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What's the problem we would like to solve ?

Have some kind of camera and want to take as many
pictures as possible ...

sometimes the camera is very very big

When ?

Every time something interesting happens ...
usually unpredictable, i.e. uncorrelated with anything

How often may something interesting happen?
Depends ...
sometimes very very often
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a T/DAQ System: your Camera

Sensor (CCD+elx): Detector and data acquisition
system

Memory card: Temporary storage (cache)
Display (LCD): Online and offline monitoring system

Push-button: Trigger
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Trigger

did something interesting arrive ?
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What does “Trigger” mean?

* Prompt signal starting data-acquisition processes [ “please, look at
that” |

« Keywords: simple, rapid, selective (as much as possible!)
 selective = efficient for “signal” & resistant to “background”

« Actual parameters strongly dependent on operating conditions

 in multi-level trigger system, “next” level way slower and more complex
than current one

Trigger Source Trigger Level

Oscilloscope trigger does exactly
this:

informs the instrument to start
signal acquisition and visualisation

Trigger Mode Trigger Slope
and Coupling
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back to square one

Do we really need a trigger ?

not obvious ... triggerless DAQ systems do exist
even in HEP, e.qg.:
v LHCb upgrade 40 MHz readout

v DUNE LAr TPC 2 MHz readout
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but triggering may be crucial ...

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe (1924-1929):
offline — online coincidence (logic AND) of 2 signals

Bruno Rossi (Nature, 1930):

"Method of Registering Multiple Simultaneous Impulses of
Several Geiger Counters"

— online coincidence of 3 signals (scalable)!
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how trigger was born

https://en.wikipedia.org/wiki/Coincidence_circuit :

“Rossi coincidence circuit was rapidly adopted by experimenters around the world.
It was the first practical AND circuit, precursor of the AND logic circuits of
electronic computers”

counters

Geiger-Muller : 4? A=A

Fig. 17 — Il circuito di Rossi per rivelare coincidenze di raggi cosmici che arrivano sui contateri Geiger (i rettangoli in alto
dello scher a)

Rossi's circuit: coincidence of
signals of 3 Geiger-Muller counters

Fig. 18 Lsodl o di Rost p rrivelar ncidenza tripla che, nella disposiz in figura dei tre contatori, mo
stra la produzi d 1md 5ECO d:\m(lne'l ratteggiata) da p d\l d pm'\na(lneaccn(nua)“.

Trigger l~IL
counters
\ . .
L R simplest case: 2-signal
\ / coincidence
PMT
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a simple trigger system

XTAL 1 XTAL 2
(Si Radiator) (Diamond / Ge

Analyzer)

, Vacuum Chamber 1
with goniometer

S2 dchilup Bend 7

T=s1-s2-s3 ’\*

/
Sc V1

Veto (anti-
coincidence)

Z=0 40.1m 54.8m 58.6m 71.6m 74

NA59 experiment setup

July 11, 2019 9



... has anyway issues |

T1
T2 linear output

(anti-)coincidence with veto
- simple, clear!

really doing what you think/need ?
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(anti-)coincidence with veto

T1
T2 linear output

flawed !

output signal may:
a) jitter
b) fluctuate in duration
(even better do both)

because of relative timing of T1, T2, V

July 11, 2019
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(anti-)coincidence with veto

MM
Veto _Ll_
Pulse out
T1 Q
:} (shaped output)
T2 Trigger

MM = Monostable Multivibrator

. = One-Shot Pulse Generator
can be a busy signal

much better !
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first lesson(s)

trigger signal.:

1) should be formed

— pulse with predefined duration

2) veto/busy should block pulse generation

July 11, 2019
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Basic DAQ: Synchronous Trigger (1)

External View

T sensor

Physical View

T sensor ADC Card

Logical View

—ADC

storage

Trigger (periodic)

« Measure temperature
at fixed frequency

* ADC performs
analog-to-digital
conversion

our “front-end
electronics”

» CPU does readout
and processing

July 11, 2019
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Basic DAQ: Synchronous Trigger (2)

External View

T sensor

Physical View

T sensor ADC Card

Logical View

—ADC

storage

Trigger (periodic)

* Fully sequential

system

System limited by
single-event
processing time

If T~ 1 ms for
ADC conversion
+CPU processing
+storage

— can sustain up to
~ 1 kHz of periodic
(synchronous)
trigger rate

July 11, 2019
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Basic DAQ: Physics Trigger

