

Nicolas Berger (LAPP Annecy)

Reminders From Lecture 1

Physics measurement data are produced through random processes, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	$\begin{aligned} & \text { Poisson } \\ & P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(S+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!} \end{aligned}$
Binned shape analysis	$n_{i^{\prime}} i=1 . . N_{\text {bins }}$	Poisson product $P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{N_{\text {bus }}} e^{-\left(\boldsymbol{S} f_{i}^{\text {jix }}+\boldsymbol{B} f_{i}^{\text {bug })}\right.} \frac{\left(\boldsymbol{S} f_{i}^{\text {sig }}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)^{n_{i}}}{n_{i}!}$
Unbinned shape analysis	$m_{i}, i=1 . . n_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{n_{\mathrm{evts}}!} \prod_{i=1}^{n_{\mathrm{mvs}}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)$

Model can include multiple categories, each with a separate description

ATLAS Higgs Combination Model

W. Verkerke, SOS 2014

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure
$\rightarrow \mathbf{S}, \boldsymbol{\sigma}, \mathrm{m}_{\mathrm{w}}, \ldots$
- Nuisance parameters (NPs) : other parameters needed to define the model
$\rightarrow B$
\rightarrow For binned data, \boldsymbol{f}_{i} sig $_{i}, f^{\mathrm{fokg}}{ }_{i}$
\rightarrow For unbinned data, parameters needed to define $P_{\text {bkg }}$
e.g. exponential slope α of $\mathrm{H} \rightarrow \mu \mu$ background.

NPs must be either
\rightarrow given a value "by hand" (possibly within systematics) or
\rightarrow constrained by the data (e.g. in sidebands)

Statistical computations

Now that we have a model, can use it to compute analysis results:

- Discovery significance: we see an excess is it a (new) signal, or a background fluctuation?
- Upper limit on signal yield: we don't see an excess - if there is a signal present, how small must it be?
- Parameter measurement: what is the allowed range for a model parameter? ("confidence interval")
\rightarrow The Statistical Model already contains all the needed information - how to use it ?

Course Outline

Lecture 1:

Statistics basics

Describing measurements

Today:
Computing statistical results:
Estimating the value of a parameter
Testing hypotheses
Discovery
Limits
Confidence intervals

Lecture 3: Advanced topics - Profiling, Look-Elsewhere Effect, Bayesian methods

Outline

Computing statistical results

Estimating the value of a parameter

Testing hypotheses

Discovery significance

Upper limits on signal yields

Confidence intervals

Using the PDF

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

$2,5,3,7,4,9, \ldots$.
Each entry = separate "experiment"

Likelihood

Model describes the distribution of the observable: $\mathbf{P (n ; \lambda) , ~ P (d a t a ; ~ p a r a m e t e r s) ~}$
\Rightarrow Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

$$
P(\lambda=?)
$$

2

Estimate

Likelihood: L(parameters) = P(data;parameters)
\rightarrow same as the PDF, but seen as function of the parameters

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value n=5
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value n=5
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value n=5
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Maximum Likelihood Estimation

To estimate a parameter μ, find the value $\hat{\mu}$ that maximizes $L(\mu)$

Maximum Likelihood Estimator (MLE) $\hat{\mu}$:

$$
\hat{\mu}=\arg \max L(\mu)
$$

MLE: the value of μ for which this data was most likely to occur The MLE is a function of the data - itself an observable No guarantee it is the true value (data may be "unlikely") but sensible estimate

MLEs in Shape Analyses

Binned shape analysis:

$$
L\left(\boldsymbol{S} ; \boldsymbol{n}_{i}\right)=P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}\right)=\prod_{i=1}^{N} \operatorname{Pois}\left(\boldsymbol{n}_{i} ; \boldsymbol{S} \boldsymbol{f}_{i}+B_{i}\right)
$$

Maximize global L(S) (each bin may prefer a different S) In practice easier to minimize

$$
\lambda_{\text {Pois }}(S)=-2 \log L(S)=-2 \sum_{i=1}^{N} \log \operatorname{Pois}\left(n_{i} ; S f_{i}+B_{i}\right) \quad \text { Needs a computer... }
$$ In the Gaussian limit

$$
\lambda_{\text {Gaus }}(\boldsymbol{S})=\sum_{i=1}^{N}-2 \log G\left(\boldsymbol{n}_{i} ; \boldsymbol{S} f_{i}+B_{i}, \sigma_{i}\right)=\sum_{i=1}^{N}\left(\frac{\boldsymbol{n}_{i}-\left(\boldsymbol{S} f_{i}+B_{i}\right)}{\sigma_{i}}\right)^{2} \quad x^{2} \text { formula! }
$$

