Transverse Beam Dynamics III

I) Linear Beam Optics Single Particle Trajectories Magnets and Focusing Fields Tune & Orbit

II) The State of the Art in High Energy Machines: The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams & Luminosity

III) Errors in Field and Gradient: Liouville during Acceleration The Δp/p ≠0 problem Dispersion Chromaticity

Luminosity

Example: Luminosity run at LHC

 $\beta^*_{x,y} = 0.55 \, m$ $\varepsilon_{x,y}$ = 5 *10⁻¹⁰ *rad m* $\sigma_{x,y} = 17 \mu m$

 $n_b = 2808$ $f_0 = 11.245 \, \text{kHz}$

x y p ¹ *p b* $\overline{I}_{n}I$ $e^2 f_0 n$ *L* πe I_0 n_i σ_i σ 1 ^{*l*} p ² $\overline{0}$ $\frac{1}{2}$ * 4 $=\frac{1}{1}$

 $I_p = 584 \; \text{m}A$

Overall cross section of the Higgs:

Make β as small as possible !!!*

The LHC Insertions

14.) Liouville during Acceleration

$$
\boldsymbol{\varepsilon} = \boldsymbol{\gamma}(s) \; \boldsymbol{x}^2(s) + 2 \boldsymbol{\alpha}(s) \boldsymbol{x}(s) \boldsymbol{x}'(s) + \boldsymbol{\beta}(s) \; \boldsymbol{x}'^2(s)
$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ... $\varepsilon \neq const$!

Classical Mechanics:

 \mathbf{x}

phase space = diagram of the two canonical variables position & momentum

 p_{x}

 \mathbf{x}^{\prime} $\sqrt{\varepsilon\gamma}$ \mathbf{x} *According to Hamiltonian mechanics: phase space diagram relates the variables q and p*

Liouvilles Theorem:

$$
p dq = const
$$

$$
\int p_x dx = const
$$

x

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
x' = \frac{dx}{ds} = \frac{dx}{dt}\frac{dt}{ds} = \frac{\beta_x}{\beta} = \frac{p_x}{p}
$$

 $1-\frac{v}{a^2}$

c

 $\beta_x = \frac{v_x}{\sqrt{2}}$

c $\frac{v}{\sqrt{2}}$

1

 $\gamma =$

2

$$
\Rightarrow \varepsilon = \int x' dx \propto \frac{1}{\beta \gamma}
$$

¢ ^µ ò *the beam emittance shrinks during acceleration ε ~ 1 / γ*

Nota bene:

1.) A proton machine … or an electron linac … needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes.

optics at 450 GeV

 $\sigma = \sqrt{\varepsilon \beta}$

2.) At lowest energy the machine will have the major aperture problems, \rightarrow *here we have to minimise* $\hat{\beta}$

3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC mini beta optics at 7000 GeV

Example: HERA proton ring

injection energy: 40 GeV $\gamma = 43$ *flat top energy: 920 GeV γ = 980*

*emittance ε (40GeV) = 1.2 * 10 -7 ε (920GeV) = 5.1 * 10 -9*

7 σ beam envelope at E = 40 GeV

… and at E = 920 GeV

The , not so ideal world "

15.) The " *Δ***p / p ≠ 0**" **Problem**

ideal accelerator: all particles will see the same accelerating voltage. \rightarrow $\Delta p / p = 0$

"nearly ideal" *accelerator: Cockroft Walton or van de Graaf*

Δp / p ≈ 10 -5

Vivitron, Straßbourg, inner structure of the acc. section

MP Tandem van de Graaf Accelerator at MPI for Nucl. Phys. Heidelberg

drift tube structure at a proton linac (GSI Unilac)

* **RF Acceleration: multiple application of the same acceleration voltage; brillant idea to gain higher energies**

n number of gaps between the drift tubes q charge of the particle U0 Peak voltage of the RF System Ψ^S synchronous phase of the particle

500 MHz cavities in an electron storage ring

RF Acceleration-Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)

just a stupid (and nearly wrong) example) *Bunch length of Electrons ≈ 1cm*

 $\lambda = 75$ *cm*

€ $\sin(84^\circ) = 0.994$ $\sin(90^\circ) = 1$

$$
\frac{\Delta U}{U} = 6.0 \cdot 10^{-3}
$$

^ν = 400*MHz c* = ^λ ^ν ^λ = 75 *cm*

typical momentum spread of an electron bunch:

 $\overline{\Delta}$ *p p*

Dispersive and Chromatic Effects: Δp/p ≠ 0

Are there any Problems ??? Sure there are !!! *font colors due to*

pedagogical reasons

16.) Dispersion and Chromaticity: Magnet Errors for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu $1/p$

Matrix formalism:

$$
x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}
$$

$$
x(s) = C(s) \cdot x_0 + S(s) \cdot x'_0 + D(s) \cdot \frac{\Delta p}{p}
$$

$$
\begin{pmatrix} x \\ x' \end{pmatrix}_s = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_0 + \frac{\Delta p}{p} \begin{pmatrix} D \\ D' \end{pmatrix}_0
$$

Calculate D, D': ... takes a couple of sunny Sunday evenings!

$$
D(s) = S(s) \int_{S_0}^{S_1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{S_0}^{S_1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}
$$

(proof see CAS proc.)

