Future High-Energy Collider Projects I

D. Schulte

Introduction

- What will be the next high energy frontier project for particle physics?
- What will be the next high energy frontier project for Europe (and CERN)?
- Actually, we do not know
- There is a process ongoing "European Strategy for Particle Physics" to figure out what to do
 - Proposals have been sent in by end of last year
 - Selected presentations were given in Granada this year
 - A summary document is being prepared by September
 - Recommendation report writing will start next January
 - Results will be known and approved by council May 2020
- I will present candidates for future colliders

Previous European Strategy

Conclusion in 2012

- Highest priority is exploitation of the LHC including luminosity upgrades
- Europe should be able to propose an ambitious project after the LHC
 - Either a high energy proton collider (FCC-hh) with lepton collider (FCC-ee) as potential (now likely) intermediate step
 - Or a high energy linear lepton collider (CLIC)
- Europe welcomes Japan to make a proposal to host ILC
- Long baseline neutrino facility (not covered here)

New process ongoing 2018-2020 Decision expected in May 2020

Collaborations

Work is done in collaborations

Global collaborations for FCC and CLIC

Also for ILC

Some collaboration for CEPC / SppC

FCC Collaboration

- 74 institutes
- 26 countries + EC

🚍 🛟 💿 🍋

Current CLIC Collaboration

D. Schulte

CERN summer student lectures, 2017

50

Collaborations are still dynamic

A way to contribute to a project while not at CERN

Status: April, 2016

D. Schulte

CERN summer student lectures, 2017

51

D. Schulte

Considered High Energy Frontier Collider

Circular colliders:

- FCC (Future Circular Collider)
 - FCC-hh: 100 TeV proton-proton cms energy, ion operation possible
 - FCC-ee: First step 90-350 GeV lepton collider
 - FCC-he: Lepton-hadron option
 - HE-LHC: Stronger magnets in LHC tunnel
 - Lower field version of FCC-hh
- **CEPC / SppC** (Circular Electron-positron Collider/Super Proton-proton Collider)
 - CepC : e⁺e⁻ 90 240 GeV cms
 - SppC : pp 70 TeV cms

Linear colliders

- ILC (International Linear Collider): e⁺e⁻ 250 GeV cms energy, Japan considers hosting project
- CLIC (Compact Linear Collider): e⁺e⁻ 380 GeV 3 TeV cms energy (also lower possible), CERN hosts collaboration

Mentioned

- Muon collider, past effort in US, maybe new interest in Europe
- Plasma acceleration in linear collider
- Photon-photon collider
- LHeC D. Schulte

Key Collider Considerations

Physics potential	Particle type The collider energy The collider luminosity
Feasibility	The technical maturity The risk The schedule
Affordability	The collider cost The collider power consumption Availability of site

Comparisons

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost	
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade	
		0.5	4	10	163 (204)	7.8 GILCU	
		1.0			300	?	
CLIC	ee	0.38	1	8	168	5.9 GCHF	
		1.5	2.5	7	(370)	+5.1 GCHF	
		3	5	8	(590)	+7.3 GCHF	
CEPC	ee	0.091+0.16	16+2.6	16+2.6		5 G\$	
		0.24	5.6	7	266		
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF	
		0.24	5	3	282		
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF	
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF	
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)	
HE-LHC	рр	27	20	20		7.2 GCHF	

D. Schulte

Future High-energy Colliders, CERN 2019

Collider Choices

- Hadron collisions: compound particles
 - Protons or ions
 - Mix of quarks, anti-quarks and gluons: variety of processes
 - Parton energy spread
 - QCD processes large background sources
 - Hadron collisions \Rightarrow can typically achieve higher collision energies
- Lepton collisions: elementary particles
 - Electrons, positrons and probably muons
 - Collision process known
 - Well defined energy
 - Less background
 - Lepton collisions \Rightarrow precision measurements
- Photons also possible

Energy Limit

Hadron collider is typically circular Maximum energy defined by ability to keep particle on circular orbit

Required radius R of the ring is given by

 $R \mu \frac{E}{B}$

- ⇒ Make magnetic field B of bending dipoles as big as possible
- Very convenient
- Accelerate beam in many turns
- Let beam collide many times

accelerating cavities

Electron-positron colliders have been mostly circular sofar (one exception)

Energy (and luminosity) are limited by synchrotron radiation

$$\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{R}$$

Electrons are 2000 time lighter than protons At LEP2 lost 2.75GeV/turn for E=105GeV

Solutions for Leptons

Use a linear collider

- Essentially no synchrotron radiation
- But
 - Have to accelerate beams rapidly
 - Only collide once

Hence challenges

- High accelerating gradient
- Small beams at collision

$$\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{R}$$

Or use heavier particles Muons are 200 times heavier than electrons But they have a short lifetime