\rightarrow Gaussian MLE (min x^{2} or min $\lambda_{\text {Gaus }}$) : Best fit value in a x^{2} (Least-squares) fit \rightarrow Poisson MLE (min $\lambda_{\text {Pois }}$) : Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, $\boldsymbol{\lambda}_{\text {Pois }} \Rightarrow$ RooAbsPdf: :fitTo(), $\boldsymbol{\lambda}_{\text {Gaus }} \Rightarrow$ RooAbsPdf: :chi2FitTo().

In both cases, MLE \Leftrightarrow Best Fit

$H \rightarrow Y$

$$
L\left(\boldsymbol{S}, \boldsymbol{B} ; \boldsymbol{m}_{i}\right)=e^{-(\boldsymbol{s}+\boldsymbol{B})} \prod_{i=1}^{n_{\text {evs }}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)
$$

Estimate the MLE $\hat{\boldsymbol{S}}$ of \boldsymbol{S} ?
\rightarrow Perform (likelinood) best-fit of model to data
\Rightarrow fit result for S is the desired $\hat{\mathrm{S}}$.

In particle physics, often use the MINUIT minimizer within ROOT.

MLE Properties

Asymptotically Gaussian and unbiased :

$$
\boldsymbol{P}(\hat{\mu}) \propto \exp \left|-\frac{\left(\hat{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\hat{\mu}}^{2}}\right| \text { for } n \rightarrow \infty
$$

for large enough
Standard deviation of the distribution of $\hat{\mu}$

- Asymptotically Efficient : σ_{β} is the lowest possible value (in the limit $n \rightarrow \infty$) among consistent estimators.
\rightarrow MLE captures all the available information in the data
- Also consistent: $\hat{\mu}$ converges to the true value for large $n, \hat{\mu} \xrightarrow{n \rightarrow \infty} \mu^{*}$
- Log-likelihood : Can also minimize $\lambda=-2 \log \mathrm{~L}$
\rightarrow Usually more efficient numerically
\rightarrow For Gaussian L, λ is parabolic: $\quad \lambda(\mu)=\left(\frac{\hat{\boldsymbol{\mu}}-\mu}{\sigma_{\mu}}\right)^{2}$
- Can drop multiplicative constants in L (additive constants in λ)

Extra: Fisher Information

Fisher Information:

$$
I(\mu)=\left\lvert\,\left\langle\left.\frac{\partial}{\partial \mu} \log L(\mu)\right|^{2}\right|=-\left|\frac{\partial^{2}}{\partial \mu^{2}} \log L(\mu)\right|\right.
$$

Measures the amount of information available in the measurement of μ.

Gaussian likelihood: $I(\mu)=\frac{1}{\sigma_{\text {Gauss }}^{2}}$
\rightarrow smaller $\sigma_{\text {Gauss }} \Rightarrow$ more information.

Cramer-Rao bound: $\operatorname{Var}(\tilde{\mu}) \geq \frac{1}{I(\mu)}$
For any estimator $\tilde{\mu}$.

Gaussian case:

- For a Gaussian estimator $\tilde{\mu}$

$$
P(\tilde{\mu}) \propto \exp \left(-\frac{\left(\tilde{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\widetilde{\mu}}^{2}}\right)
$$

Cramer-Rao: $\operatorname{Var}(\bar{\mu})=\bar{\psi} \geq \sigma_{\text {Gauss }}{ }^{2}$

- MLE: $\operatorname{Var}(\hat{\mu})=\hat{p}=\sigma_{G a u s s}{ }^{2}$
\rightarrow cannot be more precise than allowed by information in the measurement.
Efficient estimators reach the bound : e.g. MLE in the large n limit.

