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What’s the problem we would like to solve ?
Have some kind of camera and want to take as many 
pictures as possible … 

      sometimes the camera is very very big

When ?
Every time something interesting happens … 

      usually unpredictable, i.e. uncorrelated with anything

How often may something interesting happen?
Depends … 

      sometimes very very often
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a T/DAQ System: your Camera

Sensor (CCD+elx): Detector and data acquisition 
system

Memory card: Temporary storage (cache)

Display (LCD): Online and offline monitoring system

Push-button: Trigger
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Trigger
did something interesting arrive ? 
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What does “Trigger” mean?

Oscilloscope trigger does exactly 
this:
        informs the instrument to start 
signal acquisition and visualisation

Oscilloscope trigger does exactly 
this:
        informs the instrument to start 
signal acquisition and visualisation

• Prompt signal starting data-acquisition processes [ “please, look at 
that” ]

• Keywords: simple, rapid, selective (as much as possible!)
• selective = efficient for “signal” & resistant to “background” 

• Actual parameters strongly dependent on operating conditions
• in multi-level trigger system, “next” level way slower and more complex 

than current one
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Do we really need a trigger ?

not obvious … triggerless DAQ systems do exist

even in HEP, e.g.:

 
✔ LHCb upgrade 40 MHz readout

✔ DUNE LAr TPC 2 MHz readout

back to square one
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https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe (1924-1929): 
offline ⟶ online coincidence (logic AND) of 2 signals

Bruno Rossi (Nature, 1930): 
"Method of Registering Multiple Simultaneous Impulses of 

Several Geiger Counters"
→ online coincidence of 3 signals (scalable)!

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe (1924-1929): 
offline ⟶ online coincidence (logic AND) of 2 signals

Bruno Rossi (Nature, 1930): 
"Method of Registering Multiple Simultaneous Impulses of 

Several Geiger Counters"
→ online coincidence of 3 signals (scalable)!

but triggering may be crucial …

https://en.wikipedia.org/wiki/Coincidence_circuit
https://en.wikipedia.org/wiki/Coincidence_circuit
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how trigger was born

simplest case: 2-signal 
coincidence

simplest case: 2-signal 
coincidence

Geiger-Muller 
counters

Geiger-Muller 
counters

Rossi's circuit: coincidence of 
signals of 3 Geiger-Muller counters
Rossi's circuit: coincidence of 
signals of 3 Geiger-Muller counters

https://en.wikipedia.org/wiki/Coincidence_circuit :

“Rossi coincidence circuit was rapidly adopted by experimenters around the world. 
It was the first practical AND circuit, precursor of the AND logic circuits of 

electronic computers”

https://en.wikipedia.org/wiki/Coincidence_circuit :

“Rossi coincidence circuit was rapidly adopted by experimenters around the world. 
It was the first practical AND circuit, precursor of the AND logic circuits of 

electronic computers”

https://en.wikipedia.org/wiki/Coincidence_circuit
https://en.wikipedia.org/wiki/Coincidence_circuit
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T= s1·s2·s3 

Veto (anti-
coincidence)

a simple trigger system

NA59 experiment setup
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T1
linear outputT2

V

really doing what you think/need ?

… has anyway issues !

(anti-)coincidence with veto
→ simple, clear !
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T1
T2
V

output signal may:
a) jitter 
b) fluctuate in duration

(even better do both)

because of relative timing of T1, T2, V

flawed !

(anti-)coincidence with veto

linear output
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MM = Monostable Multivibrator 

       = One-Shot Pulse Generator

much better !