Electron-positron Luminosity

Luminosity per facility

Note: The typical higgs factory energies are close to the cross over in luminosity Linear collider have polarised beams (80% e⁻, ILC also 30% e⁺) and beamstrahlung

• All included in the physics studies

The picture is much clearer at lower or higher energies

Linear Colliders

ILC

Main Linac Unit

Accelerating cavities O(65%) of linac length Beam guiding quadrupole Accelerating cavities Beam position monitor Corrector kicker

Total length for 500 GeV cms 31 km, some length for beam cleaning and focusing

ILC Cavities

Superconducting cavity (Ni at 2 K)

RF frequency is 1.3 GHz, 23 cm wavelength

Length is 9 cells = 4.5 wavelengths = 1 m

ILC Gradient Limitations

ILC Cavity Treatment

Avoid defects Ensure high quality Electropolishing -> fill with H_2SO_4 , apply current to remove thin surface layer

45

50

FILTER

x2

30

35

40

ROTATIO

ILC Achieved Gradient

Note: Pulsed Operation

5 RF pulses of 1.6 ms per second (1312 bunches in 0.73 ms):

Because field leads to losses in the wall

- About 1 W/m
- With no pulsing losses would be O(100) times worse

RF power in pulse: 5 MW / (5 x 0.73 ms) = O(1500 MW) = O (150 klystrons)

Note: Cryogenics

Cavities have small losses

$$P_{loss} = const \frac{1}{Q_0} \quad G^2$$

About 1W/m

But cooling costly at low temperatures

Remember Carnot:

$$P_{cryo} = \frac{1}{h} \frac{T_{room} - T_{source}}{T_{source}} \land P_{loss}$$
$$P_{cryo} \gg 700 \land P_{loss}$$

The typical heat load of 1 W/m \Rightarrow about 1 kW/m for cryogenics

Average RF power: 1.6kW/m (3kW/m) Power into beam about 0.7kW/m

CLIC Accelerating Structure

12 GHz, 23 cm long, normal conducting Loaded gradient 100 MV/m

- \Rightarrow Allows to reach higher energies
- \Rightarrow 140,000 structures at 3 TeV

But strong losses in the walls

- \Rightarrow 50 RF bursts per second
- \Rightarrow 240 ns, 60 MW, 312 bunches
- \Rightarrow Power during pulse 8.5 x 10⁶ MW (3000 x ILC)

Power flow

- 1/3 lost in cavity walls
- 1/3 in filling the structure and into load
- 1/3 into the beam

Average RF power about 3 kW/m About 1 kW/m into beam

CLIC: The Basis

CLIC Gradient Limitations

Breakdowns (discharges during the RF pulse)

- Require $p \le 3 \times 10^{-7} \text{ m}^{-1} \text{ pulse}^{-1}$
- Structure design based on empirical constraints, not first principle
- Maximum surface field
- Maximum temperature rise
- Maximum power flow

R&D programme established gradient O(100 MV/m)

Shorter pulses have less breakdowns

CLIC Two-beam Concept

CLIC Two-beam Module

1st module

80 % filling with accelerating structures 11 km for 380 GeV cms 50 km for 3 TeV

CLIC: The Basis

CLIC Test Facility (CTF3)

Drive Beam Combination in CTF3

Examples of ILC and CLIC Main Parameters

Parameter	Symbol [unit]	SLC	ILC	CLIC	CLIC
Centre of mass energy	E _{cm} [GeV]	92	250	380	3000
Luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1.35	1.5	6
Luminosity in peak	L _{0.01} [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1	0.9	2
Gradient	G [MV/m]	20	31.5	72	100
Particles per bunch	N [10 ⁹]	37	20	5.2	3.72
Bunch length	σ _z [μm]	1000	300	70	44
Collision beam size	σ _{x,y} [nm/nm]	1700/600	516/7.7	149/ <mark>2.9</mark>	40/ <mark>1</mark>
Vertical emittance	ε _{x,y} [nm]	3000	35	30	20*
Bunches per pulse	n _b	1	1312	352	312
Bunch distance	Δz [mm]	-	554	0.5	0.5
Repetition rate	f _r [Hz]	120	5	50	50

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} n_b f_r$$

 \sim

Need to ensure that we can achieve each parameter

Beam-beam Effect

Dense beams to reach high luminosity Beam focus each other

 $\mathcal{L} \propto rac{N}{\sigma_x \sigma_y}$

Beam-beam force on

$$\sigma_x \gg \sigma_y \qquad \sigma_x + \sigma_y \approx \sigma_x$$

Future High-energy Colliders, CERN 2019

Beam-beam Effect

Future High-energy Colliders, CERN 2019

Beam Quality

- Cannot cover the very rich field of studies
- Address the issue by
 - Clever system design
 - Clever tuning algorithms
 - Technical development of components
 - Experiments

