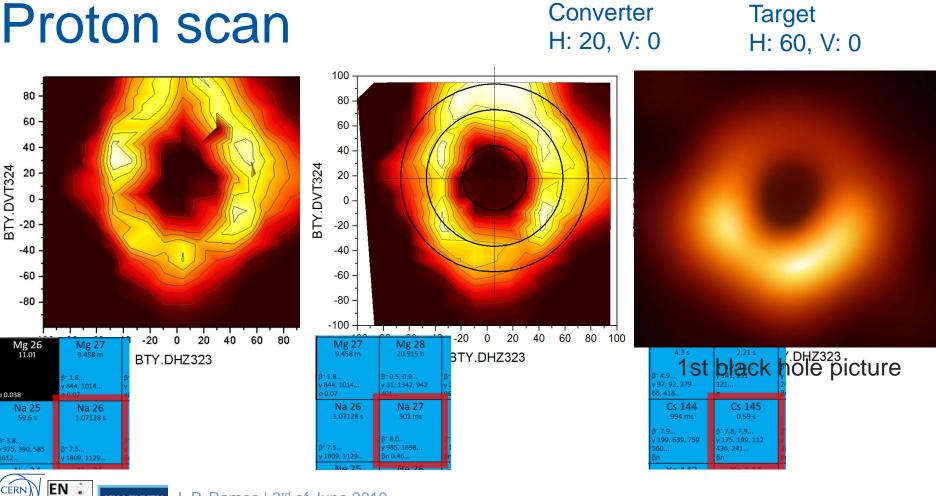
0 -

-20

-40

-60 -

-80 -

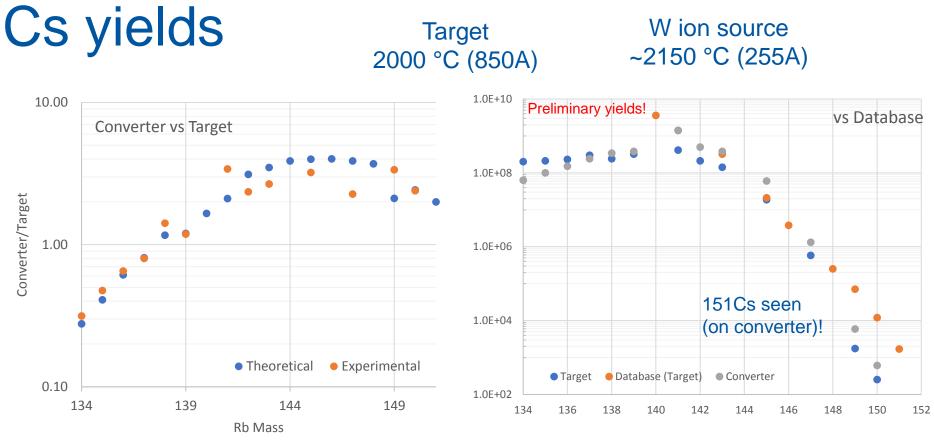

σ 0.038

3- 3.8...

CÉRN

STI

BTY.DVT324

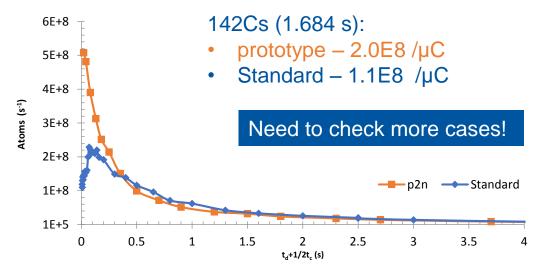

J. P. Ramos | 3rd of June 2019

Rb yields

Target 2000 °C (850A)

W ion source ~2150 °C (255A)

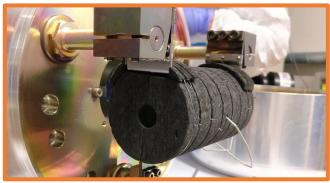
ISOLTRAP – Cs/Ba ~ 10, Cs/La > 100



J.P. Ramos, et al., to be published.

