The Particle World: an introduction to particle physics

CERN summer student lectures 2019

Tara Shears

What particle physics describes
What we know (and what we don't)
The Standard Model: matter; forces; Higgs.
Experiments; performing research
Outstanding questions and mysteries ...

..... in three lectures!

The universe

aside: units

Our scale	Particle Physics	Convert
Length m	Length fm	1 eV = 1.6 x 10 ⁻¹⁹ J
Mass kg	Mass eV/c ²	1 GeV = 10 ⁹ eV
Time s	Time s	1 TeV = 10 ³ GeV
Energy kg m ² s ⁻²	Energy eV	1 fm = 10 ⁻¹⁵ m

Note: often set $\hbar = c = 1$

u,d proposed 1960s, discovered ~1968 e discovered 1897

Radioactive decay (inferred 1930s, seen 1956)

1900

1956

Electron neutrino

F. Reines, C.L. Cowan, *Nature* **178** (4531): 446

Cosmic ray experiments (1930s, 1940s)

1900

1937

Muon

S.H. Neddermeyer, C.D. Anderson,

Physical Review **51** (10): 884

1969

up, down, strange quarks

E.D. Bloom et al. Physical Review Letters 23 (16): 930

J. M. Breidenbach et al. Physical Review Letters 23 (16): 235

Collider experiments (1960s -)

1974 Charm quarks J.J. Aubert *et al. Physical Review Letters* **33** (23): 1404

J.-E. Augustin et al. Physical Review Letters 33 (23): 1406

1977

Bottom quarks

S.W. Herb et al. Physical Review Letters **39**(5): 252.

1995

Top quarks

F. Abe et al. (CDF collaboration) Physical Review Letters 74 (14): 2626–2631.

S. Arabuchi et al. (D0 collaboration) Physical Review Letters 74 (14): 2632–2637.

1962

Muon neutrino

G. Danby et al. Physical Review Letters 9 (1):36

1975

Tau lepton

M.L. Perl et al. Physical Review Letters 35 (22): 1489.

2000

Tau neutrino K. Kodama *et al.* (<u>DONUT Collaboration</u>), *Physics Letters B* **504** (3): 218.

And ... antimatter

Einstein's equation of motion*:
$$E^2 = p^2 c^2 + m^2 c^4$$

Two energy solutions for the same mass;

- Matter
- Antimatter

Every fermion has an antimatter version.

Same mass, opposite charge

eg. antiquark \bar{q} , antimuon μ^+ , antineutrino $\bar{\nu}$

*(and others, more famously Dirac)

Matter is held together by forces;

mediated by force carrying particles (bosons; spin 1)

Matter is held together by forces;

mediated by force carrying particles (bosons; spin 1)

Aside: Feynman diagrams

Aside: Feynman diagrams

Matter is held together by forces;

- mediated by force carrying particles (bosons; spin 1)
- 3 forces considered in particle physics

Note: No gravity!!

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)
Massless photon	Massive W [±] ,Z	8 massless gluons

Value unknown/ not predicted

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)
Massless photon	Massive W [±] ,Z	8 massless gluons
Couplingg	Coupling g _W	Coupling g _s

Value unknown/ not predicted

Weak force **EM force Strong force** Non-abelian Non-abelian Abelian Value unknown/ not predicted

(in massless limit)

EM force

Abelian

Only charged particles couple

Weak force

Non-abelian

Only left handed particles couple

Strong force

Non-abelian

Only quarks couple

Value unknown/ not predicted

EM force

Abelian

Only charged particles couple

Value unknown/ not predicted

Weak force

Non-abelian

Only left handed particles couple

quark mixing (3 generations, CP)

Neutrino mixing (3 generations, CP)

Strong force

Non-abelian

Only quarks couple

Flavour physics 29/7/19

Where do the differences come from?

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)
Massless photon	Massive W [±] ,Z	8 massless gluons

Value unknown/ not predicted

Massive gauge bosons are a problem

Standard Model equations have a very particular form.