Example: Wakefields

This effect is larger in higher frequency structures, hence N=2x10¹⁰ vs. N=4x10⁹

Future High-energy Colliders, CERN 2019
Resulting Beam Jitter

J. Pfingstner

Stabilisation System

 $\overline{\sigma_y}$

Future High-energy Colliders, CERN 2019

J. Pfingstner

Active Stabilisation Results

Other CLIC Technology Development

Redesign CLIC modulators and klystrons Increase efficiency from 62% to 90%

Reduce cost (low voltage, no oil)

New module design Reduce cost of mechanical system and control

Klystron-based first energy stage

Main beam injector e.g. halved power for positron production

Permanent magnets Use tunable permanent magnets where possible

- Quadruoles in drive beam
- Strongest permanent magnet developed in UK

As alternative

And many more ...

Instrumentation **Further improvements**

Active alignment Further improvements

CLIC Staged Scenario

Stage	\sqrt{s} [TeV]	$\mathscr{L}_{\text{int}} [ab^{-1}]$
1	0.38 (and 0.35)	1.0
2	1.5	2.5
3	3.0	5.0

Luminosity targets from Physics Study group Hopefully input from LHC

1.5 TeV

15

20

25 Year

3 TeV

Integrated luminosity

0.38 TeV

5

Total

1% peak

10

Lower gradient optimum for lower energy

Integrated luminosity [ab⁻¹]

6

0

0

ILC Scenarios

Waiting for Japan to make a commitment

- Site identified and being investigated
- But executive not yet endorsed project
- Process is going on for many years

Baseline running example Note: contains up to 500 GeV, which is not part of current baseline proposal

Note: Technology Transfer

The technology developed for linear colliders is useful for other fields, e.g.

- FELs (Examples: European X-FEL in Hamburg, LCLS at SLAC, SACLA in Japan, Swiss FEL, ...)
- Medical facilities
- Safety
- Industrial applications

Note: Gamma-gamma Collider Concept

 $E_{\rm cm}/E_{\rm cm,0}$

Future High-energy Colliders, CERN 2019

Note: Plasma Acceleration

Plasma can be generated by electron beam, proton beam or laser beam

See also additional slides

Examples of Achieved Accelerations

Using SLC beam L=0.85m, G=O(50 GV/m) \Rightarrow 42 GeV

E167 collaboration SLAC, UCLA, USC I. Blumenfeld et al, Nature 445, p. 741 (2007)

Using laser beam to generate the plasma at Berkeley => 1GeV

Leemans et al., Nature Phys. (2006). Nakamura et al., Phys. Plasmas (2007).

Driving plasma with protons is planned in AWAKE Using a proton bunch to create many minibunches

Example: Beam-driven Plasma Collider (PWFA)

D. Schulte

Future High-energy Colliders, CERN 2019

Plasma Collider Issues

 Practical solution for acceleration of positrons is missing

 Efficiency and beam quality has to be addressed

- Significant effort needed to arrive at a paper design
- Need very important technology development to make it real
- A long-term effort

References

ILC

These papers and supporting documents in: <u>https://ilchome.web.cern.ch/content/ilc-european-strategy-document</u>

More about ILC: <u>https://ilchome.web.cern.ch</u>

CLIC

These paper and supporting documents in: https://clic.cern/european-strategy

More about CLIC: <u>https://clic.cern</u>

Reserve

ILC Detector Concepts

CLIC detector concepts are based on SiD and ILD. Modified to meet CLIC requirements

Linear Collider Experiment

Lepton Pair Production

Spent Beam Content

J. Esberg

Spent Beam Divergence

Beam particles are focused by oncoming beam

Photons are radiated into direction of beam particles

Coherent pair particles can be focused or defocused by the beams but deflection limited due to their high energy

-> Extraction hole angle should be significantly larger than 6mradian

We chose 10mradian for CLIC -> 20mradian crossing angle

ILC requires 14mradian crossing angle

CLIC Inner Detector Layout

The last focusing magnet of the machine is inside of the detector

A. Seiler

Inner Detector Layout

Incoherent Pairs

Future High-energy Colliders, CERN 2019

Hadronic Background

Only events used with

$$W_{\gamma\gamma} \ge 5 \,\mathrm{GeV}$$

Most energy is in forward/backward direction

- E_{vis}≈ 450GeV per hadronic event

- $E_{vis} \approx 23 \text{GeV}$ for $\theta > 0.1$
- $E_{vis} \approx 12 \text{GeV}$ for $\theta > 0.2$ -20% from e⁺e⁻ (cannot be reduced)

