Introduction to Statistical Analysis

Lecture 3

Nicolas Berger (LAPP Annecy)

Physics measurement data are produced through **random processes**, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n}_{i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})} \frac{(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})^{\mathbf{n}_{i}}}{\mathbf{n}_{i}!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\boldsymbol{m}_{i}; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n}_{\text{evts}}!} \prod_{i=1}^{\boldsymbol{n}_{\text{evts}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m}_{i}) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m}_{i})$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs)

Reminders from Lecture 2: Discovery Significance

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value $\hat{\mu}$ that maximizes L(μ).

To decide between hypotheses H_0 and H_1 , use the likelihood ratio $\frac{L(H_0)}{L(H_1)}$

To test for **discovery**, use
$$q_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$
 $\hat{S} \ge 0$

For large enough datasets (n > 5), $Z = \sqrt{q_0}$

For a Gaussian measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement, $Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

T

Reminders from Lecture 2: Limits & Intervals

Limits : use LR-based test statistic:

 \rightarrow Use CL, procedure to avoid negative limits

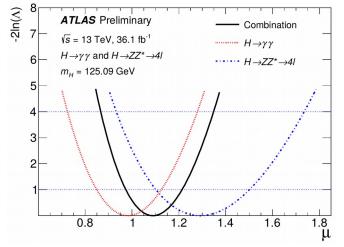
Poisson regime, n=0 : S_{up} = 3 events

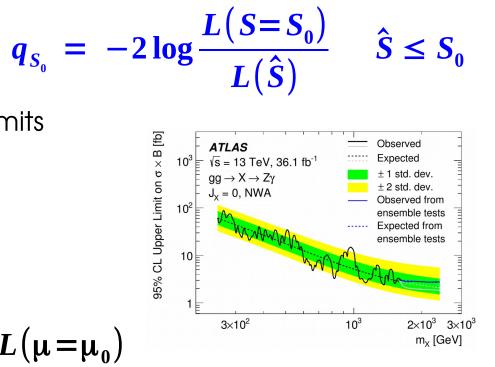
Confidence interva

Is: use
$$t_{\mu_0} = -2 \log \frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

$$\rightarrow$$
 1D: crossings with $t_{\mu 0} = Z^2$ for $\pm Z\sigma$ intervals

Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{Gauss}$ for a 1 σ interval





 $\hat{S} \leq S_0$

Outline

Expected results and toys Pseudo-experiments and Asimov datasets Dealing with non-asymptotic situations

