

(Nuclear) Physics at the ISOLDE-CERN facility (1/2)

Hanne Heylen
hanne.heylen@cern.ch
CERN, Experimental Physics department

on behalf of the ISOLDE-CERN group http://isolde.web.cern.ch

Outline

Lecture 1: ISOLDE-CERN: radioactive ion beam production

Lecture 2: Nuclear Physics and Applications at ISOLDE

- Visit to the ISOLDE facility
 - Tuesday 30/07, Thursday 01/08, Wednesday 07/08
 - https://indico.cern.ch/event/834871/
 - Meeting point: b. 508
 - Safety information: closed and flat shoes!
 - Don't forget to cancel if you cannot make it, there is a long waiting list!

Who am I?

Hanne Heylen hanne.heylen@cern.ch CERN, Experimental Physics department

- '12 '16: PhD in experimental nuclear physics, KU Leuven, BE
 - o GANIL, FR
 - ISOLDE-CERN, CH
- Since 2016 based at ISOLDE-CERN
 - o '16 '17: Post-doc employed by MPIK, Heidelberg
 - '17 now: CERN research fellow
- Interest in outreach
 - Coordinator of ISOLDE-visits
 - School presentations, e.g. International day for women and girls in science
 - ...

1. Introduction

Atomic nuclei: the heart of matter

Down quark

d

4.8 MeV

that make up the charge

of protons and

neutrons account for only a tiny fraction of their total mass

Chart of isotopes Number of protons, Z Number of neutrons, N

Chart of isotopes

Nucleus/Isotope:

A X N

- Z protons → element X
- N neutrons
- Atomic number A = N+Z
- Nucleons = protons and neutrons
- Isotopes = nuclei with the same number of protons, but not neutrons
 - 1913 F. Soddy: iso + topos: "same place in periodic table"

Chart of isotopes

Nucleus/Isotope:

A X N

- Z protons → element X
- N neutrons
- Atomic number A = N+Z
- Nucleons = protons and neutrons
- Isotopes = nuclei with the same number of protons, but not neutrons
- Isotones = nuclei with the same number of neutrons, but not protons
- Isobars = nuclei with the same number of nucleons A (but different Z and N)

Properties of isotopes

A specific (Z, N)-combination (= nucleus) has different states

- Ground state
- Several excited states (sometimes isomers)

Basic properties of a nuclear state:

- Half-life
- Decay mode and probability
 - γ-decay (within a nucleus)
- Binding energy/excitation energy
- Nuclear spin and parity I⁺
- ... (see next lecture)

The nuclear landscape

- ~300 stable isotopes exist
- ~3000 unstable isotopes discovered
- Over 7000 isotopes predicted to exist

→ Artificial production

Radioactive ion beam facilities

Research with radioactive isotopes

Some vocabulary

- Nuclei far from (β-)stability
- Rare isotopes
- Exotic nuclei
- RIB (Radioactive Ion Beam)

2. Production of radioactive isotopes

Radioactive ion beam production

Experimentalists dreams

- Pure beams of 1 isotopic species
- Intense beams
- Good ion optical quality (low energy spread, low angular distribution)

Challenges

- Low production cross section
- Overwhelming production of unwanted species in the same nuclear reaction
- Short half-lives

Radioactive ion beam production

General steps

- 1) Production
- 2) Beam purification and preparation
- 3) Transport to experimental set-up
- 4) Do measurement

Within a few half-lives (ms)

Key words

- Efficient
- Selective
- Fast

Homework

What are the factors that determine the final ion beam intensity in your set-up?

→ Focus on ISOLDE

Production: nuclear reactions

Fission

Spallation

Fragmentation

Fusion-evaporation ZA

Accelerated primary beam (projectile)

 Proton, neutrons, alpha-particles, heavy ions

Target

Heavy nuclei

Production: nuclear reactions

Primary beam type and energy are important!

RIB production methods

- Chemistry independent
- Fast
- Poor beam quality
- Discovery of new isotopes

ISOL

- Chemistry dependent
- Slow release from target
- Good beam quality

- → 2 complementary approaches
- → Extensions, adaptations, mixtures of components of the two schemes are possible as well

RIB production methods

In-flight heavy High energy **RIB** ions Thin production Fragment target

separator

- Chemistry independent
- Fast
- Poor beam quality
- Discovery of new isotopes

ISOL

3. ISOLDE-CERN

ISOLDE at CERN

- Isotope Separator On-line Device
- First beam in 1967: more than 50 years of expertise
 - Originally at SC, Moved to PSB in 1992
 - World-wide reference for RIB production
 - First isol-facility
 - Continuous upgrades
- ~50 staff/fellows/students few 100 users each year

ISOLDE at CERN

50% of CERN's protons

Isotope production at ISOLDE

- 1. Production and extraction from target
- 2. Ionisation (singly-charged)
- 3. Mass separation
- 4. Low-energy RIB (30 60 keV)
 - a. To experimental set-ups
 - b. Post-acceleration 3 10 MeV/A

Not to forget

- Ion optical elements (steerers, focussing elements, ...)
- Beam diagnostics (faraday cups, wire grids)

Isotope production at ISOLDE

Targets

- Over 20 target materials and ionizers, depending on beam of interest
- Target heating to enhance diffusion/effusion
- Target area is highly irradiated
 - Lasts ~1 week
 - Well shielded from rest of experimental hall
 - Operations by robots

Ionisation

- Several options (chemistry)
 - Surface
 - o Plasma
 - Laser (RILIS)
- Laser ion source advantages
 - Selectivity
 - Efficiency

Atomic (electronic) structure = Fingerprint of element

RIBs at ISOLDE

- 1300 isotope of more than 70 chemical elements
- ms stable isotopes
- Sometimes only a few ions/s!

View of experimental area

Post-acceleration: REX + HIE-ISOLDE

- Start from mass separated beam from ISOLDE
- Beam cooling/bunched in buffer-gas filled Penning trap
- 3. Charge-state breeding using electron-beam ionisation

(2.5 < A/q < 4.5)

- A/q selection
- 2. Linear accelerator
 - Room temperature part (3 MeV/A)
 - Superconducting part (10 MeV/A)

charge-bred ions

bunched

A/q

separator

1° ions

ISOLDE

Penning

Post-acceleration: REX + HIE-ISOLDE

2018: All 4 cryomodules installed

The ISOLDE facility - summary

4. The MEDICIS facility

MEDICIS

- MEDical Isotopes Collected from ISolde
- Production of non-conventional radioisotope for medical research
 - 80 90% of the proton beam goes through the ISOLDE target unaffected
 - Use these (free!) protons to create more radioisotopes
- Benefit from 50 years of ISOLDE experience

MEDICIS process

Questions?

