

Experimental Physics at Lepton Colliders

CERN Summer Student Lecture, 2019

Lecture 1

Mogens Dam

Niels Bohr Institute, Copenhagen

Physics at (Future) Lepton Colliders

- Lecture 1 (Wednesday 31 July, 9:15)
 - □ Introduction: Why Lepton Colliders?
 - □ Where we stand: Status of the Standard Model
 - □ An experimental strategy for the future: e⁺e⁻ colliders
 - Precision Higgs Physics
 - Rounding off: Summary and Conclusions
- Lecture 2 (Thursday 1 August, 10:25)
 - □ Electroweak Precision Physics: FCC-ee
 - □ High Energy e⁺e⁻ Physics: CLIC
 - □ Thinking out of the box: Muon colliders
 - Rounding off: Summary and Conclusions

pp collisions vs. e⁺e⁻ collisions (1)

p-p collisions	e ⁺ e ⁻ collisions
Proton is compound object → Initial state not known event-by-event → Limits achievable precision	e ⁺ /e ⁻ are point-like → Initial state well defined (<i>E</i> , <i>p</i>), polarisation → High-precision measurements
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	Clean experimental environment → Trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states
High-energy circular pp colliders feasible	 At lower energies (≤ 350 GeV), circular e+e-colliders can deliver very large luminosities. Higher energy e+e-requires linear collider.

pp collisions vs. e⁺e⁻ collisions (2)

e⁺e⁻ collisions (1)

- No pile-up collisions, no underlying event
 - □ Final state is clean and cosy, triggering is easy (100% efficient)

Analysis is a waking dream

No huge QCD cross section: All events are signal.

e⁺e⁻ collisions (2)

- ◆ Electrons are leptons, i.e., elementary particles: no underlying event
 - □ Final state has known energy and momentum: (\sqrt{s} , o, o, o)
- Example: an $e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}q\bar{q}$ candidate
 - Four jets in the event and nothing else
 - Total energy and momentum are conserved

 \Box Jet directions ($\beta_i = p_i/E_i$) are very well measured

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \beta_1^x & \beta_2^x & \beta_3^x & \beta_4^x \\ \beta_1^y & \beta_2^y & \beta_3^y & \beta_4^y \\ \beta_1^z & \beta_2^z & \beta_3^z & \beta_4^z \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix} = \begin{bmatrix} \sqrt{s} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- □ Jet energies (and di-jet masses, m_w) determined analytically by inverting the matrix
 - No systematic uncertainty related to jet energy calibration
 - A lot of Z are available anyway to calibrate and align everything

A look the rear mirror...

Historic overview over important discoveries

Year	Discovery	Experiment	√s [GeV]	Observation
1974	c quark (m~1.5 GeV)	e ⁺ e ⁻ ring (SLAC) Fixed target (BNL)	3.1 8	$\sigma(e^+e^- \rightarrow J/\Psi)$ $J/\Psi \rightarrow \mu^+\mu^-$
1975	τ lepton (m=1.777 GeV)	e ⁺ e ⁻ ring (SPEAR/SLAC)	8	$e^+e^- \rightarrow \tau^+\tau^-$ $e^+\mu^-$ events
1977	b quark (m~4.5 GeV)	Fixed target (FNAL)	25	$\Upsilon \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
1979	gluon (m = 0)	e ⁺ e ⁻ ring (PETRA/DESY)	30	e⁺e⁻ → qqg Three-jet events
1983	W, Z (m ~ 80, 91 GeV)	pp ring (SPS/CERN)	900	$egin{aligned} W & ightarrow \ell ar{V} \ Z & ightarrow \ell^+ \ell^- \end{aligned}$
1989	Three neutrino generations	e ⁺ e ⁻ ring (LEP/CERN)	91	Z-boson lineshape measurement
1995	t quark (m=173 GeV)	pp ring (Tevatron/FNAL)	1960	Two semileptonic t-quark decays
2012	Higgs boson (m=125 GeV)	pp ring (LHC/CERN)	8000	$H \rightarrow \gamma \gamma$, $H \rightarrow Z^*Z \rightarrow 4\ell$