. Sensor -

Trigger

;
Delay

!
;f; Discriminator

ADC |
'

rocessing)« Interrupt

July 11, 2019

Measure (3 decay
properties

Asynchronous and
unpredictable events
* need physics
trigger

Delay compensates

for trigger latency
e time to reach
decision

When system busy
(=not ready to handle
triggers) — dead time
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Basic DAQ: Physics Trigger

« Measure [3 decay
|’ “Sensor e properties

Trigger

1 | « Stochastic (i.e. fully
uncorrelated process)
F Delay ;f; Discriminator - fluctuations

ADC | otart
; Probability of time (ms) between events for

1.0

! average decay rate of f=1kHz — A=1ms

rocessing)« Interrupt

06 beeee N o

pdf

A 4

What if new  —=+®
_disk_ trigger arrives

when system e
Time between events(ms)
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Basic DAQ: don't loose any event ?

a) Retriggerable DAQ system: any new trigger accepted, each
causing processing (dead-time) restart, regardless of DAQ state

= paralysable DAQ

b) Non retriggerable : dead time blocking trigger (no new trigger
until dead time elapsed)

= non-paralysable DAQ

* going to describe non-paralysable DAQ systems only
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Basic DAQ: Real Trigger & Busy

T

Trigger

( [apcl—otart

N\ nterrur

Tms )
< Processin
(j Ready

t

-

G
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Busy logic blocks
triggers while
processing

Which (average)
DAQ rate can be
achieved ?

Reminder: T=1 ms
sufficient for 1 kHz

synchronous trigger
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Dead Time
how many events may | loose ?

July 11, 2019
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DAQ Dead Time & Efficiency (1)

Being:
T =<DAQ dead time>, f=<signal rate>, v = <acquisition rate>

v-T = total DAQ dead time = (1-v-1) = total DAQ available time
- f(1-vi)=v = v=1fQ+1)<f 1/

Efficiency € = v/f = 1/(1+f-1) < 100%
Dead time (1-¢) = f-t/(1+f-1) = f1<(1l-¢)<1

* Max acquisition speed (f— o) v-1/t

* Due to stochastic fluctuations, efficiency always < 100%
ft=1ms,f=1kHz=v =500 Hz, €=50%
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Qutput frequency (Hz)

DAQ Dead Time & Efficiency (2)

1000 . = 100 .
= = No deadtime 'c' — 0.1%/Hz
—— 0.1%/Hz 'o' 90 — 0.5%/Hz |
a0o || = 0-5%/Hz o |
'o' 80 |
'
'
*
L’ 70} T~1ms
' —
600 - L g
’l 5 60_
¢ T~1ms g
+7 S 50t
400 - 5® =
*
'.‘ 40t
L’ T~5ms
sail .’ T~5ms | 30}
*
0"
20}
% 200 200 600 800 1000 105 200 200 500 800 1000
Input frequency (Hz) Input frequency (Hz)
* Want: €¢~99% = f1~0.01 =1/t~ 100-f

* To cope with input rate fluctuations, we have to over-design our DAQ
system by a factor 100. Very inconvenient ! How to mitigate this effect ?

f=1kHz = 1/t=100 kHz!

July 11, 2019
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Dead Time — de-randomise

* Processing — bottleneck

s (=1kHz
% 1/fzA=1ms

| w
w Sensor - |

* Buffering allows to
decouple problems

% < f=1kHz
s 1/f=A=1ms

Trigger

Discriminator

Dead time ~ (1+x)™* ~ 50%
forx =1/(f1)~1
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el |

Trigger

Discriminator

( Busy Logi
EIF — | Busy Logic
Data

Dead time ~ 1/(N+1)
[ N = buffer depth ]
for (fT) ~1 23



Basic DAQ: De-Randomisation

. Flrst In First-Out

s 3 buffer area
- organized as a
| W
\/Sensor - | : queue
! Trigger - depth: number of
Del ! memory cells
lAe %y Qiart /AN - implemented in
ADCI - I-I-w- Discriminator HW and SW
: L
EIEQ
Data 0]0] 9] 0] 0lO)] g
rocessingeady 000000 =:

|

"

* Buffering introduces
additional latency on
data path

FIFO absorbs and smooths input fluctuations,
providing ~steady (de-randomised) output rate

July 11, 2019
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Basic DAQ: Collider Mode

( Timing
U U
Beam crossing
- Start e
ADC ~
a2t = Trigger
7 g9
Discriminator
O—
FIEQ |Ful Busy Logic
: Data ready
Processing

Cas)

July 11, 2019

Synchronous particle collision
rate

Trigger rejects (= does not
select) uninteresting events

Synchronous collisions but
unpredictable and uncorrelated
triggers

De-randomisation still needed
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Buffering

July 11, 2019
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does buffering solve all problems ?