Outline

Computing statistical results

Estimating the value of a parameter

Testing hypotheses

Discovery significance

Upper limits on signal yields

Confidence intervals

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g . \mathbf{H}_{0}: \mathbf{S = 0}\right.$)
\rightarrow Goal : decide if H_{0} is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Dissed discovery Discovery! $(1-$ - Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis. " - R. A. Fisher

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g . \mathbf{H}_{0}: \mathbf{S = 0}\right.$)

	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Discovery!	Type-II error (Missed discovery)
H_{0} is true (Nothing new)	Type-I error (False discovery)	No new physics, none found

Lower Type-I errors \Leftrightarrow Higher Type-II errors and vice versa: cannot have everything!
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g . \mathbf{H}_{0}: \mathbf{S = 0}\right.$)

	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Discovery!	Type-II error (Missed discovery)
H_{0} is true (Nothing new)	Type-I error (False discovery)	No new physics, none found

Lower Type-I errors \Leftrightarrow Higher Type-II errors and vice versa: cannot have everything!
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

ROC Curves

"Receiver operating

 characteristic" (ROC) Curve:\rightarrow Plot Type-I vs Type-II rates for different cut values
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

ROC Curves

"Receiver operating

 characteristic" (ROC) Curve:\rightarrow Plot Type-I vs Type-II rates for different cut values
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " $5 \sigma^{\prime \prime}$)

ROC Curves

"Receiver operating

 characteristic" (ROC) Curve:\rightarrow Plot Type-I vs Type-II rates for different cut values
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " $5 \sigma^{\prime \prime}$)

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses \boldsymbol{H}_{0} and \boldsymbol{H}_{1}, the $\underline{L\left(H_{1} ; \text { data }\right)}$
$L\left(H_{0} ;\right.$ data $)$ optimal discriminator is the Likelihood ratio (LR)
e.g. $\frac{L(S=5 ; \text { data })}{L(S=0 ; \text { data })}$

As for MLE, choose the hypothesis that is more likely given the data we have.
\rightarrow Minimizes Type-Il uncertainties for given level of Type-I uncertainties
\rightarrow Always need an alternate hypothesis to test against.

Caveat: Strictly true only for simple hypotheses (no free parameters)
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

Outline

Computing statistical results

Estimating the value of a parameter

Testing hypotheses

Discovery significance

Upper limits on signal yields

Confidence intervals

Discovery: Test Statistic

Discovery:

- H_{0} : background only ($\mathbf{S}=\mathbf{0}$) against
- \mathbf{H}_{1} : presence of a signal $(\mathbf{S}>\mathbf{0})$

\rightarrow For H_{1}, any $\mathrm{S}>0$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{s}}$.
\Rightarrow Use LR $\frac{L(S=0)}{L(\hat{S})}$
\rightarrow In fact use the test statistic

$$
\boldsymbol{q}_{0}=\left\lvert\, \begin{array}{cc}
-2 \log \frac{L(S=0)}{\boldsymbol{L}(\hat{S})} & \hat{S} \geq 0 \\
\mathbf{0} & \hat{S}<0
\end{array}\right.
$$

\rightarrow Set $\mathrm{a}_{0}=0$ for $\hat{\mathrm{S}}<0$, same as for $\hat{\mathrm{S}}=0$: negative signal is same as no signal
\rightarrow one-sided test statistic

Discovery p-value

Large values of $-2 \log \frac{L(S=0)}{L(\hat{S})}$ if:
\Rightarrow observed $\hat{\mathrm{S}}$ is far from 0
$\Rightarrow \mathrm{H}_{0}(\mathrm{~S}=0)$ disfavored compared to $\mathrm{H}_{1}(\mathrm{~S} \neq 0)$.

How large q_{0} before we can exclude H_{0} ? (and claim a discovery!)
\rightarrow Need small Type-I rate (falsely accepting H_{0})
\rightarrow Type-I rate also known as the \boldsymbol{p}-value \boldsymbol{p}_{0} :

Fraction of outcomes that are at least as extreme (signal-like) as data, when \boldsymbol{H}_{0} is true (no signal present).
\rightarrow Compute from the distribution $f\left(q_{0} \mid S=0\right): p_{0}=\int^{\infty} f\left(q_{0} \mid S=0\right) d q_{0}$
\rightarrow Smaller p-value \Rightarrow Stronger case for discovery $q_{0}^{\text {ols }}$

Asymptotic distribution of q_{0}

\rightarrow Assume Gaussian regime for $\hat{\mathbf{s}}$ (e.g. large $\mathrm{n}_{\text {evts }}$ Central-limit theorem)
$\Rightarrow \mathbf{q}_{0}$ is distributed as $\mathbf{a} \mathbf{X}^{2}$ under $\mathrm{H}_{0}(\mathrm{~S}=0)$, for $\hat{S} \geq 0$: Wilk's Theorem (*)

$$
f\left(q_{0} \mid H_{0}, \hat{S} \geq 0\right)=f_{x^{2}\left(n_{u_{0 t i t}}=1\right)}\left(q_{0}\right)
$$