Indirect evidence from Precision Measurements

Top quark

- □ 1990-1994: Mass predicted from quantum loops
 - * m_{top}(pred.) = 178.0 ± 10 GeV
- □ 1995: Discovered at the Tevatron (DØ, CDF)
 - * Today: m_{top}(obs.) = 173.23± 0.7 GeV

Higgs boson

- □ 1996-2011: Mass predicted from quantum loops
 - $* m_{Higgs}(pred.) = 98^{+25}_{-21} GeV$
- □ 2012: Discovery at the LHC (ATLAS, CMS)
 - * Today: m_{Higgs}(obs.) = 125.09 ± 0.24 GeV

Lesson:

 Precision measurements interpreted via quantum loop corrections can give very strong constraints on particles at higher masses than what can be directly probed!

LEP and the Rise of Precison

- ◆ 27 km circumference e⁺e⁻ collider
 - "LEP tunnel", now "LHC tunnel"
- ♦ 1989-1995: Operation as Z factory at $\sqrt{s} \simeq 91$ GeV
 - □ 1989: Only three species of light, active neutrinos:

$$\nu_e$$
 , ν_μ , and ν_τ

- * e⁺e⁻ → Z → hadrons at LEP1; measurement of the Z boson lineshape
- □ After 5 years at LEP1: per-mille level precision

$$N_v = 2.984 \pm 0.008$$

$$\Gamma_Z = 2495.2 \pm 2.3 \text{ MeV}$$

$$m_Z = 91187.5 \pm 2.1 \text{ MeV}$$

$$\alpha_s = 0.1190 \pm 0.0025$$

- ◆ 1996-2000: Operation at WW threshold and above
 - W mass
 - □ Higgs search
 - * Just missed it...

31 July - 1 August, 2019

Why precision measurements are interesting

- Electroweak observables can be calculated / predicted with precision
 - They are sensitive to heavier particles through quantum corrections

Tree level

$$0.002 imes rac{m_{
m t}^2}{m_{
m W}^2}\simeq 1\%$$

$$-0.0006 imes \left(\ln \frac{m_{
m H}^2}{m_{
m W}^2} - \frac{5}{6} \right)$$

[small correction]

 \div Example: Γ_7 → Γ_7 × (1+ Δ ρ)

$$\Delta \rho = 0.0020 \times \frac{m_{\rm t}^2}{m_{\rm W}^2} - 0.0006 \times \left(\ln \frac{m_{\rm H}^2}{m_{\rm W}^2} - \frac{5}{6} \right) + \dots$$

- * Similarly, $m_W^2 = m_7^2 \cos^2 \theta_W^{eff} (1 + \Delta \rho)$ $(\sin^2\theta_W^{eff} \text{ from, e.g., asymmetries})$
- Precict m_W and m_{top} from Z measurements

Precison measurements

With m_{top}, m_W and m_H known, the Standard Model has nowhere to go

- Within current precision direct and indirect constraints are consistent
 - No evidence for the need for BSM physics
- But what if measurements precisions were improved?
 - * Strong incentive to significantly improve the precision of all measurement

"The" Higgs

Discorered at the LHC in 2012...

...and to current precision, looks pretty Standard Model like

- □ But is the current precision "good enough"?
 - * At which level (if any) do we expect deviations from SM predictions to appear?

BSM Searches

*Only a selection of the available mass limits on new states or phenomena is shown

- So far, no indications for new BSM physics up to several hundred GeV
 - However: in flavour physics, tensions observed between LHCb data and SM predicitions

Standard Model Complete...

complete

With the Higgs boson, the Standard Model as a theory of particles and their interactions is now

- √ complete
- √ coherent
- √ predictive to all energies

Is this the end?

...most likely not...!?

Many unanswered questions based on experimental observations?

- Why 3 generations of fermions?
- □ What is the origin of neutrino masses and oscillations?
- □ What is the composition of dark matter?
- What is the origin of the matter-antimatter asymmetry in the Universe [BAU]?
- □ Why is gravity so weak?
- □ Why is the Higgs boson so light?
 - so-called "naturalness" or "hierarchy" problem
- □ What is the origin of the Universe's accelerated expansion?