Veto

Trigger

MM

Q
Pulse out

(shaped output)
T1

can be a busy signal

(anti-)coincidence with veto

T2

V
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trigger signal:

         1) should be formed 

                         → pulse with predefined duration

         2) veto/busy should block pulse generation

first lesson(s)
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Basic DAQ: Synchronous Trigger (1)

External View

T sensor

ADC CardT sensor CPU

disk

Physical View

ADC storage

Trigger (periodic)

Logical View

Processing

• Measure temperature 
at fixed frequency

• ADC performs 
analog-to-digital 
conversion

our “front-end 
electronics”

• CPU does readout 
and processing 
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Basic DAQ: Synchronous Trigger (2)

External View

T sensor

ADC CardT sensor CPU

disk

Physical View

ADC storage

Trigger (periodic)

Logical View

Processing

• Fully sequential 
system

• System limited by 
single-event 
processing time

• If τ ~ 1 ms for
ADC conversion 
+CPU processing 
+storage

→ can sustain up to 
~ 1 kHz of periodic 
(synchronous) 
trigger rate
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Basic DAQ: Physics Trigger

ADC

Delay

Processing Interrupt

Discriminator

Trigger

Start

disk

Sensor
• Measure β decay 

properties

• Asynchronous and 
unpredictable events

• need physics 
trigger

• Delay compensates 
for trigger latency

• time to reach 
decision

• When system busy 
(=not ready to handle 
triggers) → dead time
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Basic DAQ: Physics Trigger

ADC

Delay

Processing Interrupt

Discriminator

Trigger

Start

disk

Sensor

Probability of time (ms) between events for 
average decay rate of f=1kHz → λ=1ms

Probability of time (ms) between events for 
average decay rate of f=1kHz → λ=1ms

What if new 
trigger arrives 
when system 

busy?

• Measure β decay 
properties

• Stochastic (i.e. fully 
uncorrelated process)

• fluctuations
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Basic DAQ: don't loose any event ?

a) Retriggerable DAQ system: any new trigger accepted, each 
causing processing (dead-time) restart, regardless of DAQ state

 ⇒ paralysable DAQ

b) Non retriggerable : dead time blocking trigger (no new trigger 
until dead time elapsed)

 ⇒ non-paralysable DAQ

• going to describe non-paralysable DAQ systems only
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Basic DAQ: Real Trigger & Busy

ADC

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Interrupt
Set

Q
Clear

and not

Busy LogicReady

=1msms

• Busy logic blocks 
triggers while 
processing

• Which (average) 
DAQ rate can be 
achieved ?

Reminder: τ = 1 ms 
sufficient for 1 kHz 
synchronous trigger
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Dead Time
how many events may I loose ?
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Being: 
τ = <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate>DAQ dead time>,   f = <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate>signal rate>,   ν = <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate>acquisition rate>

  ν∙τ = total DAQ dead time     ⇒      (1-ν∙τ) = total DAQ available time

              → f∙(1-ν∙τ) = ν     ⇒      ν = f/(1+f∙τ) <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate> f, 1/τ

                        Efficiency ε = ν/f = 1/(1+f∙τ) <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate> 100%
                        Dead time (1-ε) = f∙τ/(1+f∙τ)   ⇒    f∙τ <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate> (1-ε) <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate> 1

● Max acquisition speed (f→∞)  ν→1/τ

● Due to stochastic fluctuations, efficiency always <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate> 100%
if τ = 1 ms, f = 1 kHz ⇒  ν = 500 Hz, ε = 50%

DAQ Dead Time & Efficiency (1)
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DAQ Dead Time & Efficiency (2)

● Want:   ε ~ 99%   ⇒    f∙τ ~ 0.01    1/⇒ τ ~ 100∙f
f = 1 kHz  ⇒    1/τ = 100 kHz !

• To cope with input rate fluctuations, we have to over-design our DAQ 
system by a factor 100. Very inconvenient ! How to mitigate this effect ?

τ ~ 1 ms

τ ~ 5 ms

τ ~ 1 ms

τ ~ 5 ms
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Dead Time  de-randomise

• Processing → bottleneck
• Buffering allows to 

decouple problems

Dead time ~ (1+x)-1 ~ 50%

for x = 1/(f∙τ) ~ 1

Dead time ~ 1/(N+1)

[ N = buffer depth ]

for (f∙τ) ~ 1 
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Basic DAQ: De-Randomisation

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Busy Logicand

ADC

FIFO
Full

Data
ready

• First-In First-Out
– buffer area 

organized as a 
queue

– depth: number of 
memory cells

– implemented in 
HW and SW

• Buffering introduces 
additional latency on 
data path

FIFO absorbs and smooths input fluctuations, 
providing ~steady (de-randomised) output rate
FIFO absorbs and smooths input fluctuations, 
providing ~steady (de-randomised) output rate
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Basic DAQ: Collider Mode

• Synchronous particle collision 
rate

• Trigger rejects (= does not 
select) uninteresting events

• Synchronous collisions but 
unpredictable and uncorrelated 
triggers

• De-randomisation still needed
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Buffering
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does buffering solve all problems ?