- (local) gauge invariance* imposed
- satisfied if we derive equations treating matter and forces together, and if **bosons are massless**.

Massive gauge bosons require a gauge-invariant fix-up to our theory.

=> Higgs mechanism

* See your Standard Model course.

Higgs

Introduce Higgs field ϕ :

Complex doublet (but 1d case shown here to get idea)

 $\mathsf{V}(\phi) = -0.5\mu^2 \, |\, \phi \,|^2 + \lambda \, |\, \phi \,|^4$

Shape of potential:

- μ² < 0
- $\lambda > 0$

Introduce Higgs field:

Complex doublet (but 1d case shown here to get idea)

 $\mathsf{V}(\phi) = -0.5\mu^2 \, |\, \phi \,|^2 + \lambda \, |\, \phi \,|^4$

Introduce Higgs field :

Couples to particles to give mass (amount ~ coupling strength)

Introduce Higgs field :

Couples to particles to give mass (amount ~ coupling strength)

Complex doublet has **4 free parameters**

3 absorbed into W+, W-, Z boson mass

W+, W-, Z, γ admixtures of original weak, em massless bosons.

1 manifested as a massive Higgs boson (m_H)

Connection between weak and electromagnetic forces

Introduce Higgs field :

Couples to particles to give mass (amount ~ coupling strength)
Complex doublet has 4 free parameters
3 absorbed into W+, W-, Z boson mass
W+, W-, Z, γ admixtures of original weak, em massless bosons.
1 manifested as a massive Higgs boson (m_H)

(note: Higgs field gives mass to fermions by a different mechanism) Yukawa coupling; yet to be fully tested.

• No deep explanation; motivated by simplicity.

Introduce Higgs field :

After symmetry breaking, Higgs sector properties are:

- spinless Higgs boson (m_H)
- vacuum expectation value (mean field value) (v)

Consequences:

Weak and electromagnetic forces connected Massive Z is mixture of massless em + weak bosons Relates Mw, Mz and weak, electromagnetic couplings: $\tan \theta_W = g_W / g$ $M_W = M_Z \cos \theta_W$

July 4th 2012

~7 years later .. you are here

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)
Massless photon	Massive W [±] ,Z	8 massless gluons
Coupling g	Coupling g _w	Coupling g _s

Value unknown/ not predicted

Force Strengths:

Quantified by "coupling constants"

$$\alpha = \frac{g^2}{4\pi}$$

Strong: $\alpha_s \sim 1$ Electromagnetic: $\alpha_{em} \sim 1/137$ Weak: $\alpha_W \sim 10^{-6}$ Gravity: $\alpha_g \sim 10^{-40}$

(note: low energy/large distance scale values. Coupling strength changes with energy)

Running couplings

Parallel plate capacitor

Dielectric reduces apparent charge on plates (polarisation) **Screening** of charge.

Screening of charge by vacuum polarisation;

High E \Rightarrow smaller distances \Rightarrow see more charge

Coupling increases with E

Non-Abelian effects

Screening of charge by vacuum polarisation;

High E \Rightarrow smaller distances \Rightarrow see more charge

Coupling increases with E

Non-abelian forces also include these "extra" charge loops

Net effect: coupling decreases with E

Note: 1/coupling plotted.

1/em falls with E.1/weak rises with E.1/strong rises with E.

(note: weak force isnt as weak as it appears, this is intrinsic strength. Apparent strength is diluted by W mass)

Implications: QCD

Force grows with distance. **Confinement**

- No free quarks
- Colourless hadrons
 - Baryons (3 q)
 - Mesons (q anti-q)
 - Tetraquarks? (2q 2anti-q)
 - Pentaquarks? ...?

Hadronisation

– jets

Quantum Electrodynamics: QED

Quantum Chromodynamics: QCD

Different forces, but similar (mathematical) structure/behaviour

Weak force vs. EM, QCD?