New Physics?

Many diverse theoretical ideas to extend the Standard Model (with new particles)

- ◆ Is new physics at larger masses? Or at smaller couplings? Or both?
 - □ Only way to find out: *go look*, following the historical approach:
 - Direct searches for new heavy particles
 - ⇒ Need colliders with larger energies

Energy frontier

- Searches for the imprint of New Physics at lower energies, e.g. on the properties of Z,
 W, top, and Higgs particles
 - ⇒ Need colliders / measurements with unprecedented accuracy

Precision frontier

Energy vs Precision

Many ideas lean towards higher-energy replicas of the standard theory

- □ Direct searches at larger energies may be the key but how much larger?
 - * Rare decays and precise measurements may also unveil these extension's imprints

Precision vs Energy

The Standard Model is complete? Obviously three pieces missing!

- Three right-handed neutrinos?
 - Extremely small couplings, nearly impossible to find but could explain nearly everything!
 - ♦ Small m_v (see-saw), DM (light N₁), and BAU (leptogenesis)
 - Need very-high-precision experiments to unveil
 - * Could cause a slight reduction (increase) in the Z (H) invisible decay width
 - ♦ Could open exotic Z and Higgs decays: Z, H \rightarrow v_iN_i
 - Possibly measurable / detectable in precision e⁺e⁻ collisions
 - Most likely out of reach for hadron colliders (small couplings)

Where we are heading

- ◆ The LHC is still pretty much in its childhood
 - □ Factor 30 more luminosity to be collected

- Until the end of HL-LHC (~2037!)
 - Exciting search programme for New Physics
 - * Stop: 1.5 TeV; squarks/gluinos: 3 TeV; Z': 7 TeV; etc., etc.
 - Important precision measurement
 - * Higgs couplings to 2-4%
 - * Top quark mass to 200 MeV
 - * W boson to 10 MeV?
 - Flavour physics measurements

Be prepared for the unexpected

Precision Higgs physics - The need for a Higgs Factory

- ◆ The Higgs boson is different from all other SM particles
 - □ May possibly open window to new physics?
 - Study precisely its properties to look for possible deviations
- ◆ The (HL-)LHC is already a "Higgs factory"
 - Fabulous statistics
 - ♦ At HL-LHC, > 10⁸ Higgs bosons produced in ATLAS + CMS
 - Main challenge is backgrounds
 - Many decay modes are hard to identify
 - □ Expected HL-LHC precisions at the "few percent level"
- Is this precision good enough to make a "discovery"?
- Higgs couplings are sensitive to New Physics (NP)
 - **□** Expected deviations from SM coupling strengths depend on NP scale:

with $\delta =$

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

 κ_{ν}

 κ_{W}

 κ_{7}

- Need a <u>minimum</u> of 1% precision on couplings for a 5 σ discovery if Λ_{NP} = 1 TeV
 - □ And better for heavier New Physics

Need a precision Higgs factory

√s = 14 TeV, 3000 fb⁻¹ per experiment

ATLAS and CMS

HL-LHC Projection

Uncertainty [%]

Tot Stat Exp Th

1.8 0.8 1.0 1.3

1.7 0.8 0.7 1.3

1.5 0.7 0.6 1.2

2.5 0.9 0.8 2.1

3.4 0.9 1.1 3.1 **3.7** 1.3 1.3 3.2

1.9 0.9 0.8 1.5

4.3 3.8 1.0 1.7

9.8 72 17 6.4

Expected uncertainty

Statistical

0.02 0.04

0.06

Precision requires luminosity

- ◆ So far, all e⁺e⁻ colliders except SLC (at SLAC) have been circular
 □ Over time there has been a dramatic increase in luminosity
- ◆ The next e⁺e⁻ collider will be ...

Circular?

FCC-ee, CEPC

Linear?

ILC, CLIC

Linear or Circular ? (1)

- ◆ For 20 years, there was only one future e⁺e⁻ collider project on the market
 - □ A 500 GeV e⁺e⁻ linear collider, now called "ILC", proposed in the early 1990's

■ Why not a 500 GeV circular collider?

