

Introduction to Cryogenics

T. Koettig, P. Borges de Sousa, J. Bremer

Contributions from S. Claudet and Ph. Lebrun

CAS@ESI: Basics of Accelerator Physics and Technology, 7 - 11 Oct. 2019, Archamps

Content

- Introduction to cryogenic installations
- Safety aspects => handling cryogenic fluids
- Motivation => reducing thermal energy in a system
- Heat transfer and thermal insulation
- Helium cryogenics, He I => He II
- Conclusions
- References

Overview of cryogenics at CERN - Detectors

- Superconducting coils of LHC detectors @ 4.5 K (ATLAS, CMS)
- LAr Calorimeter LN₂ cooled
- Different types of cryogens (Helium, Nitrogen and Argon)

Overview of cryogenics at CERN - LHC

- Helium at different operating temperatures (thermal shields, beam screens, distribution and magnets,...)
- Superconducting magnets of the LHC accelerator
- Accelerating SC cavities

Safety aspects in cryogenics

Cryogenic fluids - Thermophysical properties

Fluid	⁴ He	N ₂	Ar	H ₂	O ₂	Kr	Ne	Xe	Air	Water
Boiling temperature (K) @ 1.013 bar	4.2	77.3	87.3	20.3	90.2	119.8	27.1	165.1	78.8	373
Latent heat of evaporation @ T _b in kJ/kg	20.9	199.1	163.2	448	213.1	107.7	87.2	95.6	205.2	2260
Volume ratio gas _(273 K) / liquid	709	652	795	798	808	653	1356	527	685	
Volume ratio saturated vapor to liquid (1.013 bar)	7.5	177.0	244.8	53.9	258.7	277.5	127.6	297.7	194.9	1623.8
Specific mass of liquid (at Tb) – kg/m ³	125	804	1400	71	1140	2413	1204	2942	874	960

Cryogenic hazardous events – Discharge of helium

Safer location on the floor

- Displacement of oxygen => Asphyxiation risk!
- Opposite behavior for e.g. argon and nitrogen!

Technical risks

Embrittlement

 Some materials become brittle at low temperature and rupture when subjected to mechanical force (carbon steel, ceramics, plastics)

Thermal contraction (293 K to 80 K)

Stainless steel: 3 mm/m

Aluminum: 4 mm/m

Polymers: 10 mm/m

Requires compensation for transfer lines, QRL ...

Condensation of atmospheric gases

- Inappropriate insulation or discharge of cryogens
- Observed at transfer lines and during filling operations (liquid air ~50 % O₂ instead of 21 % in atmospheric air)

Cryogenics and Superconductivity

Characteristic temperatures of low-energy phenomena

Phenomenon	Temperature
Debye temperature of metals	few 100 K
High-temperature superconductors	~ 100 K
Low-temperature superconductors	~ 10 K
Intrinsic transport properties of metals	< 10 K
Cryopumping	few K
Cosmic microwave background	2.7 K
Superfluid ⁴ He	2.17 K
Bolometers for cosmic radiation	< 1 K
ADR stages, Bose-Einstein condensates	~ μK

Superconductivity

- H. Kamerlingh Onnes
- Liquefied helium in 1909 at4.2 K with 60 g He inventory
- Observed in 1911 for the first time superconductivity of mercury
- Nobel prize 1913

Historic graph showing the superconducting transition of mercury, measured in Leiden in 1911 by H. Kamerlingh Onnes.

Cryogenic application: Dipole magnets of the LHC

Heat Transfer and Thermal Insulation

Heat transfer: General

Solid conduction:

Thermal radiation: (with and without MLI)

Natural convection:
 Negligible with insulation vacuum for p< 10⁻⁶ mbar

Source: Edeskuty, Safety in the Handling of Cryogenic Fluids

Heat transfer: General

Choosing the right
materials in terms of
mechanical strength and
low-temperature
properties is essential.

Source: Edeskuty, Safety in the Handling of Cryogenic Fluids

Heat capacity of materials

Discrete lattice vibrations => Phonon

Metals have a contribution of free electron gas => dominant at very low temperature

Source: Ekin, Experimental Techniques for Low-Temperature Measurements.

Source: Enss, Low temperature physics.