* FIFO
* filled with variable input flow

Cha ra_cleris IIIIII

* emptied at smoothed output flow
- the Leaky-Bucket problem

Smoothed Traffic

* Q: how often may overflow ( = FIFO full ) ? Fow
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some very simple queueing theory

* N-event buffer ... single queue size N:

P : % time with k events in ; P = no space available — dead time

SP,=1[k=0..N]
rate [j—)+1] = )\-Pj (fill at rate A)
rate [j+1—-]] = u-P.,, (empty at rate g > A)
steady state: u-P_,=AP. = P _=pP =p"P [p=(Np)<~1]

forp~1 = P~P, = 3P ~(N+1)P=1 = P ~P ~1/(N+1)
= dead time ~ 1/(N+1)
want~1% = N~ 100
July 11, 2019 28



some very simple queueing theory

* N-event buffer ... single queue size N:

>P=1[k=0..N]
rate(j—j+1) = )\-Pj
rate( j+1-j) = y-P. (er N

J

= 3P~(N+1)P=1 = P ~P ~1/(N+1)
= dead time ~ 1/(N+1)
want~1% = N~ 100
July 11, 2019 29



de-randomisation

100 ¢ — :
: . wi depth=1
% ; == depth=5
a0+ % ., p ]
" e . depth=10
»
" = depth=50
80| . 1
»
70}
©
T
60
50 L P,
40 - e
3R.0 0.5 1.0 1.5 2.0
/A
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ll/f = A
FIFO

DAQ € ~100% with:
— 1~ 1/f
— “moderate” buffer size

Two degrees of freedom to
play with

This dead time often managed
by trigger system itself
(“complex dead time”)
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Complex Dead Time

1) Simple dead time: avoid overlapping (conflicting) readout
window

2) Complex dead time: avoid overflow in front-end buffers
(protection against trigger bursts)

e.g. ATLAS uses simple leaky-bucket algorithms with 2
parameters:

max X triggers (X = FIFO depth) in any (sliding) time window = (X*readout time)

: Complex Deadtime Fraction [%]

-t
| &

L%\ 5/340

—

\¥)
T
-

Yt 7140
S/ P 8isao
L/ [\ 91340

-
(=
||||1
»

Complex Deadtime Fraction [%)]

- ! ‘.‘f {5
61 1 k ﬁf |
:“'\ | Y/
a % |1 rate limit
oF o "‘-1/3408(: =117.9 kHz
0: 5 ‘171/’.-':.14 Lty .I'J . “l ; \
70 80 a0 100 110 120 130
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De-Randomisation: Summary

o LA
o« Ay
-

%GHSOF

gDelay
)

v

Full

=I=0)

\ 4

@ssin ady

G

Trigger

Data
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~100% efficiency and minimal
deadtime may be achieved if
— ADC rate >> f
— data processing and
storing at rate ~f

FIFO decouples low latency
front-end from data
processing
— minimal amount of
“unnecessary” fast
components

Could “Delay” be replaced
with “FIFO™?
— analog pipelines heavily
used in LHC DAQSs
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Multi-Level Trigger Architecture

July 11, 2019
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Multi-Level Triggering

Often implemented over 3 levels (alternative is 2) :

L1 (sometimes called LO) — detector-specific front-end electronics

L2 (sometimes L1) — regional information processing (dedicated
processing units, working with limited resolution information)

L3 — typically some “standard” processing farm (working with full
resolution information)

L2 & L3 — HLT.s (High-Level Triggers)
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Event Selection Latency

* L1:0O(1 ps inreal-time) — let say ~ 3 us
* L2:0(10 ms) — let say ~ 20 ms
* L3(HLT):0O(s) —» letsay ~1s

Q: do these 3 numbers mean the same thing ?