Linear or Circular ? (2)

- Why not a 500 GeV circular collider?
 - Synchrotron radiation in circular machines
 - * Energy lost per turn grows like $\Delta E \propto$

$$\left| \Delta E \propto \frac{1}{R} \left(\frac{E}{m} \right)^4 \right|$$

, e.g., 3.5 GeV per turn at LEP2

Must compensate with R and accelerating cavities Cost grows like E⁴ too

- "Up to a centre-of-mass energy of 350 GeV at least, a circular collider with superconducting accelerating cavities is the cheapest option", Herwig Schopper
- □ At and above 500 GeV, a e⁺e⁻ collider can only be linear

The Revival of Circular ete Colliders

- Interest for circular collider projects grew up again after first LHC results
 - □ The Higgs boson is light LEP2 almost made it: only moderate √s increase needed

- □ There seems to be no heavy new physics below 500 GeV
 - ♦ The interest of \sqrt{s} = 500 GeV (and even 1 TeV) is no longer quite that obvious
- □ One way out: study with unprecedented precision the Z, W, H bosons and the top quark
 - * Need to go up to the top-pair threshold (350+ GeV) anyway to study the top quark
 - * Highest possible luminosities at 91, 160, 240 and 350+ GeV are needed

Studies of High-energy ete Colliders

Future Circular Collider (FCC): CERN e^+e^- , \sqrt{s} : 90 - 350 GeV; pp, \sqrt{s} : 100 TeV; Circumference: 97.5 km

International Linear Collider (ILC): Japan √s: 250 — 1000 GeV, Now concentrating on √s = 250 GeV, Length: 21 km (250 GeV) Circular Electron-Positron Collider (CEPC): China √s: 90 – 240 GeV, Circumference: ~100 km

Projected Luminosities of ete Colliders

- LEP@Z-pole: $L = 0.01 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Complementarity
 - □ Ultimate precision measurements (luminosity!) with circular colliders (FCC-ee)
 - □ Ultimate e⁺e⁻ energies with linear colliders (CLIC)

ILC

- Originally designed for $\sqrt{s} = 500$ GeV, recently re-optimized for 250 GeV
 - Supported by 25 years of R&D and innovation
 - Complete technical design report delivered in 2013
 - In principle, ready for construction as soon as decision is taken
 - Machine has many technological challenges
 - * ~10 km-long, high-gradient (31 MV/m), RF system
 - * A very low β^* optics delivering small beam spot sizes at high intensity
 - Still to be demonstrated to be achievable
 - * A positron source with no precedent
 - Performance cannot be verified before the construction is complete
 - A green-field project
 - Can deliver data to only one detector at a time
 - □ In principle upgradeable to $\sqrt{s} = 1$ TeV
 - * And possibly more: CLIC or plasma acceleration later in the same tunnel (?)
 - □ No design to run at the Z pole

CLIC

- Designed to reach the highest possible energies in e⁺e⁻ collision
- In staging scenario, forseen to cover the three energy points √s = 380,
 1500, and 3000 GeV
 - More than 30 years of innovation and R&D
 - * Very high acceleration gradient, 100 MV/m, from a 2-beam acceleration scheme
 - demonstrated via CLIC Test Facilities
 - Conceptual Design Report delivered in 2012
 - □ A number of technological challenges common with ILC
 - * Very low β^* optics delivering small beam spot sizes at high intensity
 - Positron source with no precedent
 - Can deliver data to only one detector at a time
 - □ No design to run at the Z pole