Profiling

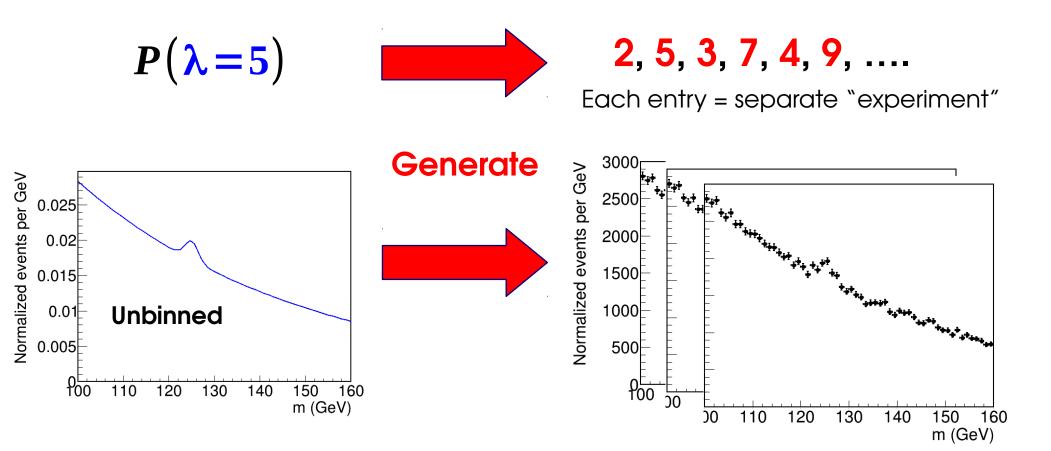
Look-Elsewhere Effect

Bayesian methods

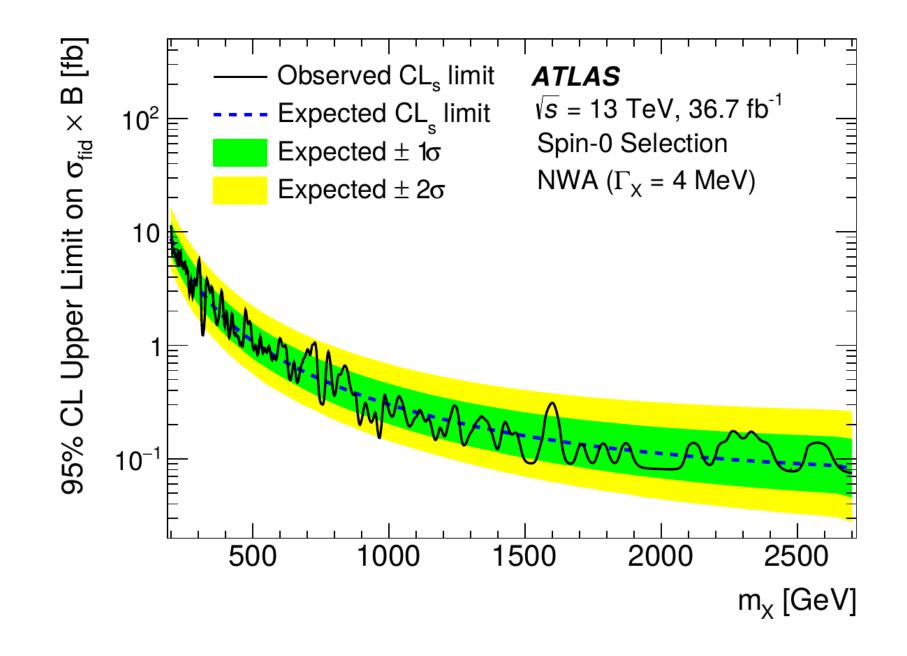
Presentation of results

Generating Pseudo-data

Model describes the distribution of the observable: **P(data; parameters)** ⇒ Possible outcomes of the experiment, for given parameter values Can draw random events according to PDF : **generate** *pseudo-data*



Expected Results



Expected Limits: Toys

Expected results: median outcome under a given hypothesis

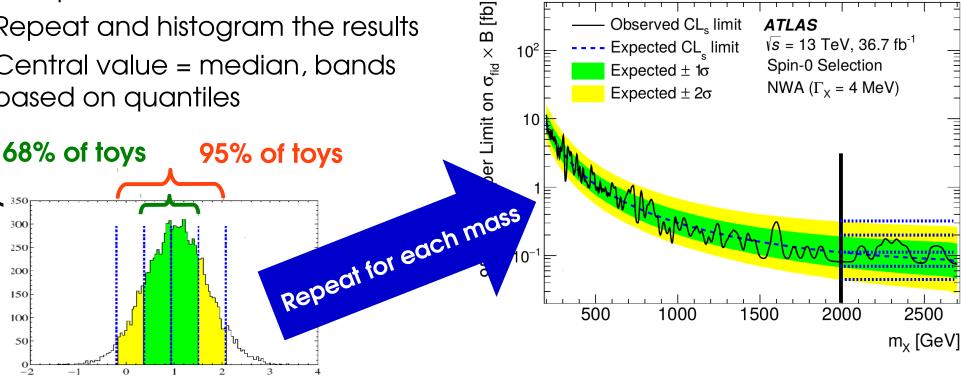
 \rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:

- \rightarrow Pseudo-experiments (*toys*):
- Generate a pseudo-dataset in B-only hypothesis
- Compute limit

Number of Toys

- Repeat and histogram the results
- Central value = median, bands based on quantiles