T. Koettig TE/CRG

Thermal conductivity, solid conduction

Heat transport in solids

Fourier's law:
$$\dot{Q} = -\lambda(T) \frac{A}{l} \nabla T$$

Pure dielectric crystals: phonons

Dielectrics/Insulators: phonons

Pure metals: free electron gas and phonons

Alloyed metals: electrons and phonons

From: Cryogenie, Institut International du Froid, Paris

Radiative heat transfer – Black body

Wien's law (Maximum of black body power spectrum)

$$λmaxT = 2898 μm K$$
=> 10 μm for $T = 300 K$

Source:

https://www.researchgate.net/figure/Blackbody-spectral-emissive-power-as-a-function-of-wavelength-for-various-values-of_fig4_320298109

Radiative heat transfer

Wien's law (Maximum of black body power spectrum)

$$λmaxT = 2898 μm K$$
=> 10 μm for $T = 300 K$

Stefan-Boltzmann's law

$$\dot{Q}_{rad} = \sigma A T^4$$

$$\sigma$$
 = 5.67 x 10⁻⁸ W/(m² K⁴)
(Stefan-Boltzmann's constant)

$$\dot{Q}_{rad} = \varepsilon \, \sigma A \, T^4$$

 ε - emissivity of surface

• "Gray" surfaces at
$$T_1$$
 and T_2

$$\dot{Q}_{rad} = E \, \sigma A \, (T_1^4 - T_2^4)$$

E - function of ε_1 , ε_2 , geometry

Emissivity of technical materials at low temperatures

		_
	Surface at 77 K	Surface at 4.2 K
Stainless steel, as found	0.34	0.12
Stainless steel, mech. polished	0.12	0.07
Stainless steel, electropolished	0.10	0.07
Stainless steel + Al foil	0.05	0.02
Aluminium, as found	0.12	0.07
Aluminium, mech. polished	0.10	0.06
Aluminium, electropolished	0.08	0.04
Copper, as found	0.12	0.06
Copper, mech. polished	0.06	0.02

Condensed layers from gas phase easily vary these values!

From: Ph. Lebrun, CAS School on Vacuum in Accelerators, 2006

Multi-layer insulation (MLI)

Complex system involving three heat transfer processes

- $Q_{MLI} = Q_{radiation} + Q_{solid} + Q_{residual}$
- With *n* reflective layers of equal emissivity, $Q_{radiation} \sim 1/(n+1)$
- Parasitic contacts between layers, Q_{solid} increases with layer density
- Q_{residual} due to residual gas trapped between layers, scales as 1/n in molecular regime
- Non-linear behavior requires layer-to-layer modeling

Solutions for penetrations and support structures

Large surface application

Typical heat fluxes between flat plates (cold side vanishingly low)

Configuration	W/m ²
Black-body radiation from 293 K	420
Black-body radiation from 80 K	2.3

Refrigeration and Liquefaction

Thermodynamics of cryogenic refrigeration

First principle [Joule]
$$Q_0 = Q_i + W$$

$$Q_0 = Q_i + W$$

Second principle [Clausius]

$$\frac{\mathbf{Q}_0}{\mathbf{T}_0} \geq \frac{\mathbf{Q}_i}{\mathbf{T}_i}$$

(= for reversible process)

Hence,
$$W \ge T_0 \cdot \frac{Q_i}{T_i} - Q_i$$
 which can be written in different ways:

 $W \ge T_0 \cdot \Delta S_i - Q_i$ introducing entropy S as $\Delta S_i = \frac{Q_i}{T_i}$

$$\Delta S_i = \frac{Q_i}{T_i}$$

Thermodynamics of cryogenic refrigeration

Elementary cooling processes in a T-s diagram

Maximum Joule-Thomson inversion temperatures

Source: http://faculty.chem.queensu.ca/people/faculty/mombourquette/Chem221/3 FirstLaw/ChangeFunctions.asp

- Air can be cooled down and liquefied by J-T expansion from room temperature,
- Helium and hydrogen need precooling down to below the inversion temperature by heat exchange or work-extracting expansion (e.g. in turbines)

Two-stage Claude cycle

Process cycle & T-s diagram of LHC 18 kW @ 4.5 K cryoplant

COP of large cryogenic helium refrigerators

LHC 18 kW @ 4.5 K helium cryoplants

Th. shields: 33 kW @ 50 K to 75 K Beam screen: 23 kW @ 4.6 K to 20 K Current leads: 41 g/s liquefaction

4 MW compressor power COP 220-230 W/W @ 4.5 K

Linde.