Well ... depends ...
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Latency and Real-Time

real time: system must respond within some fixed delay
- Latency = Max Latency (constrained)
— over fluctuations bad, will create dead time

non-real-time: system responds as soon as it’s available
- Latency = Mean Latency (not constrained)
— over fluctuations ok, shouldn’t create dead time

real time 0.S. :
very stable time delay in responding to events

standard unix kernels are not real time:
no duration constraints for system calls
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Off-Topic: Real-Time Linux

Processi User S FProcessi
Siandard oy Upaca Standard

System Calls
SN SN

| |

Preemptable Linux Kernel

O

Low-latency Ubuntu patch
(soft real time) :

Interruptible linux kernel

https://help.ubuntu.com/community/
UbuntuStudio/RealTimeKernel

July 11, 2019

£
She-dl
Vo Real-Time Kernel o

Interrupts SW

i /
lntwmpf s HW

[ RTHAL/ADEOS

I termpts

&3 =

RTAI (hard real time) :

linux kernel as high-priority

application

https://www.rtai.org/
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Working trigger systems

July 11, 2019
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Auger Observatory : Simple Signatures

osPHERE

7 Detect air showers generated by cosmic rays above 107 eV Surface D.: traly of ~1600 water
‘Cherenkov stations over 3000 km? on

_ _ ground, to identify secondary particles
7 On each detector, a 3-level trigger operates at a wide range of Florescent D.: 4 NV telescopes measure

primary energies, for both vertical and very inclined showers

?A Expected rate < 1/km?/century. Two large area detectors

%

L1: (local) decides the pixel status (on/off)
* ADC counts > threshold
* ADC digitizes any 100 ns (time resolution)
* ADC values stored for 100 us in buffers
* Synchronized with a signal from a GPS clock

L2: (local) identifies track segments
* Geometrical criteria with recognition

algorithms on programmable patterns m m m

L3: (central) makes spatial and temporal —— —— —

correlation between L2 triggers S—
L2 patterns

One event~” 1MB > 0.2 MB/s bandwidth needed for the DAQ system
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ATLAS Calorimeter : Multiple Signatures

7 Identify high energy e, y, T, jets, missing E, 2E; £1a00f A S LAVER EM BARKEL
3 12008 ATLAS Praimary
A 1:Dedicated Front-End electronics .| Shaped ATLAS
7 Front-End of cells sends shaped analog signals - | LArgsignal

2000
o7 .. =0)

r 2-0.02
-2001 -0.04
40 E L L L 1 L L L a

% 100 200 300 400 500 600 700 800

time (ns)

= 2: Level-1 trigger
nll g ? Dedicated processors apply simple cluster algorithms
S ; Hadronic : over cells and programmable E; thresholds
/ calorimeter
Trigger towers (An x A¢ = 0.1 x 0.1)
[ vecosums  FF Soctromeonete A
I isolation threshold Jet
EES Horizontal Sums Hadronic isolation
E mlm::.%mm fsonhntal:.m tml;loldl
Hadrons are
clustered
7 3:High-Level triggers together to
make jets

72 Topological variables and tracking information
7 e/jet separation using cluster shapes
7 e/yseparation using tracking Pl
7  Isolation criteria
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CDF Single Top : Multi-Object Trigger

Signal characterization:
?A  1high p;lepton, in general isolated

A Large MET from high energy neutrino

S A 2jets, 1 of which is a b-jets
->Whb ~ 100% missing Energy J :

Trigger objects at L1
2  Central tracking (XFT p;>1.5GeV)

A Calorimeter

71 Electron (Cal +XFT)
71 Photon (Cal)

7 Jet (Cal EM+HAD)
Missing E;, SumkE,
Muon (Muon + XFT)

A N

I
Muon L

Trigger objects at L2:
2 Llinformation

A SVT (displaced track, impact parameter)
A Jetcluster

A  Isolated cluster

A  Calorimeter ShowerMax (CES)

XFT=eXtremely Fas?%r%ék/eu—w _ \
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Trigger Efficiency

(N candidates ~ N bg)
a- Srf)mi . OB.&' ) f Ldt

BR( Signal )=

a €, = O E £ £

Tracking. Reco ELI-Trig. 8L2—Trig. £L3-Trig. vcrtcx. analysis

Must be precisely known (w/ its systematics)

Independent trigger selections allows cross-calibration
— need of additional triggers

High-Level Triggers — pass-through triggers (release selection criteria)
Level-1 Triggers:

a) zero or minimum bias samples

b) Tag&Probe - trigger on “Tag” and measure “Probe”
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Trigger Thresholds

Finite resolution of trigger detectors affects measurements near threshold
— efficiency badly defined in transition (turn-on) region
- need margins to get offline thresholds at plateau

Efficiency vs. Muon P_

'E ATLAS L1 MUON E
0.8|- i
= ‘ - ’ —
i y &
LHC (ATLAS): — .' ATLAS o
thresholds dynamically - L1 MU -
tuned as function of luminosity : iy e
[ keep throughput constant ] 0.2f -
i &~ L1_MU20
ok WY PR N R
S 10 15 20 25 30

Muon P_[GeV]
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Zoology: Some Building Blocks

July 11, 2019
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Discriminators

Discriminator: Schmitt Trigger + Monostable M\
Thr. —, i jitter i“; ":'
E — - f " 2 l'l"
= = = No |'l‘ ' "'l
discriminator .

no jitter $
\ |
In AND > !
00 L7\
‘!‘ ¢ ll
4
. . L. — .-h"h—
Constant Fraction Discriminator t

Digital part: combinatorial logic and flip-flops (finite-state machine)
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Multivibrators

Output signal (Q) may have:

No stable level — astable (oscillator) .