Adds about 20% charged hits in the inner layer of the vertex detector

Probability per event

Can be used to monitor luminosity

PandoraNewPFAs

1 TeV Z=>qqbar

1.4 TeV of background !

M. Thomson. J. Marshall

with 60 BX background

D. Schulte

LooseSelectedPandoraNewPFAs

0.3 TeV of background

SelectedPandoraNewPFAs

0.2 TeV of background

TightSelectedPandoraNewPFAs

0.1 TeV of background

Impact of timing cuts on jets

Impact of the PFOSelector timing cuts on the jet energy resolution

E_{jet} [GeV]	45	100	250	500
no cut	3.98 ± 0.05	3.15 ± 0.04	3.00 ± 0.04	3.26 ± 0.06
loose cut	4.40 ± 0.06	3.34 ± 0.04	3.08 ± 0.04	3.29 ± 0.06
default cut	5.15 ± 0.07	3.64 ± 0.05	3.17 ± 0.04	3.33 ± 0.06
tight cut	5.95 ± 0.08	3.99 ± 0.05	3.30 ± 0.04	3.37 ± 0.06

ILD

Beam-Induced Background Summary

parameter	units	CLIC	CLIC	ILC (RDR)	•
E_{cms}	[TeV]	0.5	3.0	0.5	
f_{rep}	[Hz]	50	50	5	
n_b		354	312	2625	
Δt	[ns]	0.5	0.5	369	
L _{total}	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.3	5.9	2.0	•
$L_{0.01}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.4	2.0	1.45	
n_{γ}		1.3	2.2	1.3	
$\Delta E/E$		0.07	0.29	0.024	
N _{coh}	$[10^5]$	10^{-3}	3.8×10^{3}		
E_{coh}	$[10^3 \mathrm{TeV}]$	0.015	2.6×10^5		
n_{incoh}	$[10^6]$	0.08	0.3	0.1	
E_{incoh}	$[10^6 \text{GeV}]$	0.36	22.4	0.2	•
n_{\perp}		20.5	45	28	
n_{had}		0.19	2.7	0.12	

Beamstrahlung

- Disappear in the beam pipe
- Coherent pairs
 - Largely disappear in beam pipe
- Incoherent pairs
 - Suppressed by strong solenoidfield
- Hadronic events
 - Impact reduced by time stamping
- Muon background from upstream linac
 - Not discussed here

CLIC_ILD and CLIC_SiD

CLIC_ILD_CDR

CLIC_SiD_CDR

These images are derived from the simulation models for the CDR

Future High-energy Colliders, CERN 2019

Linear Collider Some Detailed Issues
Ground Motion and Its Mitigation

0.1

73

100

10

f [Hz]

CLIC: Why 100 MV/m and 12 GHz ?

- Optimisation 1
 - Luminosity per linac input power

Optimisation 2
– Total project cost

Future High-energy Colliders, CERN 2019

Parameter and Structure Choice

Pushing the Bunch Charge

Single bunch wakefields kick the tail of a bunch

Guiding quadrupoles act like a spring

Comparable to driven oscillator

$$x'' + \frac{1}{\beta^2}x = \frac{F(s)}{E(s)}$$

Increasing spring strength reduces oscillation

Put in as many strong quadrupoles as reasonable (O(10%) of CLIC main linac)

CLIC Beam-Based Alignment Tests at FACET

Before correction

Emittance

After 1 iterationHigh-energy ColAfter Biterations

CLIC Pre-alignment System

D. Schulte

Beam Delivery System Test

Lepton Collider Physics Case

Beamstrahlung Optimisation

SLC: The only Linear Collider that existed

Built to study the Z⁰ and demonstrate linear collider feasibility

Energy = 92 GeV Luminosity = 2e30

Has all the features of a 2nd gen. LC except both e+ and e- used the same linac

A 10% prototype!

ILC Main Linac Layout

CLIC Pre-alignment System

Example Transverse Tolerance

PWFA beam at 1.5TeV has $\sigma_y = O(30 \text{ nm})$ for $n_0 = 2 \times 10^{16} \text{ cm}^{-3}$

- \Rightarrow Beam jitter stability O(1 nm)?
 - \Rightarrow Tough for laser/drive beam
- \Rightarrow Static misalignment is also critical
 - ⇒ but depends on beam energy spread and tuning methods

Important to understand tolerances correctly

R&D programme essential on transverse alignment and stabilisation

Note: Linear Collider Staging

- Design has been done for 500 GeV (ILC) and 3 TeV (CLIC)
 - Staging is a good option
- CLIC is planned to be constructed in stages
 - 0.38, 1.5 and 3 TeV
 - Just add more length as needed/money becomes available
- ILC could also be done in stages (250 GeV)

Legend

CERN existing LHC Potential underground siting : CLIC 380 Gev CLIC 1.5 TeV CLIC 3 TeV

Tunnel implementations (laser straight)

Lake Geneva

Geneva

hage 6 2011 GN-France

Future Figh-energy Colliders, CERN 2019

P

Central MDI & Interaction Region