

C. Grojean **DESY and Humboldt University**

Standard Model Homework 4 Date: 18.07.2019

Exercice 1: Goldstone equivalence theorem

- a) Draw the Feynman diagram for the decay of the top quark, $t \rightarrow bW$.
- b) Neglecting the bottom mass, calculate, in the unitary gauge, the decay rates for $t \to bW_T^+$ and $t \to bW_L^+$. Reproduce the latter result using the equivalence theorem, i.e. by computing the $t \to b\phi^+$, where ϕ^+ is the would-be Goldstone boson.
- c) Draw the Feynman diagram for the Higgs decay into a pair of W gauge bosons.
- d) In the heavy Higgs mass limit, compute, in the unitary gauge, the decay widths of $h \rightarrow$ $W_T^+W_T^-$ and $h \to W_L^+W_L^-$. Reproduce the latter result using the equivalence theorem, i.e. by computing the $h \to \phi^+ \phi^-$, where ϕ^{\pm} are the would-be Goldstone bosons.

Exercice 2: Higgs decays

In the lecture we have seen that in the Standard Model the Higgs boson couples to fermion proportionally to their mass, i.e., the interaction Lagrangian writes $\mathcal{L} = -\frac{\sqrt{2}m_f}{v}h\bar{f}f$.

a) Write down the Feynman rule for the vertex between a Higgs boson and fermion and its

- anti-fermion.
- b) Compute the amplitude associated to the decay $h \rightarrow b\bar{b}$.
- c) Compute $\langle |M|^2 \rangle$. Help: You can use the completeness relation $\sum_{spin} (\bar{u}(p)v(q))(\bar{u}(p)v(q))^* =$ $\operatorname{Tr}((\gamma^{\mu}p_{\mu}+m_f)(\gamma^{\nu}q_{\nu}-m_f))$ and remember that $\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu})=4\eta^{\mu\nu}$.
- d) Compute the partial decay width $\Gamma(h \to b\bar{b})$. Help: We recall that the partial decay width for a two body decay is obtained from the amplitude as $\Gamma = \frac{p\langle |M|^2 \rangle}{8\pi m_h^2}$ where p is the modulus of the 3D momentum of the two daughter particles in the rest-frame of the decaying particle (momentum that you'll compute using energy conservation). And you'll use the numerical input: $v \approx 246 \, \text{GeV}$, $m_h \approx 125 \, \text{GeV}$ and $m_b \approx 4 \, \text{GeV}$.
- e) Given that $BR(h \to b\bar{b}) \approx 57\%$, compute the total decay width of the Higgs boson.
- f) If the Higgs boson were a pseudo-scalar instead of a scalar field, how would you write the interaction Lagrangian?
- g) In the pseudo-scalar case, compute the Higgs decay width. Help: You can use the completeness relation $\sum_{spin} (\bar{u}(p)\gamma^5 v(q))(\bar{u}(p)\gamma^5 v(q))^* = \text{Tr}((\gamma^{\mu}p_{\mu} + m_f)\gamma^5(\gamma^{\nu}q_{\mu} - m_f)\gamma^5)$ and remember that $\gamma^{\mu}\gamma^{5} = -\gamma^{5}\gamma^{\mu}$ and $(\gamma^{5})^{2} = 1_{4}$.