W boson massive

Factor involved in boson exchange ~ $1/(E^2+M^2)$ (hence units) Strength of weak force = em force if M~ 30 GeV (M_W~80 GeV)

EM force

Abelian

Only charged particles couple

Value unknown/ not predicted

Weak force

Non-abelian

Only left handed particles couple

quark mixing (3 generations, CP)

Neutrino mixing (3 generations, CP) **Strong force**

Non-abelian

Only quarks couple

Weak force interactions

W couples to: Upper and lower members of a fermion generation. L- (R-) handed (anti)particles

(observed, not predicted behaviour)

Weak force interactions

W couples to: Upper and lower members of a fermion generation. L- (R-) handed (anti)particles

Z couples to: Matter and antimatter versions of a fermion. Complicated mix of L-, Rparticles.

 v_{e}

е-

"vector, axial couplings"; Higgs mechanism.

EM force

Abelian

Only charged particles couple

Value unknown/ not predicted

Weak force

Non-abelian

Only left handed particles couple

quark mixing (3 generations, CP)

Neutrino mixing (3 generations, CP)

Strong force

Non-abelian

Only quarks couple

Flavour physics 29/7/19

Weak vs. mass quark eigenstates

Mass eigenstates of quarks form hadrons

Weak vs. mass quark eigenstates

Mass eigenstates of quarks form hadrons

W couples to weak quark eigenstates q'

q' admixture of q and vice versa

Quark mixing

Weak, mass eigenstates related by mixing matrix in SM (3x3 matrix) Mixing matrix is unitary (inverse = complex conjugate)

CKM matrix

CKM matrix (1973 – before charm! Predicted 3rd generation)

Elements describe every weak quark transition

SM does not predict existence of or values for matrix elements (couplings of W to quarks).

Input by experimental data

$$V_{ud} \quad V_{us} \quad V_{ub}$$

$$V_{CKM} = V_{cd} \quad V_{cs} \quad V_{cb}$$

$$V_{td} \quad V_{ts} \quad V_{tb}$$

CP violation

C = charge operator P = parity operator

CP operation changes particle q to an<u>tiparticle</u> q (and vice versa) CP **violation** if $q \rightarrow q'$ rate different to $q' \rightarrow q$ ie. $V_{qq'} \neq V_{qq'}^*$

CP violation observed in weak decays.

Note:

- SM does not predict CP violation.
- SM does not explain CP violation.
- CP violation **must be added** to SM.

CP violation

 Need 3 generations of quarks to introduce CP violation into theory

Mixing matrix is 3x3.

Unitarity constraints \Rightarrow 4 independent parameters

3 angles quantify mixing between (1,3) (2,3) (1,2) generations, **1 complex phase** (mechanism for introducing CP)

Aside: neutrino CP violation, mixing

• Similar framework adopted for neutrinos (PMNS matrix). Weak (v_e , v_μ , v_τ) related to mass eigenstates (v_1 etc):

3 angles quantify mixing between (1,3) (2,3) (1,2) generations, **1 complex phase** (mechanism for introducing CP)

Note: parameters investigated in dedicated neutrino experiments

Standard Model

Standard Model (SM)

Quantum field theory based on lagrangians

We use the SM to predict experimental observations

Standard Model 15/7/19 HEP theory concepts 8/7/19

Successes

Consistent with experiment

No deviations seen

Predictions (eg Higgs) proven

Holes

Incomplete (eg. no gravity)

Few explanations

Many ad-hoc additions to fit experimental data

Successes

Consistent with experiment

No deviations seen

Predictions (eg Higgs) proven

Holes

Incomplete (eg. no gravity)

Few explanations

Many ad-hoc additions to fit experimental data

Need to find a breakdown to move forward. **Need experiments.**

Experiments.

Particle accelerators

Beams of charged particles accelerated by electromagnetic force*.