LHC 18 kW @ 4.5 K helium cryoplants

⁴He phase diagram

From Weisend, Handbook of Cryogenic Engineering, 1984.

LHC Cooling scheme

Cryogenic Fluid Properties

He I and He II

From He I to He II

Normal fluid helium => He I

Like a standard fluid: viscosity etc.

Superfluid helium => He II

- Temperature < 2.17 K
- Peak in heat capacity c_p at T_λ
- Very high thermal conductivity
- Low / vanishing viscosity

Murakami, Experimental study of thermo-fluid dynamic effect in He II cavitating flow, Cryogenics, 2012.

Phase diagram of ⁴He

Glass cryostat set-up

Boiling effects during cooldown / Pumping on the He vapour

How to explain that unique behaviour?

Two fluid model of L. Tisza:

He II is composed of two components

Two-fluid model of He II by Tisza, 1938

✓ Ratio ρs/ρn depends on temperature

Superfluid component:

• no entropy: $S_s = 0$

• zero viscosity: $\eta_s = 0$

Normal component:

• carries total entropy: $S_n = S$

• finite viscosity: $\eta_n = \eta_n$

He II in practice

Superleak below T_{λ}

1963 film by Alfred Leitner, Michigan State University

Critical heat flux in He II

Heat and mass flow are limited by a critical velocity:

$$V > V_{cr}$$

Superfluid behavior becomes non-linear (mutual friction)

Formation of vapor bubbles at the surface of the heater

In He II re-condensation of the vapor

Surface tension let the bubbles implode

Implosion speed exceeds v₁

Shock wave => cavitation

Critical heat flux in He II (T<T $_{\lambda}$)

Normal fluid cooling (T>T $_{\lambda}$)

Concluding remarks

- Cryogenics serving superconducting systems is now part of all major accelerators and future projects,
- While advanced applications tend to favour "T< 2 K", many almost industrial applications are based on "4.5 K" and R&D continues for "high temperature" applications,
- Even though cryogenic engineering follows well defined rules and standards, there are still variants depending on boundary conditions, continents, project schedule ...
- I could only recommend that demonstrated experience is evaluated and adapted to specific requirements you may have!

Some references

- K. Mendelssohn, The quest for absolute zero, McGraw Hill (1966)
- R.B. Scott, *Cryogenic engineering*, Van Nostrand, Princeton (1959)
- G.G. Haselden, *Cryogenic fundamentals*, Academic Press, London (1971)
- R.A. Barron, *Cryogenic systems*, Oxford University Press, New York (1985)
- B.A. Hands, *Cryogenic engineering*, Academic Press, London (1986)
- S.W. van Sciver, *Helium cryogenics*, Plenum Press, New York (1986)
- K.D. Timmerhaus & T.M. Flynn, Cryogenic process engineering, Plenum Press, New York (1989)
- Proceedings of CAS School on Superconductivity and Cryogenics for Particle Accelerators and Detectors, Erice (2002)
 - U. Wagner, Refrigeration
 - G. Vandoni, Heat transfer
 - Ph. Lebrun, Design of a cryostat for superconducting accelerator magnet
 - Ph. Lebrun & L. Tavian, *The technology of superfluid helium*
- Proceedings of ICEC and CEC/ICMC conferences
- CERN, HSE, Cryogenic Safety courses 1-3

Thank you for your attention.

Spare slides

Overview of cryogenics at CERN - Infrastructure

- Refrigeration plants (warm compressor stations and cold boxes – e.g., LHC, ATLAS, CMS)
- Refrigeration units (e.g., LHC cold compressor units)
- Liquefiers (Central Liqu., SM18, ISOLDE, CAST...)

Overview of cryogenics at CERN - Infrastructure

- Storage vessels: GHe or LHe
- Networks of distribution lines (warm and cryogenic)
- Q stands for Cryogenics

Cryogenic hazardous events – Warning signs

Eyes -

Ears -

Nose -

Liquid or gaseous cryogens are odourless and colourless.

Surface temperatures are not obvious

The human senses do not warn!