● FIFO 
● filled with variable input flow
● emptied at smoothed output flow

                   → the Leaky-Bucket problem      

● Q: how often may overflow ( = FIFO full ) ?
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some very simple queueing theory

● N-event buffer ... single queue size N:

P
k
 : % time with k events in ; P

N 
= no space available → dead time

∑P
k
= 1 [ k=0..N ]

rate [ j→j+1 ] = λ∙P
j
         (fill at rate λ)

rate [ j+1→j ] = μ∙P
j+1

     (empty at rate μ > λ)

steady state:   μ∙P
j+1

= λ∙P
j
   ⇒    P

j+1
= ρ∙P

j
 = ρj+1∙P

0
        [ ρ = (λ/μ) <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate>~1 ]

for ρ~1   ⇒    P
j
~P

j+1
   ⇒    ∑P

k
~(N+1)∙P

0
= 1   ⇒    P

0
~P

N
~1/(N+1)

⇒    dead time ~ 1/(N+1)

want want ~~ 1%    1%   ⇒ ⇒    N    N ~~ 100 100
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some very simple queueing theory

● N-event buffer ... single queue size N:

P
k
 : % time with k events in ; P

N 
= no space available → dead time

∑P
k
= 1 [ k=0..N ]

rate( j→j+1 ) = λ∙P
j
         (fill at rate λ)

rate( j+1→j ) = μ∙P
j+1

     (empty at rate μ > λ)

steady state:   μ∙P
j+1

= λ∙P
j
   ⇒    P

j+1
= ρ∙P

j
 = ρj+1∙P

0
        [ ρ = (λ/μ) <DAQ dead time>,   f = <signal rate>,   ν = <acquisition rate>~1 ]

for ρ~1   ⇒    P
j
~P

j+1
   ⇒    ∑P

k
~(N+1)∙P

0
= 1   ⇒    P

0
~P

N
~1/(N+1)

⇒    dead time ~ 1/(N+1)

want want ~~ 1%    1%   ⇒ ⇒    N    N ~~ 100 100

Take care: analytic calculation possib
le for pretty sim

ple systems only

Take care: analytic calculation possib
le for pretty sim

ple systems only
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de-randomisation

FIFO

1/f = λ

τ

• DAQ ε ~100% with:
– τ ~ 1/f
– “moderate” buffer size

• Two degrees of freedom to 
play with

• This dead time often managed 
by trigger system itself 
(“complex dead time”)
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Complex Dead Time

1) Simple dead time: avoid overlapping (conflicting) readout 
window

2) Complex dead time: avoid overflow in front-end buffers 
(protection against trigger bursts) 

e.g. ATLAS uses simple leaky-bucket algorithms with 2 
parameters:

max X triggers (X = FIFO depth) in any (sliding) time window = (X*readout time)
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De-Randomisation: Summary

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Busy Logicand

ADC

FIFO
Full

Data
ready

• ~100% efficiency and minimal 
deadtime may be achieved if

– ADC rate >> f
– data processing and 

storing at rate ~f

• FIFO decouples low latency 
front-end from data 
processing

– minimal amount of 
“unnecessary” fast 
components

• Could “Delay” be replaced 
with “FIFO”?

– analog pipelines heavily 
used in LHC DAQs
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Multi-Level Trigger Architecture
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Multi-Level Triggering

Often implemented over 3 levels (alternative is 2) :

            L1 (sometimes called L0) → detector-specific front-end electronics

            L2 (sometimes L1) → regional information processing (dedicated 
processing units, working with limited resolution information)

            L3 → typically some “standard” processing farm (working with full 
resolution information)

L2 & L3 → HLT.s (High-Level Triggers)
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• L1 : O(1 μs in real-time) → let say ~ 3 μs

• L2 : O(10 ms) → let say ~ 20 ms

• L3 (HLT) : O(s) → let say ~ 1 s

Q: do these 3 numbers mean the same thing ?