Centre of mass energy:
$$\sqrt{s} = \sqrt{\left(\sum_{i} E_{i}^{2} - \sum_{i} p_{i}^{2}\right)}$$

* Note: also used as sources; cosmic rays, neutrinos from nuclear reactors.

Linear

No bremsstrahlung

Long (for high energy)

"one shot" accelerator

Protons vs. electrons

Accelerators 8/7/19, 9/7/19, 31/7/19 Medical physics 29/7/19

Circular

Bremsstrahlung

Strong magnets needed to maintain circular beam path

Long beam lifetime; many revolutions, many collisions.

LHC: High energy (√s=14 TeV) Circular Proton beams Up to 10⁸ collisions/s

Catch: Need to include behaviour of proton constituents in theoretical predictions.

(and ALICE, LHCb, Moedal, LHCf, TOTEM....)

Reconstruct momentum

Measure energy

Identify type

(**px,py,pz**,m)

(x,y,z)

Tracking detectors Charged particles Location: Ionisation (gas) e/hole (silicon)

> Detectors 2/7/19 Electronics/TDAQ 9/7/19

(**px,py,pz**,m)

Reconstruct path

Reconstruct momentum

Measure energy

Identify type

Magnetic field

Relate track curvature, B to p.

$$p = 0.3Br$$

(px,py,pz,**m**)

Reconstruct path

Reconstruct momentum

Measure energy

Identify type

Calorimeters

Charged + neutral particles Two types: Electromagnetic Hadronic Absorb + measure energy

(px,py,pz,**m**)

Reconstruct path Reconstruct momentum Measure energy Identify type

> Location of absorption: Calorimeters Muon chambers Cerenkov detectors (**v**) Add momentum -> m Transition radiation (γ) Add energy -> m Time-of-flight (comparative m)

Identify particles by characteristic signatures in experiment

Add computers: calculate particle paths and energies

Add theory: infer what fundamental process happened

Future facilities

Too many open questions to stop here.

New neutrino facility?

New high energy machine?

New linear collider?

Physics at lepton colliders 31/7/19 Future collider projects 31/7/19

The known unknowns

- Higgs
- Gravity
- Antimatter
- Dark matter, dark energy
- A unified theory
- + unknown unknowns.....

A Higgs? The Higgs?

Gravity

Can't describe it in SM

Can include it in string theory – not very testable (yet)

Large extra dimensions could be observed at LHC (no sign so far...)

?

String theory 26/7/19

CP violation

Consistent picture in SM but can we explain matter – antimatter asymmetry of the universe?

Does the answer lie in new physics?

?

Antimatter 1/8/19 Flavour physics 29/7/19

SM: 4 numbers

Measure of matter / antimatter difference (1)

Dark stuff?

Source: Robert Kindmer Source: NASA/WMAP Science Team SM with electroweak and strong interactions only describes 4% of the universe

Beyond the Standard Model 23/7/19

Dark Energy 73% Cold Atoms 4% Dark Dark Matter 25%		
Dark energy:	Source: Robert Kirshner Source: NASA/WMAP Science Team	
?		

SM with electroweak and strong interactions only describes 4% of the universe

Beyond the Standard Model 23/7/19

Dark Energy 73% Colde Atoms 4% Dark er 28%		
Dark energy:	Source: Robert Kitsbater Source: NASA/WMAP Stitutee Team	
?		

SM with electroweak and strong interactions only describes 4% of the universe

Dark matter?

Try Supersymmetry (SUSY).