\Rightarrow Can compute p-values from Gaussian quantiles

$$
p_{0}=1-\Phi\left(\sqrt{q_{0}}\right)
$$

By definition, $\mathrm{a}_{0} \sim X^{2} \Rightarrow \sqrt{ } \mathrm{a}_{0} \sim G(0,1)$
\Rightarrow Even more simply, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Typically works well already for for event counts of $O(5)$ and above \Rightarrow Widely applicable
(*) 1-line "proof" : asymptotically L and S are Gaussian, so
$L(S)=\exp \left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^{2}\right] \Rightarrow q_{0}=\left(\frac{\hat{S}}{\sigma}\right)^{2} \Rightarrow{\sqrt{q_{0}}}=\frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_{0} \sim \chi^{2}\left(n_{\mathrm{dof}}=1\right)$

Homework 1: Gaussian Counting

Count number of events n in data
\rightarrow assume n large enough so process is Gaussian
\rightarrow assume B is known, measure S
Likelihood: $\quad L\left(S ; \boldsymbol{n}_{\text {obs }}\right)=e^{-\frac{1}{2}\left(\frac{n_{\text {obs }}-(S+B)}{\sqrt{S}+B}\right)^{2}}$
\rightarrow Find the best-fit value (MLE) Ŝ for the signal

$S+B$ (can use $\lambda=-2 \log L$ instead of L for simplicity)
\rightarrow Find the expression of q_{0} for $\hat{\mathrm{S}}>0$.
\rightarrow Find the expression for the significance

$$
Z=\frac{\hat{S}}{\sqrt{B}}
$$

$\sqrt{ } \mathrm{B}$ is the uncertainty on S (remember $\sqrt{ } \mathrm{n}$?) so this gives "how many times its uncertainty" $\widehat{\mathrm{S}}$ is from $0 \Rightarrow$ Natural expression.
\rightarrow Only valid in Gaussian regime!

Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n}
$$

(Can remove the n ! constant since we're only dealing with L ratios)
\rightarrow As before, compute \hat{S}, and a_{0}
\rightarrow Compute $\mathrm{Z}=\sqrt{ } \mathrm{q}_{0}$, assuming asymptotic behavior (weaker form of the Gaussian assumption)

Solution:

$$
Z=\sqrt{2\left\lfloor\left.(\hat{S}+B) \log \left|1+\frac{\hat{S}}{B}\right|-\hat{S} \right\rvert\,\right.}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{a}_{0}$ result Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to 5 events!)

Some Examples

High-mass X $\boldsymbol{\rightarrow} \mathbf{Y Y}$ Search: JHEP 09 (2016)

Takeaways

Given a statistical model $P($ data; $\mu)$, define likelihood $L(\mu)=P($ data; $\boldsymbol{\mu})$

To estimate a parameter, use the value $\hat{\boldsymbol{\mu}}$ that maximizes $\mathrm{L}(\mu) \rightarrow$ best-fit value
To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{L\left(\boldsymbol{H}_{0}\right)}{\boldsymbol{L}\left(\boldsymbol{H}_{\mathbf{1}}\right)}$
To test for discovery, use $\quad \boldsymbol{q}_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})} \quad \hat{S} \geq 0$
For large enough datasets ($n>\sim 5$), $\mathbf{Z}=\sqrt{\mathbf{q}_{\mathbf{0}}}$

For a Gaussian measurement, $\quad Z=\frac{\hat{S}}{\sqrt{B}}$
For a Poisson measurement, $\quad Z=\sqrt{2}\left[(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]$

Outline

Computing statistical results

Estimating the value of a parameter

Testing hypotheses

Discovery significance

Upper limits on signal yields

Confidence intervals

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Test Statistic for Limit-Setting

Discovery :

- $\mathrm{H}_{0}: \mathrm{S}=0$
- H_{1} : S > 0

$$
\begin{equation*}
q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})} \longleftarrow \text { Likelihood of } \mathrm{H}_{0} \tag{S}
\end{equation*}
$$

Compare

$$
\boldsymbol{q}_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \longleftarrow \text { Likelihood of } \mathrm{H}_{0} \quad\left(\hat{S}<\mathrm{S}_{0}\right)
$$

Same as q_{0} :
\rightarrow large values \Rightarrow good rejection of H_{0}.
\Rightarrow Can compute p -value from $\mathrm{q}_{\mathrm{s} 0}$.