Eur.Phys.J.C71:1554,2011 **Computed limit** Phys. Lett. B 775 (2017) 105

Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

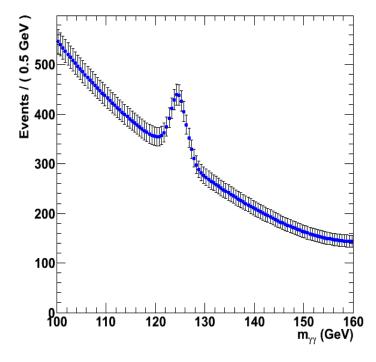
- Generate a "perfect dataset" e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) ↔ result(median dataset)
- Get bands from asymptotic formulas: Band width

$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

⊕ Much faster (1 "toy")⊖ Relies on Gaussian approximation

Strictly speaking, Asimov dataset if $\hat{X} = X_0$ for all parameters X,

where X_0 is the generation value



Outline

Expected results and toys

Pseudo-experiments and Asimov datasets Dealing with non-asymptotic situations

Profiling

Look-Elsewhere Effect

Bayesian methods

Presentation of results

Beyond Asymptotics: Toys

Asymptotics usually work well, but break down in some cases – e.g. small event counts.

Solution: generate *pseudo data* (toys) using the PDF, under the tested hypothesis

 \rightarrow Also randomize the observable

(**9**^{obs}) of each auxiliary experiment:

PDF

120

130

140

150

m (GeV)

160

Vormalized events per GeV

0.025

0.02

0.015

0.01

0.005

100

110

 \rightarrow Samples the true distribution of the PLR

 \Rightarrow Integrate above observed PLR to get the p-value \rightarrow Precision limited by number of generated toys, Small p-values ($5\sigma : p \sim 10^{-7}!$) \Rightarrow large toy samples

3000

2500

2000

1500

1000

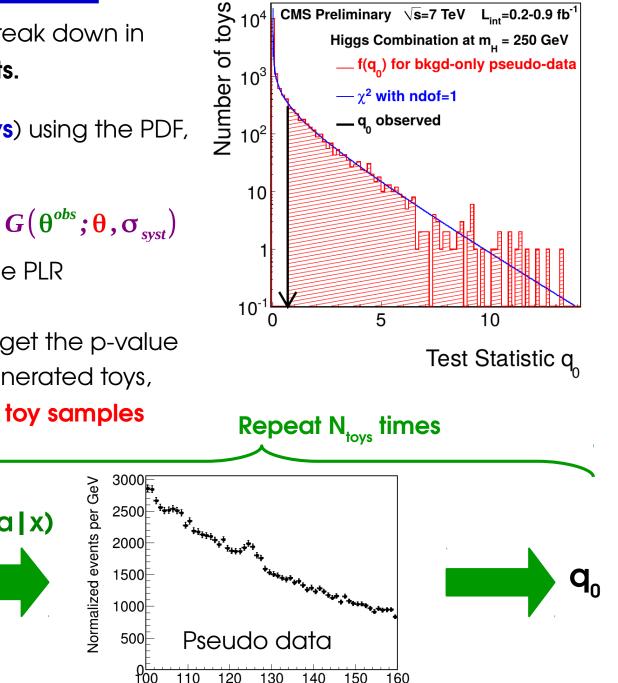
500

100

Vormalized events per GeV

p(data|x)