Lightest supersymmetric particle is a dark matter candidate (massive and unobservable)

SUSY particles

The "we did not find SUSY" Plot

Markus Klute

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits March 2019

	Model	Si	ignatur	e ∫	<i>Ĺdt</i> [fb [−]	¹] M a	ss limit				Reference
Inclusive Searches	$ ilde{q} ilde{q}, ilde{q}\! ightarrow\!q ilde{\chi}_1^0$	0 <i>e</i> ,μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	\tilde{q} [2x, 8x Degen.] \tilde{q} [1x, 8x Degen.]	0.43	0.9 0.71	1.55	$m(ilde{\mathcal{X}}_1^0){<}100GeV$ $m(ilde{q}){-}m(ilde{\mathcal{X}}_1^0){=}5GeV$	1712.02332 1711.03301
	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{ m miss}$	36.1	ĩg		Forbidden	2.0 0.95-1.6	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{\chi}_{1}^{0})$ =900 GeV	1712.02332 1712.02332
	$\tilde{g}\tilde{g},\tilde{g}\! ightarrow\!q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	3 e,μ ee,μμ	4 jets 2 jets	$E_T^{ m miss}$	36.1 36.1	ĩ 50 50			1.85 1.2	$m(ilde{\chi}_1^0){<}800GeV$ $m(ilde{g}){\cdot}m(ilde{\chi}_1^0){=}50GeV$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ 3 e,μ	7-11 jets 4 jets	$E_T^{ m miss}$	36.1 36.1	ĩ ⁸ ĩ8		0.98	1.8	$m(ilde{\chi}_1^0) < 400 \mathrm{GeV} \ m(ilde{g}) = rm(ilde{\chi}_1^0) = 200 \mathrm{GeV}$	1708.02794 1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 <i>b</i> 4 jets	$E_T^{\rm miss}$	79.8 36.1	ε̈́δ ε̃δ			2.2 1.25	25 $m(\tilde{\chi}_1^0) < 200 \text{GeV}$ $m(\tilde{g}) \cdot m(\tilde{\chi}_1^0) = 300 \text{GeV}$	ATLAS-CONF-2018-041 1706.03731
3 ^{.4} gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	δ ₁ Forbidden δ ₁ δ ₁	Forbidden Forbidden	0.9 0.58-0.82 0.7	$m(ilde{\mathcal{X}}_1^0)$	$\begin{array}{c} m(\tilde{\chi}^0_1){=}300~\text{GeV}, BR(b\tilde{\chi}^0_1){=}1\\ m(\tilde{\chi}^0_1){=}300~\text{GeV}, BR(b\tilde{\chi}^0_1){=}BR(t\tilde{\chi}^\pm_1){=}0.5\\){=}200~\text{GeV}, m(\tilde{\chi}^\pm_1){=}300~\text{GeV}, BR(t\tilde{\chi}^\pm_1){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{ m miss}$	139	<i>b</i> ₁ Forbidden <i>b</i> ₁	0.23-0.48	C	.23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \mathrm{GeV}, m(\tilde{\chi}_{1}^{0}) {=} 100 \mathrm{GeV} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \mathrm{GeV}, m(\tilde{\chi}_{1}^{0}) {=} 0 \mathrm{GeV} \end{array}$	SUSY-2018-31 SUSY-2018-31
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0 \text{ or } t\tilde{\chi}_1^0$	0-2 e, μ (0-2 jets/1-2	$b E_T^{miss}$	36.1	\tilde{t}_1		1.0		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple		36.1	\tilde{t}_1		0.48-0.84	$m(\tilde{x}_{1}^{t})$	$(\tilde{\chi}_1^{\pm})=150 \text{ GeV}, m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=5 \text{ GeV}, \tilde{t}_1 \approx \tilde{t}_L$	1709.04183, 1711.11520
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e, \mu, \tau$	2 jets/1 b	E_T^{miss}	36.1	\tilde{t}_1			1.16	m(₹1)=800 GeV	1803.10178
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,µ	2 c	E_T^{miss}	36.1	\tilde{c} \tilde{l}_1 \tilde{c}	0.46	0.85			1805.01649 1805.01649 1711.03201
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> ,μ	4 <i>b</i>	E_T E_T^{miss}	36.1	$\tilde{\iota}_2$	0.43	0.32-0.88		$m(\tilde{t}_1,c)-m(\tilde{t}_1)=5\mathrm{GeV}$ $m(\tilde{t}_1)=0\mathrm{GeV},m(\tilde{t}_1)-m(\tilde{t}_1^0)=180\mathrm{GeV}$	1706.03986
E VV direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	≥ 1	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1			0.6		$m(\tilde{\chi}_1^{\pm})=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=10~\mathrm{GeV}$	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e,µ		E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$	0.42			$\mathbf{m}(\tilde{\chi}_{1}^{0})=0$	ATLAS-CONF-2019-008