 $T_{b} = 671 \text{ °C}$ $T_{P=1Pa} = 145 \text{ °C}$

18

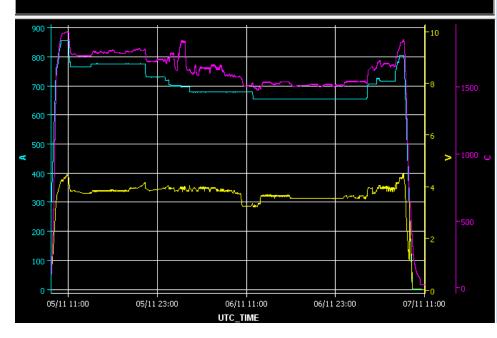

Release properties

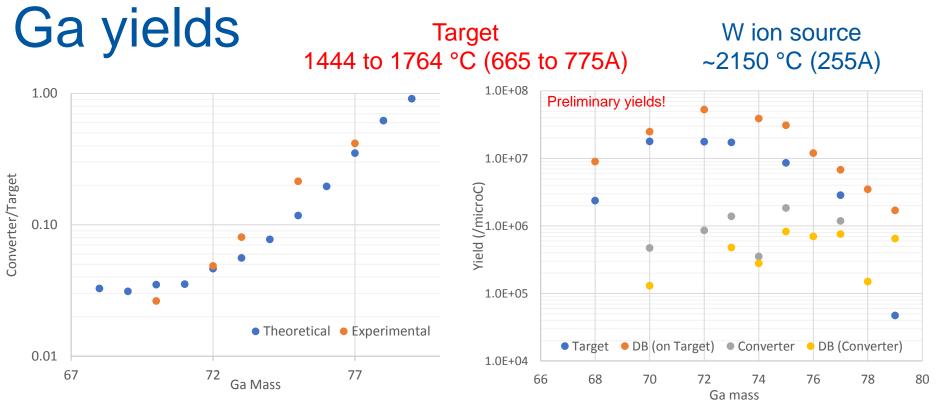
- Diffusion should not be affected (same material, same pellets)
- Effusion is affected (larger volume, annular shape)

- Temperature inhomogeneities of 200 to 300 °C
- Target volume is 60 cm³

- No cold spots
- Large target volume (200 cm³)
- Anular target

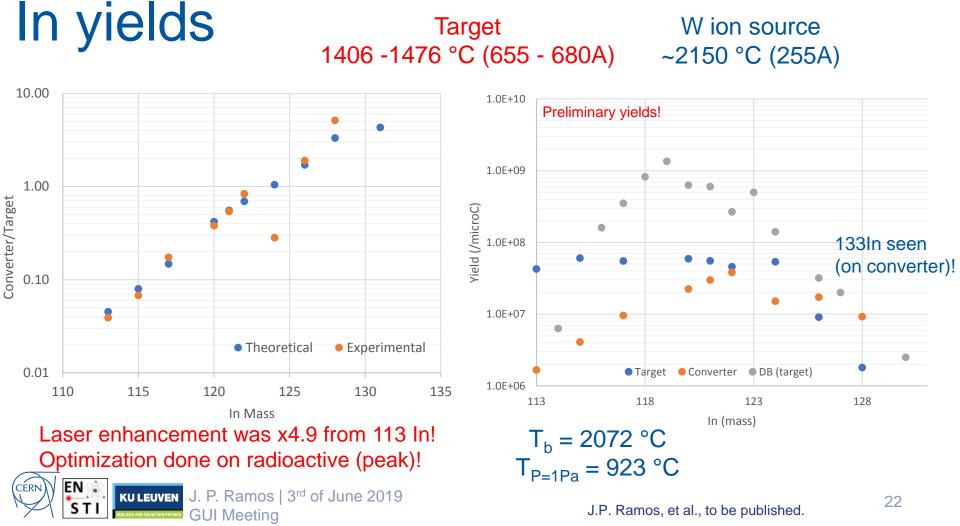
2nd part of the run


Target heating issues:
Voltage increased continuously (container failure sign)
Decreased target current to keep voltage stable (same power)
Target temperature was heavily influenced


Another large target was irradiated and tested at MEDICIS

Failure of the target oven (brough to >2300 °C)

Can affect the reliability of the yields taken after (laser ionized Ga, In, Zn)


Laser enhancement was only x4.3 (expected 40-50)! Optimization done on radioactive (peak)!

T_b = 2400 °C T_{P=1Pa} = 1037 °C

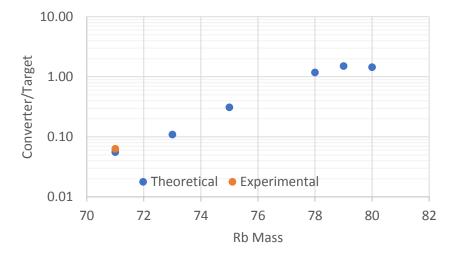
21

J.P. Ramos, et al., to be published.

Target 1432 °C (655A)

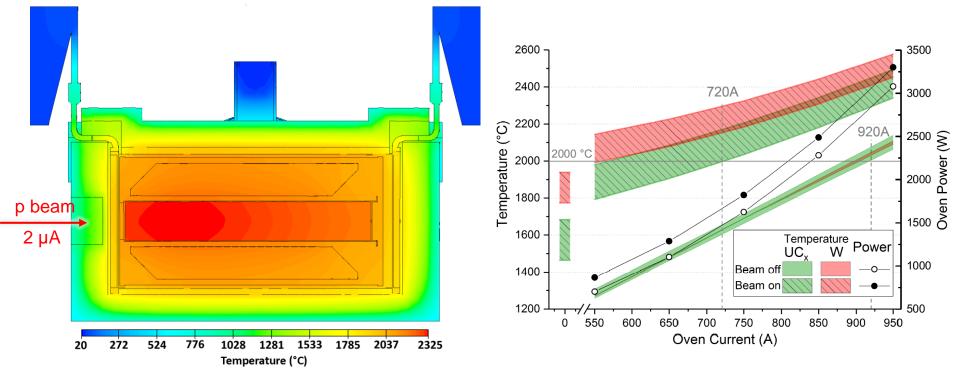
W ion source ~2150 °C (255A)

Data still in analysis...