OFTEN ONLY secondary signs:

Ice, water, air condensation (!) \rightarrow indicates cold surfaces

Fog → may indicate a leak of liquid or gazeous cryogens

Risk of cold burn / Frost bite

Source: Sever et al. (2010). Frostbite Injury of Hand Caused by Liquid Helium: A Case Report. Eplasty. 10. e35.

Vapor pressure curves of common gases

Thermo-acoustic oscillations

Quarter wave resonator "resonance at one open end"

From: openstax college, Rice University, Sound Interference and Resonance, Download for free at http://cnx.org/content/col11406/latest/.

Thermo-acoustic oscillations (TAO or Taconis)

Gas in contact with a wall that is subjected to a temperature gradient

$$Y_C = r \cdot \sqrt{\frac{v_1 \cdot \rho_{vap}}{l_{cold} \cdot v_{vap}}}$$

$$\alpha = \frac{T_{hot}}{T_{cold}}; \qquad \xi = \frac{l_{hot}}{l_{cold}}$$

Typical frequencies 10 to 40 Hz

Conditions:

Stand pipe of a transfer line

 $T_{warm} = 280 \text{ K}$

 T_{cold} = 2.1 K saturated bath

 $L_{cold} = 0.35 \text{ m}$

 L_{warm} = 0.35 m

 r_{Tube} = 5 mm inner tube radius

Stability curves from: N. Rott, Thermally Driven Acoustic Oscillations. Part II: Stability Limit for Helium, J. of Apl. Math. And Physics, Vol. 24

Thermo-acoustic oscillations (TAO or Taconis)

- Oscillations are more likely and stronger at lower pressure
- $\Delta p = \pm 0.3$ bar
- Reduction/attenuation by:
 - restriction and warm buffer
 - insert in tube
 - closing bottom of tube by liquid

Heat capacity of materials vs. cooldown

Amount of cryogen required to cool down 1 kg iron to sat. temperature

Using	Latent heat only	Latent heat and enthalpy of gas
LHe from 290 to 4.2 K	29.5 liter	0.75 liter
LHe from 77 to 4.2 K	1.46 liter	0.12 liter
LN ₂ from 290 to 77 K	0.45 liter	0.29 liter

Vaporization of normal boiling cryogens under 1 W applied heat load

Cryogen	[mg/s]	[l/h] (liquid)	[l/min] (gas NTP)
Helium	48	1.38	16.4
Nitrogen	5	0.02	0.24

Emissivity of technical materials at low temperatures

Emissivity of cold surface coated with water condensate dependent on layer thickness

	Cold surface, 77 K	Gas inlet
1	Al + Cat-a-Lac	Uniform over time, 0.06 Pa
2	Ni + Black Velvet 101-C10/3M	Sporadic
3	Ni + Black Velvet 101-C10/3M	Uniform over time, 0.1 Pa
4	Al, polished, $\varepsilon = 0.07$	Uniform over time, 0.06 Pa
5	Ni, polished	Sporadic
6	Ni, polished	Uniform over time, 0.1 Pa

Superconductivity – Properties

Three essential parameters of SC:

- Critical Temperature: T_c
 For T_c>23.2 K one calls it
 High Temperature Superconductivity
 (HTS)
- Critical magnetic field strength: H_c
- Critical current density: j_c

ther current

 $J[kA/mm^2]$

NbTi

 Lowering the temperature allows for higher current density and higher magnetic field strength.

T [K]

Temperature stability and homogeneity are crucial.

LHC cryogenic distribution scheme - QRL

Pressurized/saturated He II

37'500 tons at 1.9 K

Interface heat transfer at very low temperature

Valid for small heat flux (when $\Delta T \ll T$)

Source: Ph. Lebrun, Cooling with Superfluid Helium

The effectiveness of J-T expansion

Source: Ph. Lebrun, Cooling with Superfluid Helium

Refrigerator

Refrigerator

Liquefier

For refrigerators/liquefiers with the same efficiency:

Process diagram, LHC refrigerator 18 kW @ 4.5 K

Energy consumption CERN, LHC and Cryo

CERN in total is around 200 MW with LHC contributing to 115 MW

Source: https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.energy_consumption

When the LHC is up and running the total average power for the whole CERN site will peak during July at about 180 MW of which:

- LHC cryogenics 27.5 MW (40 MW installed)
- LHC experiments 22 MW

Heat capacity – Lambda point

From: Enss, Hunklinger, Low temperature physics, 2005.

Specific volume of ⁴He

