

Coopetition

Collaborative solutions for research problems

Giles Strong

Yandex/HSE secondment summary - 29/04/19

Background and motivation

Data growth

- Modern, state-of-the-art research facilities are increasingly producing vast amounts of data at unprecedented levels
 - E.g. (HL-)LHC, LIGO, European Solar Telescope, Cherenkov Telescope Array
- The data from these experiments are normally analysed using domain-knowledge-driven techniques
 - Good theoretical motivation
 - Easy to grasp by fellow domain experts

Scaling problems

- The paradigm shift to 'Big Data' isn't always reflected in these domain-driven techniques:
 - The techniques struggle, or outright fail, to utilise the available data beyond the reduction of statistical uncertainties
 - Or the approaches cannot scale to be applied to the data beyond a certain size or rate
- E.g. HL-LHC track reconstruction:
 - Accurately find all 10k tracks from 100k hits
 - Do this $10-100 \times 10^9$ times / year
 - Your computing budget won't be increased
 Your current algorithm is 10 times too
 slow

Knowledge problems

- In other cases, when domain experts do try to use extra-domain approaches, lack of experience and misunderstandings can hamper performance
- E.g. 2014 HiggsML challenge
 - Top-scoring physicist made good use of his domain knowledge
 - But was overfitting to public results (589 submissions!)
 - Was warned several times it was a bad idea, but he defended the approach
 - Once final scores revealed he dropped from 1st to 8th
 - = the data-scientists won

Citizen science - research outsourcing

- This all points to a need for:
 - The sharing of knowledge expertise between domains
 - Access to innovative thinking from people with a wide range of backgrounds
- Luckily there are communities of highly motivated and intelligent people who are:
 - Eager to tackle new challenges
 - Hungry for unique datasets
 - Trying to improve their skills (and CV) through practice
 - Looking to do their part to help advance science

The problem with Kaggle

- The largest of these communities is Kaggle
- Competitions provide:
 - 1000s of teams
 - Cash prizes
 - Familiar / recycled problems
- Large user base provides:
 - Good visibility at higher ranks
 - Degree of reliability achievement trust for headhunters / recruiters

The problem with Kaggle

- But Kaggle is:
 - Fairly inflexible most experiments can't be reduced to a single metric
 - E.g. Unable to rank by accuracy and time
 - Solutions not always appropriate / applicable to actual problem
 - E.g. 2nd place for HL-LHC tracking took one day per event
- More flexible platforms exist, but lack of user-base & renown deters participation
 - Ist phase of TrackML hosted on Kaggle = 653 teams
 - 2nd phase hosted on Codalab = only 26 teams!

The problem with Kaggle

- With such large prizes at stake, cooperation between teams (sharing of domain expertise) is disincentivised
- When knowledge sharing does occur, there's is no official record of who did what

- Fairly inflexible most experiments can't be reduced to a single metric
 - Use a range of smaller, specialised platforms with configurable (multi)metrics
- Solutions not always appropriate / applicable to actual problem
 - Provide guidelines / restrictions
 - Have a range of rewarded achievements
 - E.g. solution uses a single model to get above a given score, solutions runs on limited hardware
 - Run challenge in phases allows organisers to fix exploits without restarting challenge

- More flexible platforms exist, but lack of user-base deters participation
 - Share user-base between smaller platforms via a single user-profile which shows full user-history
- With such large prizes at stake, cooperation between teams (sharing of domain expertise) is disincentivised
 - Move the challenge from competitor vs. competitor to competitors vs. problem
 - Competitors work together to solve the problem and are rewarded as a whole

- When knowledge sharing does occur, there's is no official record of who did what
 - Competitors submit via commits to open-source solutions
 - Full history of user contributions visible via Git and impact matched to changes in score metrics
- Good visibility at higher ranks & degree of reliability achievement trust for headhunters / recruiters
 - Provide customisable searching and ranking of users via their single user profile
 - Allows recruiters to better see the specific skills of users, rather than a single aggregated score
 - Doesn't penalise users for focussing on specific types of problems