Inversion : Getting the limit for a given CL

Procedure:

Asymptotics
$\sqrt{\boldsymbol{q}_{s_{0}}}=\boldsymbol{\Phi}^{-1}\left(\mathbf{1}-\boldsymbol{p}_{0}\right)$
\rightarrow Compute $\mathrm{q}_{\mathrm{s} 0}$ for some S_{0}, get the exclusion p -value $\mathrm{p}_{\mathrm{s} 0}$. Asymptotic case: can use $\boldsymbol{p}_{s_{0}}=\mathbf{1 - \boldsymbol { \Phi }}\left(\sqrt{\boldsymbol{q}_{\mathrm{s}_{0}}}\right)$

CL Region
$90 \% \quad a_{s}>1.64$
$95 \% \quad a_{s}>2.70$
$99 \% \quad q_{s}>5.41$

Inversion : Getting the limit for a given CL

Procedure:

Asymptotics
$\sqrt{\boldsymbol{q}_{s_{0}}}=\boldsymbol{\Phi}^{-1}\left(\mathbf{1}-\boldsymbol{p}_{0}\right)$
\rightarrow Compute q_{50} for some S_{0}, get the exclusion p -value $\mathrm{p}_{\mathrm{s} 0}$. Asymptotic case: can use $\boldsymbol{p}_{s_{0}}=\mathbf{1 - \boldsymbol { \Phi }}\left(\sqrt{\boldsymbol{q}_{\mathrm{s}_{0}}}\right)$

CL Region
$90 \% \quad a_{s}>1.64$
$95 \% \quad a_{s}>2.70$
$99 \% \quad q_{s}>5.41$

Inversion : Getting the limit for a given CL

Procedure:

Asymptotics
$\sqrt{\boldsymbol{q}_{s_{0}}}=\boldsymbol{\Phi}^{-1}\left(\mathbf{1}-\boldsymbol{p}_{0}\right)$
\rightarrow Compute q_{50} for some S_{0}, get the exclusion p -value $\mathrm{p}_{\mathrm{s} 0}$. Asymptotic case: can use $\boldsymbol{p}_{s_{0}}=\mathbf{1 - \boldsymbol { \Phi }}\left(\sqrt{\boldsymbol{q}_{\mathrm{s}_{0}}}\right)$

CL Region
$90 \% \quad a_{s}>1.64$
$95 \% \quad a_{s}>2.70$
$99 \% \quad a_{s}>5.41$

Homework 3: Gaussian Example

Usual Gaussian counting example with known B:

$$
L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}}
$$

$$
\sigma_{s} \sim \sqrt{ } \text { B for small } S
$$

Reminder: Significance: $Z=\hat{S} / \sigma_{s}$

\rightarrow Compute q_{so}
\rightarrow Compute the 95% CL upper limit on $S, S_{u p}$, by solving $q_{s 0}=2.70$.

Solution: $\quad S_{\text {up }}=\hat{S}+1.64 \sigma_{s}$ at 95% CL

Upper Limit Pathologies

Upper limit: $\mathrm{S}_{\mathrm{up}} \sim \hat{\mathbf{S}}+1.64 \sigma_{\mathrm{s}}$.

Problem: for negative \widehat{S}, get very good observed limit.
\rightarrow For Ŝ sufficiently negative, even $\mathrm{S}_{\mathrm{up}}<0$!

How can this be ?
\rightarrow Background modeling issue ?... Or:
\rightarrow This is a 95% limit $\Rightarrow 5 \%$ of the time, the limit wrongly excludes the true value, e.g. $S^{*}=0$.

Options

\rightarrow live with it: sometimes report limit < 0
\rightarrow Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.

Usual solution in HEP : CL.
\rightarrow Compute modified p-value

$$
\boldsymbol{p}_{C L_{s}}=\frac{\boldsymbol{p}_{S_{0}}}{\boldsymbol{p}_{B}} \frac{\begin{array}{l}
\text { The usual p-value under } \\
\mathrm{H}\left(\mathrm{~S}=\mathrm{S}_{0}\right)(=5 \%)
\end{array}}{\begin{array}{l}
\text { The } \mathrm{p} \text {-value computed } \\
\text { under } \mathrm{H}(\mathrm{~S}=0)
\end{array}}
$$

\Rightarrow Rescale exclusion at S_{0} by exclusion at $\mathrm{S}=0$.
\rightarrow Somewhat ad-hoc, but good properties...
\hat{s} compatible with $0: p_{B} \sim O(1)$
$p_{\mathrm{Cls}} \sim p_{\mathrm{so}} \sim 5 \%$, no change.