AND2

Output Signal

One stable level - monostable (one-shot single pulse)

1 C1 uz2
11 [
11 L

Two stable levels — bistable _

s q
Set/Reset Latch: %
R Q
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Set/Reset Latch

Q may (may!) change only when either S or R goesto 1

July 11, 2019

Q|

Truth table
S R Q State
0 0 [ PreviousState | No change
0 1 0 Reset
1 0 1 Set
1 1 ? Forbidden
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Latches / Flip-Flops

Gated S/R Latch: H %: Gated D Latch:

<7
T

Fl
ol

S/R Flip-Flop: w1

D FF (1-bit memory):

e —~CK

2l

T

T (Toggle) FF (counter):

CK

ol

Asynchronous Inputs: —«

July 11, 2019
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Memories

RAM : Random Access Memory (RWM, ROM, PROM, EPROM, EEPROM, ...)
CAM : Content Addressable Memory (Associative Memory)
SAM : Sequentially Accessible Memory (FIFO, LIFO)

Look-Up Tables (LUT)

Read-Only Memory: Address — INPUT & Data - OUTPUT:

used to implement simple/complex logic functions

256 x 4
ROM

all results MUST be loaded in memory

4-bit
result

number

PP F
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FPGA: Field-Programmable Gate Array

array of configurable logic blocks providing tons (thousands — millions) of
dynamically connected logic units, made of:

- look-up tables (to perform complex combinatorial functions)
- flip-flops (to synchronously store results)

carry in clk

A
carry out clk

incredibly competitive wrt. ASIC until don't need millions of chips

- may start your own project, in few days, with O(50-100) €
- “you can design a circuit on your computer and have it running on your desk
in minutes” — http://www.fpga4fun.com
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Trigger Hardware

July 11, 2019
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What to use, today, mainly depends on latency requirements:
[ my_basic_dag : modular NIM/VME electronics |

LO/L1 O(1 ps + real time) : custom ASIC or/and LUT (FPGA,
CAM)

L1/L2 O(10 us) : FPGA, CAM, DSP, fast processors
L3 O(100 ps) : CPU, GPU
real time: max latency (i.e. max delay) fixed
— over fluctuations bad, will create dead time

non-real-time: average latency fixed
— over fluctuations fine, shouldn’t create dead time
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(off-the-shelf) Programmable Devices

Requirements at high trigger rates

A  Fast processing
? Flexible/programmable algorithms
A Data compression and formatting

2 Monitor and automatic fault detection _4 DSP L1/L2
‘‘‘‘‘ —— - ~20 us

L3

CPU, GPU | )00 us

Digital integrated circuits (IC)
#2 Reliability, reduced power usage, reduced board size

and better performance CAM, RAM, LO/L1
Different families on the market: FPGA ~2 us
2 Microprocessors (CPUs, GPGPUs, ARMs, DSP=digital signal
need instructions

processors..)
Available on the market or specific, programmed only once
2 Programmable logic devices (FPGAs, CAMs,...)
More operations/clock cycle, but costly and difficult software
developing

New trend is the integration of both:
Using standard interface (ethernet), can profit of standard software tools
(like for Linux or real-time) and development time is reduced

already learned
the task
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Custom ASIC

Trigger part

7| lhrove sync thd m_hp
-ﬁm tK patte Trigger output

== 12 bit BCID

Readout output

SERIAL "
INOUT *
| INC ,

10[31:0] #E# 3 #E

Digital inputs —
e 11[31:0] #E# g_»a

detector J0[63:0] ‘E* E »E

DERANDOMIZER

T —]-a-iinn m
LBl
=11

" Input:
e "E"“PE I MIEE- : synchronization
dgedetec;w T depth maskio0 .wplnqes. cev.... signals

Readout part

ATLAS Muon Barrel Coincidence Matrix
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to be continued...

July 11, 2019
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