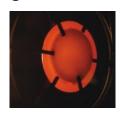
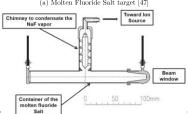
Review panel for LIEBE

Thierry Stora — EN-STI-RBS



Larger framework of high power targets: ISOL specificity: release of isotopes, "high T"

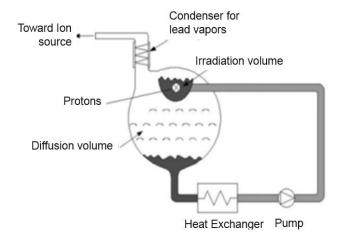
Melanie Delonca's PhD


·			G 11		-	G 0 :	~
Target	Facility	Beam	$\mathbf{Cooling}$	Isotope	Innovation	Safety	Schematic
name		characteristics	system	release		measures	
ISAC	Triumf	proton beam -	Radiation	Separated disks	Use of fins	Double	Fins Double envelope
Targets		up to 25 kW	from fins	Material choice		enclosure	Fins Double envelope
[21]		constant power -					
		continuous					Primary beam
		beam					
							Main Target part
*		D : 1 0	D 11			D 11	
Liquid	Isolde	Proton beam - 3	Radiation	Material choice	Beam windows	Double	Double envelope
Lead/Salt		kW average		(liquid)	developed /	enclosure	Chimney
Targets		power - 11.7.10 ⁶		Splashing from	chimney / liquid		Beam window
[20]		kW peak power		shock waves	material		Primary beam
		- 0.8 Hz		induces droplets			Main Target part
		frequency					
LiLit	SARAF	proton beam -	Heat	-	Heat Exchanger	Double	
Target [22]		2.3 kW average	Exchanger		/ Pump for	enclosure	Double envelope
		power - 20 kW	Ü		liquid		Mein Target part UI.it system
		peak power - 1			circulation / Li		Primary beam Fig. 1.24.a) Oil tank
		Hz frequency			(metallic)		
		Till frequency			window-less		Electro Magnetic
					William less		Pump
							Li tank + Heat Exchanger with oil
MEGAPIE	PSI	neutron beam -	Heat	-	Heat Exchanger	Double	
Target [11]		up to 66.10^{3} kW	Exchanger		/ Pump for	enclosure	Beamwindow USE flow Heat USE filing Exchanger tank
		constant power -			liquid		Primary beam Purps
		continuous			circulation		
		beam					

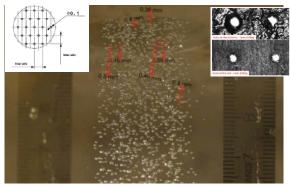
1st high power oxide direct ISOL Target @ TRIUMF

1st salt target at ISOLDE-PSB

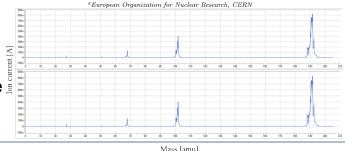
And also some hard learning cases



Initial concept & LIEBE prototype


Conceptual design + prelimin. tests, E. Noah et all, EURISOL-DS (2005-2009)

Test and beam at the offline separator


Critical Weber number for small droplet formation from LBE → possibly solves the main Liquid target drawback of slow release

Double enclosure, etc

The LIEBE high-power target: Offline commissioning results and prospects for the production of $^{100}{\rm Sn}$ ISOL beams at HIE-ISOLDE

F.Boix Pamies^a, T.Stora^a, E.Barbero^a, V.Barozier^a, A.P. Bernardes^a, R. Catherall^a, B.Conde Fernandez^a, B.Crepieux^a, L.Goldsteins^b, J.L. Grenard^a, E. Grenier-Boley^a, D.Houngbo^c, K.Kravalis^b, G.Lili^a, S. Malbrunot^a, G. Neyens^a, L.Prever-Loiri^a, J.P. Ramos^a, J.M. Riegert^a, S. Rothe^a, C. Veiga Almagro^a, A. Vieitez^a

Review

Committee members: Marc Dierckx (SCK-CEN), Ramon Folch (CERN, EN Safety Office), Simone Gilardoni (CERN, EN/STI), Michael Paul (Hebrew university Jerusalem), Heinz Vincke (CERN, HSE/RP) Marco Calviani (CERN, EN/STI, chair) ¶

Presentations available there: https://indico.cern.ch/event/805955/

2. → Design of the LIEBE target and operational feedback ¶

The basic design of the LIEBE target is judged to be capable to comply with the main objective of the project to improve the release efficiency of short-lived isotopes from liquid metal targets by enhanced effusion by droplet formation. However, the offline tests have shown that the current design has some technical flaws. First of all, it appears that liquid

Review Conclusions

7.→Recommendations • ¶

The following recommendation are provided to the Project team:

- 1) The process of design and the results of test with the prototype revealed a number of important critical points that have been solved but also some weaknesses that are still to be addressed; review the lessons learned from the operation of the LIEBE target and prepare a summary document with these aspects as well as with the plans to solve them in the current or modified LIEBE hardware;
- 2) → Profit-from the lessons learnt and the expertise gained to carry out a FMEA (Failure Mode and Effect Analysis) involving experts in the field;
- 3)→Document the functional specification and engineering specification of the current LEIBE target in a concise and complete document in order to provide the state-of the assembly following the offline results: ¶
- 4)→It is recommended to explore the physics case for the current LIEBE target and eventual La-based liquid target with the Standing group for the Upgrade of the ISOLDE facility (SGUI) (to be endorsed by the ISOLDE Collaboration), including the timescale required for the physics case to be still interested at the ISOLDE facility; ¶
- 5)→Based on the recommendation of the SGUI, prepare an update Project management document to detail the resources and manpower requirements in order to prepare an eventual La-based liquid target to be presented to the EN-STI management; ¶

The promises with a fast released molten metal loop

Molten targets operated online						
Material	Operation temperature	Beams				
Ge	1100	Zn				
Sn	1100	Cd				
Pb	700	Hg				
Bi		_				
Pb-Bi	600	Kr/Xe/I/Cd/Hg/At				
NaF-LiF	700	CO/ Ne				
TeCl ₄	420	SbCI/SnCI				
Sc-La	1300	Ca/ K/ Ar				
Y-La	1300	Sr/Rb/Kr				
La	1400	Ba/ Cs/ Xe				
Th-La	1400	Ra/ Fr/ Rn				
Gd-La	1400	Eu/Sm				
Lu-La	1400	Yb/Tm				
Prospective eutectics for beams in the ¹⁰⁰ Sn region						
Ag-La	518 ←	$Cd/MCI_x(M=In,Sn,Sb)$				
Au-La	561 <i>[←]</i>	$Cd/MCl_x(M=In,Sn,Sb)$				
Ni-La	532 ⊬	$Cd/MCl_x(M=In,Sn,Sb)$				

Where do we stand today

- 100Sn physics potential for HIE-ISOLDE
- Options to complete the lessons learned action : failure analysis at IPUL (LBE spill in ion source/F End)
- Offline operation of (modified) LIEBE with LBE at CERN

 Define the optional LIEBE-next project: La-base option, safety file requirements, RP and waste management to be evaluated by EN-STI

Initial pists to complete this phase

• French ANR: REPARE (lead by GANIL (G d France), with Arronax, Subatech, CERN: passed 1st evaluation phase wih rather positive evaluation.

 SCK.CEN contribution in the framework of the CERN-SCK MoU under discussion