Far-negative \hat{s} : $p_{B} \ll 1$
$p_{\mathrm{Cls}} \sim \mathrm{p}_{\mathrm{s} 0} / \mathrm{p}_{\mathrm{B}} \gg 5 \%$
\rightarrow lower exclusion \Rightarrow higher limit, usually >0 as desired

Drawback: overcoverage
\rightarrow limit is claimed to be $95 \% \mathrm{CL}$, but actually $>95 \% \mathrm{CL}$ for small P_{B}.

Homework 4: CL_{s} : Gaussian Case

Usual Gaussian counting example with known B:

$$
L(\boldsymbol{S} ; \boldsymbol{n})=\boldsymbol{e}^{-\frac{1}{2}\left(\frac{n-(S+B)}{\boldsymbol{\sigma}_{S}}\right)^{2}} \quad \sigma_{s} \sim \sqrt{ } B \text { for small } S
$$

Reminder

CL_{s+b} limit: $\quad \boldsymbol{S}_{\text {up }}=\hat{\boldsymbol{S}}+\mathbf{1 . 6 4} \sigma_{s}$ at $\mathbf{9 5} \mathbf{\%} \mathbf{C L}$

CL_{s} upper limit :
\rightarrow Compute p_{so} (same as for CLs+b)
\rightarrow Compute p_{B} (hard!)
Solution: $\quad S_{\text {up }}=\hat{S}+\left[\Phi^{-1}\left(1-0.05 \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{S}$ at $95 \% \mathrm{CL}$

$$
\text { for } \hat{S} \sim 0, \quad S_{\mathbf{u p}}=\hat{S}+1.96 \sigma_{s} \text { at } 95 \% \mathrm{CL}
$$

Homework 5: CL_{s} Rule of Thumb for $\mathrm{n}_{\text {obs }}=0$

Same exercise, for the Poisson case with $\mathrm{n}_{\text {obs }}=0$. Perform an exac \dagger computation of the 95% CLs upper limit based on the definition of the p-value: p-value : sum probabilities of cases at least as extreme as the data

Hint: for $\mathrm{n}_{\text {obs }}=0$, there are no "more extreme" cases (cannot have $\mathrm{n}<0$!), so
$p_{s 0}=\operatorname{Poisson}\left(n=0 \mid S_{0}+B\right)$ and $p_{B}=\operatorname{Poisson}(n=0 \mid B)$

Solution: $\quad S_{\text {up }}\left(n_{\text {obs }}=0\right)=\log (20)=2.996 \approx 3$
\Rightarrow Rule of thumb: when $n_{\text {obs }}=0$, the $95 \% C L_{s}$ limit is 3 events (for any B)

Upper Limit Examples

Outline

Computing statistical results

Estimating the value of a parameter

Testing hypotheses

Discovery significance

Upper limits on signal yields

Confidence intervals

Gaussian Intervals

If $\hat{\mu} \sim G\left(\mu^{*}, \sigma\right)$, known quantiles :

$$
P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \%
$$

This is a probability for $\hat{\mu} \quad$, not ψ !
$\rightarrow \mu^{*}$ is a fixed number, not a random variable

But we can invert the relation:

$$
\begin{aligned}
& P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \% \\
\Rightarrow & P\left(\left|\hat{\mu}-\mu^{*}\right|<\sigma\right)=\mathbf{6 8 \%} \\
\Rightarrow & P\left(\hat{\mu}-\sigma<\mu^{*}<\hat{\mu}+\sigma\right)=68 \%
\end{aligned}
$$

\rightarrow This gives the desired statement on μ^{*} : if we repeat the experiment many times, $\left[\hat{\mu} \quad-\sigma, \hat{\mu} \quad+\right.$ will contain the true value 68.3% of the time: $\boldsymbol{\mu}^{*}=\hat{\boldsymbol{\mu}} \quad \pm \boldsymbol{\sigma}$ This is a statement on the interval $[\hat{\mu}-\sigma, \hat{\mu} \quad+$ बbtained for each experiment

Works in the same way for other interval sizes: $[\hat{\boldsymbol{\mu}} \quad-\mathbf{Z} \boldsymbol{\sigma}, \hat{\boldsymbol{\mu}} \quad$ + $\mathbf{Z} \boldsymbol{Z} \boldsymbol{\sigma}$ ith

Z	1	1.96	2
$C L$	0.683	0.95	0.955

Neyman Construction

General case: Build 1σ intervals of observed values for each true value \Rightarrow Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $\boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\text {obs }} \mid \mu\right)$ varies with μ.