Dispersion is visible

HERA Standard Orbit

HERA Dispersion Orbit

dedicated energy change of the stored beam \rightarrow closed orbit is moved to a dispersions trajectory

$$
x_p = D(s) * \frac{\Delta p}{p}
$$

Attention: at the Interaction Points we require D=D´*= 0*

Periodic Dispersion:

"Sawtooth Effect" *at LEP (CERN)*

In the straight sections they are accelerated by the rf cavities so much that they "overshoot" and reach nearly the outer side of the vacuum chamber.

> *In the arc the electron beam loses so much energy in each octant that the particle are running more and more on a dispersion trajectory.*

17.) Chromaticity: A Quadrupole Error for Δp/p ≠ 0

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

to high energy to low energy ideal energy

a particle that has a higher momentum feels a weaker quadrupole gradient and has a lower tune.

$$
\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds
$$

Δ*Q* = *Q*'

Δ*p*

p

definition of chromaticity:

… what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed ^à *it is determined by the focusing strength k of all quadrupoles*

$$
\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds
$$

k = quadrupole strength β = betafunction indicates the beam size … and even more the sensitivity of the beam to external fields

Example: LHC

 $Q' = 250$ *Δ p/p = +/- 0.2 *10-3 Δ Q = 0.256 … 0.36*

à*Some particles get very close to resonances and are lost*

in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity (Q' [≈] 20)

Ideal situation: cromaticity well corrected, (Q' [≈] 1)

Tune and Resonances

*m*Qx +n*Qy +l*Qs = integer*

Tune diagram up to 3rd order

… and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

Chromaticity Correction:

We need a magnetic field that focuses stronger those individual particles that have larger momentum and focuses weaker those with lower momentum. ... but that does not exist.

The way the trick goes:

1.) sort the particle trajectories according to their energy we use the dispersion to do the job

2.) introduce magnetic fields that increase stronger than linear with the distance Δx to the centre

3.) calculate these fields (sextupoles) in a way that the lack of focusing strength is exactly compensated.

Correction of Q':

Need: additional quadrupole strength for each momentum deviation Δp/p

1.) sort the particles acording to their momentum

… using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$
B_x = \tilde{g}xy
$$

\n
$$
B_y = \frac{1}{2}\tilde{g}(x^2 - y^2)
$$

\n
$$
\frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial x} = \tilde{g}x
$$

linear amplitude dependent "gradient" *:*

Correction of Q':

k1 normalised quadrupole strength k2 normalised sextupole strength

Sextupole Magnets:

$$
k_1(sext) = \frac{\tilde{g}x}{p/e} = k_2 * x
$$

$$
= k_2 * D \frac{\Delta p}{p}
$$

Combined effect of "natural chromaticity" and Sextupole Magnets:

$$
Q' = -\frac{1}{4\pi} \left\{ \int k_1(s)\beta(s)ds + \int k_2 \cdot D(s)\beta(s)ds \right\}
$$

You only should not forget to correct Q' *in both planes ... and take into account the contribution from quadrupoles of both polarities.*

Chromatizitätskorrektur:

Einstellung am Speicherring: Sextupolströme so variieren, dass ξ ≈ +1…+2

Clearly there is another problem if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down – at a given position "s" in the ring - the **single partilce amplitude x** and the angle **x**´ \ldots and plot it. $\left(x'\right)_{s1}$ and $\left(x'\right)_{s0}$ s_1 $\overline{}$ $\overline{}$ *x x* $\int_{\mathbb{R}^1} = M_{turn} * \left| \frac{x}{x'} \right|$ ø $\mathcal{L}_{\mathcal{L}}$ $\overline{}$ \setminus $\sqrt{2}$ ¢

A beam of 4 particles *– each having a slightly different emittance:*

*

 $\overline{}$ \setminus

 $\bigg($

x

turn

M

s

÷ ÷ ø

 $\mathcal{L}_{\mathcal{L}}$

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. \rightarrow no equatiuons; instead: Computer simulation

Luminosity...

...describes the performance of a collider to hit the "target" (i.e. the other particles) and so to produce "hits".

The Mini-Beta scheme ...

... focusses striongly the beams to achieve smallest possible beam sizes at the IP. The obtained small beta function at the IP is called β*. Don't forget the cat.

A proton beam shrinks during acceleration, we call it unfortunately "adiabatic shrinking". Nota bene: An electron beam in a ring is growing with energy !!

Dispersion ...

... is the particle orbit for a given momentum difference.

Chromaticity ...

... is a focusing problem. Different momenta lead to different tunes à **attention ... resonances !!**

Sextupoles ...

have non-linear fields and are used to compensate chromaticity

Strong non-linear fields can lead to particle losses (dynamic aperture)

Bibliography