Only 4 data points taken Target was much degraded by then...

Example 75Zn (ISOLTRAP) 3.6E5 /µC (DB 5.6E7 /µC)

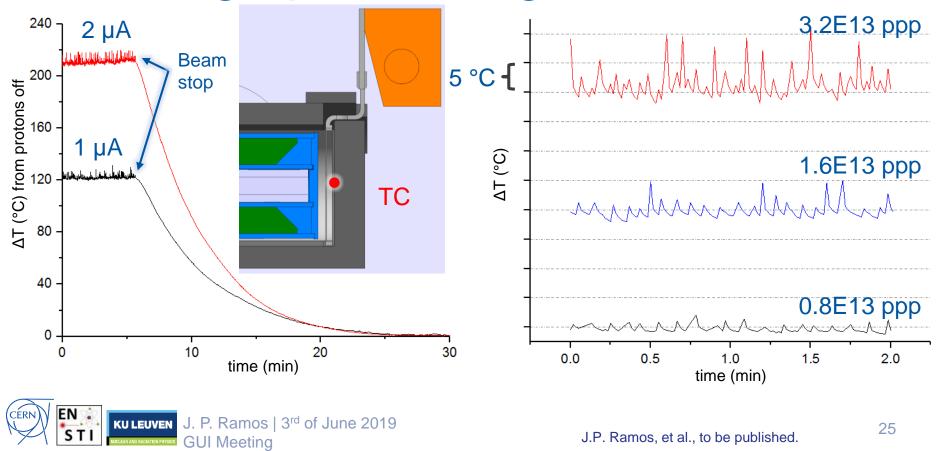
Low yields on Zn

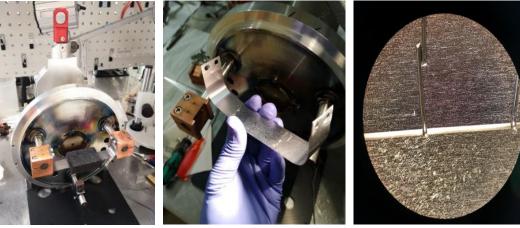


 $T_{b} = 907 \ ^{\circ}C$ $T_{P=1Pa} = 337 \ ^{\circ}C$

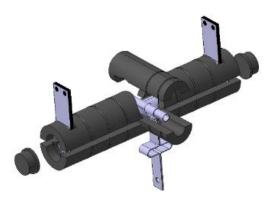
J.P. Ramos, et al., to be published.

23


First high power target - simulations


24 J.P. Ramos, et al., EMIS 2019 Proceedings, to be published

First high power target - data



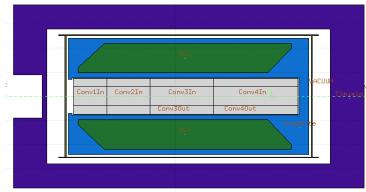
Outlook

- <u>The target oven needs additional development</u>
 - Post-mortem analysis will be done (location TBD)
 - Two targets: p2nconverter + MEDICIS target
 - Already on-going by V. Samothrakis)

Thermal studies are bringing good outcome already for the standard ISOLDE targets

V. Samothrakis, et al.

- Cu blocks optimization, current temperatures are 550 °C
- <u>Test again at ISOLDE</u> (perhaps with physics run for laser ionized species)

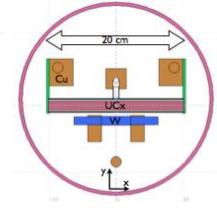


Outlook (2)

- Need for a high purity converter target
- Modular target personalized for user
 - can maintain current converter yield but <u>get a factor</u> <u>4-10 in purity (maybe more?)</u>

ThC_x can help

• Still have to run the simulations


Some cases are difficult (Ni, Co, Cu...)

Have to go case by case

- Target reduction
- Converter reduction
- Converter & target shift

Conclusions

- Cs and Rb yields were high and match predictions
- In, Ga and Zn were taken at low temperatures (and less optimized RILIS conditions)
- First high-power target of ISOLDE
 - Temperature needs to be adjusted if beam intensity changes
- Run data being analyzed with TRIUMF
 - Compare with more recent yields (a lot of data from SC)
- Current converter can use some extra development to be used as
 production target
 - Project spin-off (modular converter) with higher purity beams, personalized for user.

Thank you!

Target group: J.P. Ramos, S. Rothe, D. Leimbach, J. Ballof, F. B. Pamies, T. Stora, E. Barbero, B. Crepieux, V. Samothrakis
Beam manipulation: T. Giles, S. Warren
RILIS: B. Marsh, K. Chrysalidis, S. Wilkins, C. Granados
ISOLTRAP: M. Mongeot, J. Karthein
SCK-CEN: D. Houngbo, L. Popescu, M. Dierckx
TRIUMF: L. Egoriti, A. Gottberg
MEDICIS-Promed (SPES): M. Ballan, S. Marzari
ISOLDE: G. Neyens, K. Johnston, R. Catherall, A. Dorsival, A.P. Bernardes

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654002