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via <i>Wh</i>	0-1 <i>e</i> , <i>µ</i>	2 <i>b</i>	E_T^{miss}	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$		0.68		$m(\tilde{x}_1^0)=0$	1812.09432
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via $ ilde{\ell}_L/ ilde{ u}$	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		1.0		$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$	ATLAS-CONF-2019-008
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}_1 \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau(\nu \tilde{\nu})$	2 τ		$E_T^{\rm miss}$	36.1	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.22		0.76	$m(\tilde{\chi}_1^{\pm})$ -m($ \begin{array}{l} m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\tau}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ \tilde{\chi}_{1}^{0}) \!=\! 100 GeV, m(\tilde{\tau}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \end{array} $	1708.07875 1708.07875
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,µ 2 e,µ	0 jets ≥ 1	$E_T^{ m miss} \ E_T^{ m miss}$	139 36.1	$ ilde{\ell}$ 0.18		0.7		$m(ilde{\mathcal{X}}_1^0){=}0 \ m(ilde{\ell}){=}5~GeV$	ATLAS-CONF-2019-008 1712.08119
	$\tilde{H}\tilde{H}, \tilde{H} ightarrow h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1	<i>H</i> 0.13-0.23 <i>H</i> 0.3		0.29-0.88		$\begin{array}{l} BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
Long-lived particles	Direct ${ ilde \chi}_1^+ { ilde \chi}_1^-$ prod., long-lived ${ ilde \chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{ m miss}$	36.1	$ ilde{\chi}_1^{\pm}$ $ ilde{\chi}_1^{\pm}$ 0.15	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable g R-hadron		Multiple		36.1	ĝ			2.0		1902.01636,1808.04095
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$			2.05	2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
RPV	$LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow eu/e\tau/u\tau$	εμ,ετ,μτ			32	ν̃,			1.9	$\lambda'_{211} = 0.11, \lambda_{132}/_{133}/_{233} = 0.07$	1607.08079
	$\tilde{\chi}^{\pm}_{1}\tilde{\chi}^{\mp}_{1}/\tilde{\chi}^{0}_{2} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> ,μ	0 jets	E_T^{miss}	36.1	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33	$m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-	-5 large- <i>R</i> je	ets	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$			1.3 1.9	Large λ_{112}''	1804.03568
			Multiple		36.1	\tilde{g} [λ_{112}'' =2e-4, 2e-5]		1.0	5 2.0	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$		Multiple		36.1	\tilde{g} [λ_{323}'' =2e-4, 1e-2]	0.5	5 1.0	5	m $(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b	,	36.7	$\tilde{t}_1 [qq, bs]$	0.42	0.61			1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 <i>b</i> DV		36.1 136	$\tilde{t}_1 \\ \tilde{t}_1 $ [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k}	, <3e-9]	1.0	0.4-1.45 1.6	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	1710.05544 ATLAS-CONF-2019-006
Dnlv	a selection of the available may	ss limits on r	new state	s or	1) ⁻¹					
				/		-			-	Mass scale [164]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Why 3 forces? 3 generations?

Particles – why so many ingredients of matter?

Why are their masses so different?

Conclusions

Particle physics describes the smallest structures in the universe

Theory: the Standard Model Works fabulously well Is fabulously frustrating

Many big mysteries to solve.