FCC-ee

- Designed as highest luminosity Z, W, H, and top factory (√s=88-365 GeV)
 - Relatively young project: about six years old
 - Lots of progress very solid design study (2014-2018)
 - Technology ready... on paper
 - Conceptual Design Report (CDR) published early this year
 - □ This machine has at least as many technological challenges as linear colliders
 - * A high-power (200 MW), high-gradient (10 MV/m), 2 km-long, RF system
 - * Loads of synchrotron radiation (100 MW) to deal with
 - * A booster (for top up injection), and a double ring for e⁺ and e⁻
 - * Optics with very low β^* , and large momentum acceptance
 - * Transverse polarization for beam energy measurement
 - Two (possible four) experiments to serve
 - ... and much more
 - □ Supported by 50 years of experience and progress with e⁺e⁻ circular machines
 - Most of the above challenges starting to be addressed at SuperKEKB
 - FCC-ee will build on this experience
 - □ First step towards a 100 TeV proton-proton collider

Landscape of proposed future colliders

Landscape of proposed future colliders

Precision Higgs Physics

Scenarios I have chosen to discuss / compare

Facility	CEPC ₂₄₀	FCC-ee ₃₆₅	ILC ₅₀₀	CLIC ₁₅₀₀
√s [GeV]	240	240 / 365	250 / 350 / 500	380 / 1500
£ [ab-1]	5.6	5/1.5	2.0 / 0.2 / 4.0	1.0 / 2.5
# years	7	9	22	17
Polarisation	no	no	yes	yes
# Higgs (× 10 ³)	1100	1000 / 240	500 / 40 / 800	150 / 600

- ◆ The landscape is complicated; not easy to make a "fair" comparison:
 - □ CEPC: no *current* plans to go beyond \sqrt{s} = 240 GeV
 - However, clearly technically feasible
 - □ FCC-ee: Both \sqrt{s} = 240 and 365 GeV included in baseline project
 - * The energy upgrade of FCC is the FCC-hh, which will bring ultimate precisions
 - □ ILC: Current baseline is 250 GeV only; but clearly an upgrade to 500 GeV is understood/hoped for
 - * However, more than a factor two on price, and long time scale (Σ = 22 years)
 - □ CLIC: Have (arbitrarity) included the two first stages leaving out the the 3 TeV run
 - * Regard the 3 TeV run as an "energy upgrade" comparable somehow to FCC-hh

Higgs Production

Dominant production processes for √s ≤ 500 GeV

- * Higgs-strahlung cross section multiplied by $1 P_-P_+ A_e \times (P_- P_+)$
- * Boson fusion cross section multiplied by $(1-P_{-}) \times (1+P_{+})$

(exercise)

Moving to higher energies

- Higgsstrahlung: e⁺e⁻ → ZH
 σ ~ 1/s, dominant up to ≈ 450 GeV
- ♦ WW fusion: e^+e^- → $H\nu_e\overline{\nu}_e$
 - $\sigma \sim \log(s)$, dominant above 450 GeV
 - Large statistics at high energy
- ttH production: e⁺e⁻ → ttH
 - □ Accessible ≥ 500 GeV, maximum ≈ 800 GeV
 - Direct extraction of top Yukawa coupling
- ZHH and $HH\nu_e\overline{\nu_e}$ production
 - □ From 500 GeV (ZHH) and ≈800 GeV (HH $\nu_e \overline{\nu_e}$), dual Higgs production
 - Sensitivity to Higgs self coupling

Higgs Decays

- ♦ Plan is to run at \sqrt{s} = 240-250 GeV and 350-500 GeV in order to
 - □ Determine all Higgs couplings in a model-independent way
 - □ Infer the Higgs total decay width
 - □ Evaluate (or set limits on) the Higgs invisible or exotic decays
 - Through the measurements of

$$\sigma(e^+e^- \to H + X) \times BR(H \to YY)$$

with Y = b, c, g, W(Z) γ , τ , μ (invisible)

m _H = 125 GeV			
Decay	BR [%]		
bb	57.7		
тт	6.32		
сс	2.91		
μμ	0.022		
ww	21.5		
99	8.57		
ZZ	2.64		
YY	0.23		
Zγ	0.15		
ΓΗ [MeV]	4.07		

- \square m_H = 125 GeV is a very good place to be for precision measurements!
 - * All decay channels open and measurable can test new physics from many angles

Higgs Backgrounds

- Physics backgrounds are "small"
 - □ For example, at √s = 240 GeV

60 pb

30 bp

16 pb

3.8 pb

1.4 pb

1.3 pb

32 fb

- * "Blue" cross sections decrease like 1/s
- * "Green" cross sections increase slowly with s