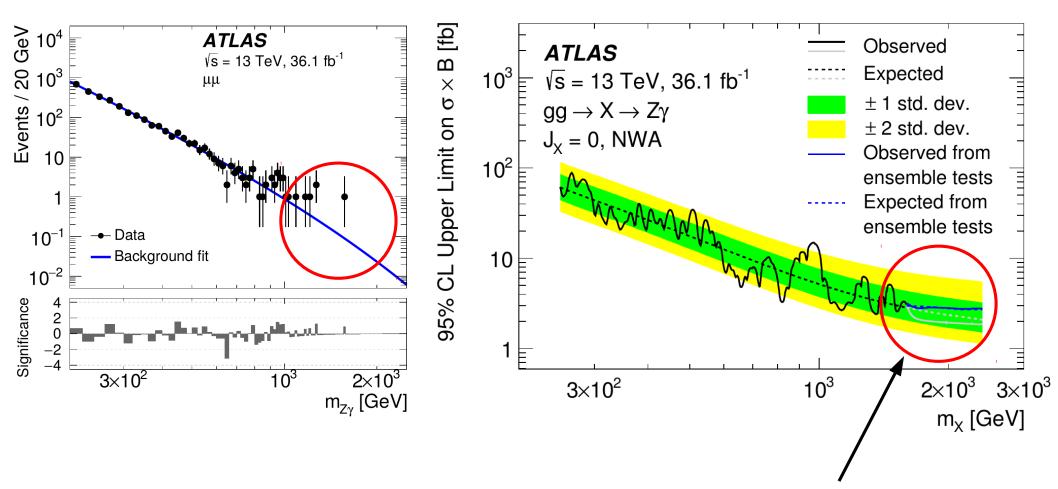
CMS-PAS-HIG-11-022



m (GeV)

Toys: Example

ATLAS X \rightarrow Z γ Search: covers 200 GeV < m_x < 2.5 TeV \rightarrow for m_x > 1.6 TeV, low event counts \Rightarrow derive results from toys



Asymptotic results (in gray) give optimistic result compared to toys (in blue)

Historical Aside

Classic Discoveries (1)

ĪŢ

1:55 1:552 1:554 1:556

1000

ADRANG

21

C.

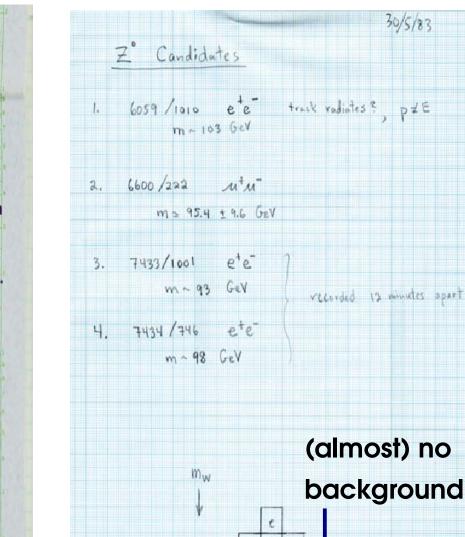
8

100

20

scale

00



Me

100

mete-

110

(GeV)

c

90

80

ψ Discovery

In this graph, the blue data points show a sharp peak in the number of hadrons produced at a narrow range of energies – evidence of the J/Ψ particle. The horizontal axis shows the energy of one of the pair of SPEAR beams, measured in GeV. The height of the peak is so great that, to fit the plot on one sheet of graph paper, the vertical axis is compressed into a logarithmic scale.

Huge signal S/B~50 Several 1000 events

1.56

1.57

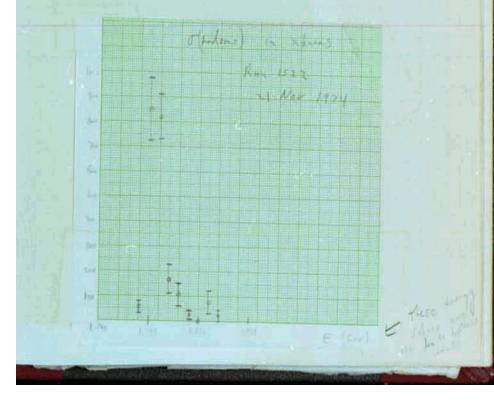
Classic Discoveries (2)

OB:20 SON OF GLORY Church Mondrem, Allen Little, Bob Stega Jo it a

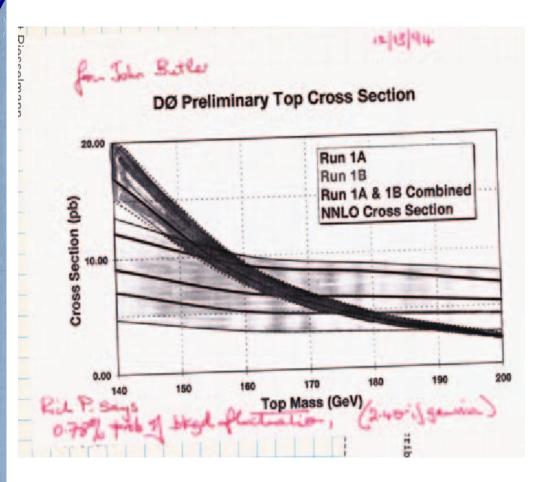
NOTES THE RESEAN (RAN 1922) WAS SHELLED AT "1975" OBALMED BY RUMMEN'S SOME NOOM 1.463, SO EUROPENES (DAL'S DON'T CREATING TO YOUR AT LINE 1922