Likelihood Intervals

Confidence intervals from L :

- Test $\mathrm{H}\left(\mu_{0}\right)$ against alternative using $\boldsymbol{t}_{\mu_{0}}=-2 \log \frac{\boldsymbol{L}\left(\boldsymbol{\mu}=\boldsymbol{\mu}_{0}\right)}{\boldsymbol{L}(\hat{\boldsymbol{\mu}})}$
- Two-sided test since true value can be

$$
t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$ higher or lower than observed

Gaussian L:

- $\boldsymbol{t}_{\mu_{0}}=\left(\frac{\hat{\mu}-\mu_{0}}{\sigma_{\mu}}\right)^{2}$: parabolic in μ_{0}.
- Minimum occurs at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$
- Crossings with $\dagger_{\mu}=1$ give the lo interval

General case:

- Generally not a perfect parabola
- Minimum still occurs at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$

- Still define 1σ interval from the $t_{\mu}=1$ crossings

Homework 5: Gaussian Case

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width $\sigma_{m^{\prime}}$ and we measure $\mathrm{m}_{\text {obs }}$:

$$
L\left(\boldsymbol{m} ; \boldsymbol{m}_{\mathrm{obs}}\right)=\boldsymbol{e}^{-\frac{1}{2}\left(\frac{\left.\boldsymbol{m}-\boldsymbol{m}_{\mathrm{oss}}\right)^{2}}{\sigma_{m}}\right.}
$$

m
\rightarrow Compute the best-fit value (MLE) \hat{m}
\rightarrow Compute \dagger_{m}
\rightarrow Compute the $1-\sigma(Z=1, \sim 68 \% C L)$ interval on m
Solution: $m=m_{\mathrm{obs}} \pm \sigma_{m}$
\rightarrow Not really a surprise - the method works as expected on this simple case
\rightarrow General method can be applied in the same way to more complex cases

2D Example: Higgs $\sigma_{\text {VBF }}$ vs. $\sigma_{\text {ggF }}$

$$
\begin{aligned}
t= & -2 \log \frac{L\left(X_{0}, Y_{0}\right)}{L(\hat{X}, \hat{Y})} \\
& \sim \chi^{2}\left(N_{\text {dof }}=2\right)
\end{aligned}
$$

$$
\dagger_{\text {ggefiVe }}
$$

$$
z^{2}
$$

Takeaways

Limits : use LR-based test statistic:

$$
q_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \quad \hat{S} \leq S_{0}
$$

\rightarrow Use CL $_{s}$ procedure to avoid negative limits

Poisson regime, $\mathrm{n}=0: \mathrm{S}_{\mathrm{up}}=\mathbf{3}$ events

Confidence intervals: use $\quad t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}$

\rightarrow Crossings with $\dagger_{\mu 0}=Z^{2}$ for \pm Zo intervals (in 1D)

Gaussian regime: $\mu=\hat{\mu} \pm \sigma_{\mu}$ (lo interval)

Course Outline

Lecture 1:

Statistics basics
 Describing measurements

Today:
Computing statisticall results:
Estimating a parameter value
Discovery
Limits
Confidence intervals

Lecture 3: Advanced topics - Profiling, Look-Elsewhere Effect, Bayesian methods

Extra Slides

Discovery significance

Interesting p-values are quite small
\Rightarrow express in terms of Gaussian quantiles
\rightarrow Significance Z

$$
\begin{aligned}
p_{0} & =1-\int_{-Z}^{+Z} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u \\
& =1-2 \Phi(Z)
\end{aligned}
$$

$$
\Phi(Z)=\int_{-\infty}^{Z} G(u ; 0,1) d u
$$

In ROOT:
20.045
$\mathbf{p}_{0} \rightarrow \mathbf{Z}$ (Ф) : ROOT::Math::gaussian_quantile_c
$Z \rightarrow p_{0}\left(\Phi^{-1}\right):$ ROOT: :Math::gaussian_cdf_c
$5 \quad 6 \times 10^{-7}$
\Rightarrow How small is small enough ?
\rightarrow Conventionally, discovery for $P_{0}=610^{-7} \Leftrightarrow Z=5 \sigma$