Add $e^+e^- \rightarrow t\bar{t}$ for $\sqrt{s} > 345 \text{ GeV}$

o.6 pb

□ To be compared to

- Only one to two orders of magnitude smaller
 - vs. 11 orders of magnitude in pp collisions
 - Trigger is 100% efficient
 - no need for trigger; all crossings are recorded
 - All Higgs events are useful and exploitable
 - Signal purity is large

Higgs Events

- Example of a Higgs boson event
 - □ Tagged with a Z boson
 - □ Very clean signature

Higgs physics Analysis

- ullet Example: Model-independent measurement of σ_{HZ} and g_{HZZ}
 - \Box The Higgs boson in HZ events is tagged by the presence of the Z \rightarrow e⁺e⁻, $\mu^+\mu^-$
 - * Select events with a lepton pair (e^+e^- , $\mu^+\mu^-$) with mass compatible with m_Z
 - * Apply total energy-momentum conservation to determine the "recoil mass"
 - $m_{H}^2 = s + m_Z^2 2\sqrt{s(p_+ + p_-)}$

Exercise!

- Plot the recoil mass distribution resolution proportional to momentum resolution
- * No requirement on the Higgs decays: measure $\sigma_{HZ} \times BR(Z \rightarrow e^+e^-, \mu^+\mu^-)$

□ Provides an absolute measurement of g_{HZZ} and set required detector performance

Higgs physics Analysis

- Repeat the search in all possible final states
 - \Box For all exclusive decays, YY, of the Higgs boson: measure $\sigma_{HZ} \times BR(H \to YY)$
 - Including invisible decays
 - event containing only the lepton pair with correct (m_{miss}, m_{recoil}), else empty
 - * For all decays of the Z (hadrons, taus, neutrinos) to increase statistics
 - \Box For the WW fusion mode (Hvv final state): measure $\sigma_{WW\to H} \times BR(H\to YY)$

Higgs total Width

- Indirect determination of the total Higgs decay width
 - □ From a counting of HZ events with H \rightarrow ZZ at \sqrt{s} = 240 GeV
 - * Measure σ_{HZ} × BR(H \rightarrow ZZ)

Final state with three Z's Almost background free

Measured with the $H\ell^+\ell^-$ final state (see slide 41)

- * σ_{HZ} is proportional to g_{HZZ}^2
- * BR(H \rightarrow ZZ) = Γ (H \rightarrow ZZ) / Γ_{H} is proportional to $g_{HZZ^{2}}/\Gamma_{H}$
 - $\sigma_{HZ} \times BR(H \to ZZ)$ is proportional to G_{HZZ} Γ_H
- \diamond Infer the total width Γ_{H}

Higgs total Width

- Indirect determination of the total Higgs decay width (cont'd)
 - \Box From a counting WW \rightarrow H \rightarrow bb events at 350-500 GeV in the bb $v\bar{v}$ final state:

- * Measure $\sigma(WW \rightarrow H \rightarrow b\bar{b})$
- * Take the branching ratios into WW and bb from σ_{HZ} and $\sigma_{HZ} \times BR(H \to WW,bb)$
- * Infer the total width

$$\Gamma_H \propto \sigma_{WW \to H} / BR(H \to WW) = \sigma_{WW \to H \to bb} / BR(H \to WW) \times BR(H \to bb)$$

Higgs Self Coupling, λ_3

- ullet Higgs self-coupling, λ_3 , is a fundamental parameter of the SM whos value should be checked against prediction
 - Essentially dictates the shape of the Higgs potential
- For √s ≥ 500 GeV, access to di-Higgs production

Higgs Self Coupling, λ_3

- At lower energies, no production of Higgs pairs
- But, loops including Higgs self coupling contribute to Higgs production

• Effect on σ_{ZH} and σ_{vvH} of Higgs self coupling (λ_3 and hence $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$) depends on \sqrt{s}