- Familiar / recycled problems → cutting edge, domain-specific tasks
 - The use of challenge phases can be used to:
 - Step users through unfamiliar and difficult problems
 - Gradually increase the challenge difficulty from simplified to real-world
 - Rewarded achievements can:
 - Encourage users to explore the full solution space
 - Provide achievable goals to prevent users from becoming discouraged and leaving

Secondment activities

Coopetition

- My secondment involved working on the development of 'Coopetition'
- A portmanteau of cooperation and competition
- Coopetition is a challenge platform which sits on top of a fork of Codalab
- Users cooperate and work together to solve problems
- In the near future it might be one of a range of platforms which together form a federated group sharing a single user-profile

- Challenges are hosted on Codalab but submissions are made via Git commits to public repositories
- Webhooks allow solutions to be pulled and evaluated
- Configurable rules allow atomic rewards to be provided whilst the challenge is running

Coopetition status

- Coopetition is currently live:
 https://coopetition.coresearch.club/
- And connected to Codalab: https://codalab.coresearch.club/

Coopetition status

- Coopetitions are currently running within the Higher School of Economics
- Provides easy testing and feedback since the Yandex Lambda Group is situated within the HSE computer science faculty

Cityscapes. Urban scenes segmentation

Register on codalat						
Leaderboard						
RANK	NAME	DATE	AP	MIOU	VIEW	RATING
1	buntar29	2019-2-13	0.0	0.3688		$\bigcirc \circ$
2	mirosh11	2019-2-17	0.0	0.6362	View	\bigcirc 1
3	alucard1177	2019-2-17	0.0	0.6362		$\bigcirc \circ$
4	human97	2019-2-17	0.0	0.6362		$\bigcirc \circ$
5	fanran	2019-2-21	0.0	0.6362	View	\bigcirc 1

My contributions

- I was mainly involved in building the reward system:
 - a. Admins can set rewarders per coopetition phase
 - b. Solution submissions trigger the system to pull the result and check it against the configured rewarders
 - C. Any rewards the user received are then added to their profile and various logs are updated

Reward History

Baseline URL: https://github.com/GilesStrong/LatticeQCD.IST2018.4

SETTINGS REWARD HISTORY						
Development						
General Parameters						
Baseline URL: https://github.com/GikesStrongLatticeQCD_IST2018_2						
Rewards rules						
Rewarder type: FirstTokchiveResult 👩 Reward amount: Ls Threshold for reward	rd: 23.0					
SAVE	19					

My contributions

- I was also involved in:
 - General testing
 - Code review
 - Bug fixes
 - Code deployment

Python
Docker
HTML
SQL
Postgres
Django
Nginx
Rabbit/Celery/Flower
Knowledge of databases, security, web design, code review, issue tracking, unit

Overall, this required:

tests

Overall impressions

- I was lacking in many of the technical skills required, so got thrown in the deep-end a bit
 - Still, the group I was working with were able to bring me up to speed, and explain things which I didn't know
 - Certainly I learnt a lot
- Another new aspect was the Scrum Agile Development process:
 - Setting clear, short-term goals
 - Working on them during a sprint with daily standups to report progress
 - Presenting the completed tasks
 - Retrospective review of the sprint

Overall impressions

- It was also interesting to see the difference between how physicists and software developers approach problems, e.g. to build a complex system
 - Both would split the system into smaller components
 - My approach seemed to be to make the components complex and join them together with simple connections
 - Whereas the software developers would make the components very simple and then knot them together with complex connections
- The latter sounds like it should be more difficult to understand how the system works, as there are more interactions to keep track of
- But they seemed to have a predefined way of tying the components together, which meant they could quickly grasp what someone elses code was doing.

Overall impressions

- Overall, it was a useful experience to see software development in a professional environment
- The skills I've picked up are already being put to good use in my own code

This Report is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°675440