One-sided vs. Two-Sided

If $\hat{\mathrm{S}}<0$, is it a discovery? (does reject the $\mathrm{S}=0$ hypothesis...)
Usual assumption : only $\hat{s}>0$ is a bona fide signal
\Rightarrow Change statistic so that $\hat{\mathbf{S}}<\mathbf{0} \Rightarrow \mathrm{t}_{0}=\mathbf{0}$ (perfect agreement with H_{0}, as for $\hat{\mathrm{S}}=0$)

One-Sided Asymptotics

\rightarrow One-sided test:

$$
\boldsymbol{q}_{0}=\left\{\begin{array}{cc}
-2 \log \frac{\boldsymbol{L}(S=0)}{\boldsymbol{L}(\hat{S})} & \hat{S} \geq 0 \\
0 & \hat{S}<0
\end{array}\right)
$$

Asymptotics: "half- $\chi^{2 "}$ distribution: $\quad f\left(q_{0} \mid S=0\right)=\frac{1}{2} \delta\left(q_{0}\right)+\frac{1}{2} f_{\chi^{2}\left(n_{\text {of }}=1\right)}\left(q_{0}\right)$

One-sided Test Statistic

For upper limits, alternate is $\mathrm{H}_{1}: \mathrm{S}<\boldsymbol{\mu}_{0}$:
\rightarrow If large signal observed ($\mathrm{S}>\mathrm{S}_{0}$), does not favor H_{1} over H_{0}
\rightarrow Only consider $\hat{\mathbf{S}}<\mathrm{S}_{0}$ for H_{1}, and include $\hat{\mathbf{S}} \geq \mathrm{S}_{0}$ in H_{0}.

Discovery Limit-Setting

\Rightarrow Set $\mathbf{q}_{\mathrm{s} 0}=\mathbf{0}$ for $\hat{\mathbf{S}}>\mathbf{S}_{0}$ - only small signals $\left(\hat{\mathrm{S}}\left\langle\mathrm{S}_{0}\right)\right.$ help lower the limit.
\rightarrow Also treat separately the case $S<0$ to avoid technical issues in -2logL fits.

Asymptotics:

$\mathrm{a}_{50} \sim$ " $1 / 2 \mathrm{X}^{2}$ " under $\mathrm{H}_{0}\left(\mathrm{~S}=\mathrm{S}_{0}\right)$, same as a_{0}, except for special treatment of $\hat{S}<0$.

$$
\tilde{\boldsymbol{q}}_{S_{0}}=\left\lvert\, \begin{array}{cc}
0 & \hat{S} \geq S_{0} \\
-2 \log \frac{L\left(S=S_{0}\right)}{\boldsymbol{L}(\hat{\boldsymbol{S}})} & 0 \leq \hat{S} \leq S_{0} \\
-2 \log \frac{\boldsymbol{L}\left(\boldsymbol{S}=\boldsymbol{S}_{0}\right)}{\boldsymbol{L}(\boldsymbol{S}=\mathbf{0})} & \hat{S}<0
\end{array}\right.
$$

$$
p_{0}=1-\Phi\left(\sqrt{q_{s_{0}}}\right)
$$

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
S_{\mathrm{up}}=\hat{S}+\left[\boldsymbol{\Phi}^{-1}\left(1-0.05 \Phi\left(\hat{S} / \sigma_{s}\right)\right)\right] \sigma_{s} \quad \begin{gathered}
\text { with } \\
\sigma_{S}=\sqrt{B}
\end{gathered}
$$

Compute expected bands for S=0:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathbf{S}}=\mathbf{0}$:

$$
\begin{aligned}
& S_{\mathrm{up}, \mathrm{exp}}^{0}=1.96 \sigma_{s} \\
& S_{\mathrm{up}, \mathrm{exp}}^{ \pm n}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
\end{aligned}
$$

n	$\mathrm{S}_{\text {exp }}{ }^{\text {m }} / \sqrt{\text { B }}$
+2	3.66
+1	2.72
0	1.96
-1	1.41
-2	1.05

CLs :

- Positive bands
somewhat reduced,
- Negative ones more so

Band width from $\boldsymbol{\sigma}_{S, A}^{2}=\frac{\boldsymbol{S}^{2}}{\boldsymbol{q}_{\boldsymbol{s}}(\text { Asimov })}$
depends on S, for non-Gaussian cases,different values for each band...

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevatron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}_{0}}\right)}{L\left(\mu=1, \hat{\hat{\theta}}_{1}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim x^{2}$
\rightarrow Still use TeVatron-style for discrete cases

Spin/Parity Measurements

Phys. Rev. D 92 (2015) 012004