Well … depends ...

Event Selection Latency
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 real time: system must respond within some fixed delay
→ Latency = Max Latency (constrained)

→ over fluctuations bad, will create dead time

 non-real-time: system responds as soon as it’s available
→ Latency = Mean Latency (not constrained)

→ over fluctuations ok, shouldn’t create dead time

Latency and Real-Time

real time o.s. :
very stable time delay in responding to events

standard unix kernels are not real time:
     no duration constraints for system calls
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Low-latency Ubuntu patch 

(soft real time) : 

Interruptible linux kernel
https://help.ubuntu.com/community/
UbuntuStudio/RealTimeKernel

RTAI (hard real time) : 

linux kernel as high-priority 
application

https://www.rtai.org/

Off-Topic: Real-Time Linux
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Working trigger systems
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Auger Observatory : Simple Signatures
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ATLAS Calorimeter : Multiple Signatures
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CDF Single Top : Multi-Object Trigger
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Trigger Efficiency

Must be precisely known (w/ its systematics)

Independent trigger selections allows cross‐calibration 
→ need of additional triggers

High-Level Triggers → pass-through triggers (release selection criteria)
Level-1 Triggers:

a) zero or minimum bias samples
b) Tag&Probe → trigger on “Tag” and measure “Probe”
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Trigger Thresholds

Finite resolution of trigger detectors affects measurements near threshold
→ efficiency badly defined in transition (turn-on) region
→ need margins to get offline thresholds at plateau

LHC (ATLAS): 
thresholds dynamically 

tuned as function of luminosity 
    [ keep throughput constant ]

Efficiency vs. Muon P
T

Muon P
T
 [GeV]
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Zoology: Some Building Blocks
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00

Constant Fraction Discriminator

jitter

no jitter

Discriminator: Schmitt Trigger + Monostable

Digital part: combinatorial logic and flip-flops (finite-state machine)

Discriminators
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Multivibrators

Output signal (Q) may have:

         No stable level → astable (oscillator)

         One stable level → monostable (one-shot single pulse)

          Two stable levels → bistable

                                                Set/Reset Latch:
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Set/Reset Latch

Truth table

Q may (may!) change only when either S or R goes to 1
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Latches / Flip-Flops

Gated S/R Latch:

S/R Flip-Flop: D FF (1-bit memory):

J/K FF: T (Toggle) FF (counter):

Asynchronous Inputs:

Gated D Latch:
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Memories

RAM : Random Access Memory (RWM, ROM, PROM, EPROM, EEPROM, …)

CAM : Content Addressable Memory (Associative Memory)

SAM : Sequentially Accessible Memory (FIFO, LIFO)

Look-Up Tables (LUT)

Read-Only Memory: Address → INPUT  & Data → OUTPUT:

      used to implement simple/complex logic functions

      all results MUST be loaded in memory
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FPGA: Field-Programmable Gate Array

array of  configurable logic blocks providing tons (thousands → millions) of
dynamically connected logic units, made of:

- look-up tables (to perform complex combinatorial functions)
- flip-flops (to synchronously store results)

incredibly competitive wrt. ASIC until don't need millions of chips

- may start your own project, in few days, with O(50-100) €
- “you can design a circuit on your computer and have it running on your desk 

in minutes” → http://www.fpga4fun.com

http://www.fpga4fun.com/
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Trigger Hardware
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What to use, today, mainly depends on latency requirements:

 [  my_basic_daq : modular NIM/VME electronics ]

L0/L1 O(1 μs + real time) : custom ASIC or/and LUT (FPGA, 
CAM)

L1/L2 O(10 μs) : FPGA, CAM, DSP, fast processors

L3 O(100 μs) : CPU, GPU

real time: max latency (i.e. max delay) fixed
→ over fluctuations bad, will create dead time

non-real-time: average latency fixed
→ over fluctuations fine, shouldn’t create dead time
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(off-the-shelf) Programmable Devices
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Custom ASIC

ATLAS Muon Barrel Coincidence Matrix
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to be continued...
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