- \Box Two energy points (240 and 365 GeV) lift the degeneracy between $\delta\kappa_Z$ and $\delta\kappa_\lambda$
 - * Precision on λ_3 with 2 IPs at the end of the FCC-ee (91+160+240+365 GeV)
 - Global EFT fit (model-independent): ±34% (3σ); in the SM: ±12%

Summary of Higgs Measurement Precisons

A			of - V		1 - 13
Coupling	HL-LHC	CEPC ₂₄₀	FCCee ₃₆₅	ILC ₅₀₀	CLIC ₁₅₀₀
κ _w [%]	1.2	1.3	0.43	0.29	0.17
κ _z [%]	1.0	0.13	0.17	0.23	0.26
κ _c [%]	SM	2.2	1.3	1.3	1.8
κ _t [%]	2.8	-	-	6.9	n.a.
κ _b [%]	2.7	1.2	0.67	0.58	0.48
κ _μ [%]	4-4	8.9	8.9	9-4	13
κ _τ [%]	1.6	1.3	0.73	0.7	1.3
κ _γ [%]	1.7	3.7	3.9	3-4	5.0
κ _g [%]	2.2	1.5	1.0	0.97	1.3
κ _{Ζγ} [%]	10	8.2	-	-	15
Г _н [%]	~50	3.1	1.3	1.6	2.6
BR _{inv} [%]	≲ 2	< 0.27	< 0.19	< 0.22	< 0.62
BR _{EXO} [%]	SM	< 1.1	< 1.0	< 1.4	< 2.4
λ_3 (sngl-H/di-H)	- / 50	17 / -	19/-	26 / 27	40/36
		<u> </u>	78		

Model-independent results

Sensitive to new physics at tree level
 Expected effects < 5% / Λ²_{NP}
 1% precision needed for Λ_{NP} ~ 1TeV
 Sub-percent needed for Λ_{NP} > 1TeV

Sensitive to new physics in loops

Sensitive to light dark matter particles (sterile v, χ , ...) and to other exotic decays

Higgs self-coupling

Generally, a factors of 2–10 better than HL-LHC Plus Model Independence

Conclusions of the first lecture (1)

- The Standard Model is a complete theory of particles and their interactions
 - □ Theoretically complete since 40 years
 - □ Experimentally complete since 2012 with the discovery of the Higgs boson
 - □ Tested to be internally consistent at the quantum loop level via EW precision measts.
- The days of "guaranteed discoveries" are over, however, experimental observations suggest the existence of physics beyond the SM
 - □ Dark matter, matter-antimatter asymmetry, neutrino masses, ...
 - □ However, we do not know where this new physics is hiding
 - ♦ At high(er) masses
 □ Energy Frontier / Precision Frontier
 - ♦ At small(er) couplings
 ➡ Precision Frontier
- e⁺e⁻ colliders provide very clean experimental environments:
 - □ In particularly LEP has played (is still playing!) an important role in precision tests of SM
 - ❖ Z parameters from 10⁷ Z decays; W parameters from 10⁵ W decays
- ◆ Future e⁺e⁻ colliders can be either linear or circular
 - □ Linear: necessary for energies > 500 GeV (synchrotron radiation)
 - □ Circular: superiour luminosity performance for energies ≤ 375 GeV

Conclusions of the first lecture (2)

- ◆ A e⁺e⁻ Higgs Factory can test the Higgs boson to the theoretical interesting subpercent level
 - □ ~ 10⁶ Higgs decays in an experimentally very clean environment
 - □ The Higgs boson in HZ events are tagged by the Z decay products
- ◆ The small mass of the Higgs boson allows two options for a *Higgs Factory*
 - □ A 250 500 GeV linear collider: ILC (also CLIC at \sqrt{s} = 380 GeV and higher)
 - **♦ ILC** now concentrating on \sqrt{s} = 250 GeV
 - □ A 88 365 GeV circular collider: FCC-ee (also CEPC at \sqrt{s} = 88 240 GeV)
- Tomorrow we will consider the potential of very high precison electroweak measurements at the FCC-ee and high-energy e⁺e⁻ collisions at CLIC

End of the first lecture

Questions...