15 GOP. DUMP | Raki

- WIE Preside on at 1.217 .
- Much has compared provides as the face. That I seed at
- 30 DAMA LINAL RACE UP. DUMP + RIGA.



ψ^{\prime} : discovered in the control room by the (lucky) shifters

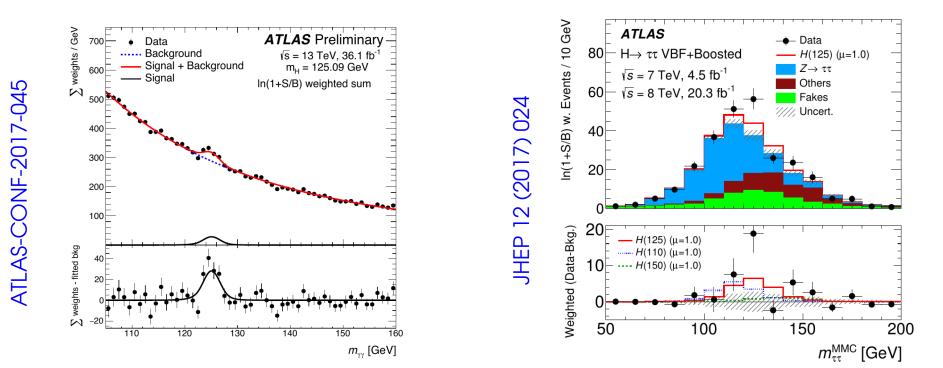


First hints of top at D0: O(10) signal events, a few bkg events, 2.4σ

And now ?

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...) *e.g.* at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information :
 - Shape analyses instead of counting
 - Categories to isolated signal-enriched regions



Outline

Expected results and toys Pseudo-experiments and Asimov datasets Dealing with non-asymptotic situations

Profiling

Look-Elsewhere Effect

Bayesian methods

Presentation of results

Reminder: Wilks' Theorem

Consider
$$t_{s_0} = -2\log \frac{L(S=S_0)}{L(\hat{S})}$$

 \rightarrow Assume **Gaussian regime** (e.g. large n_{evts}, Central-limit theorem) : then:

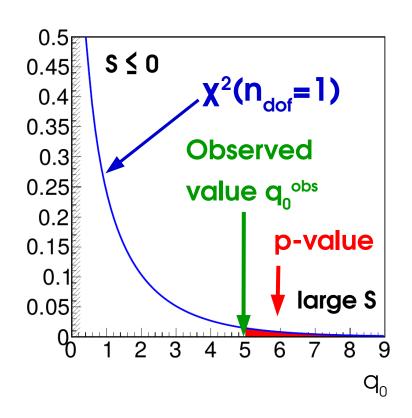
Wilk's Theorem: t_{so} is distributed as a χ^2 under $H_{so}(S=S_0)$:

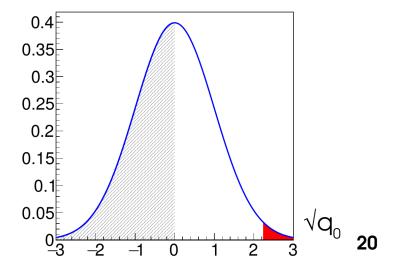
$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0})$$

 \Rightarrow The significance is:

$$Z=\sqrt{q_0}$$

Cowan, Cranmer, Gross & Vitells Eur.Phys.J.C71:1554,2011





Profiling

How to deal with nuisance parameters in likelihood ratios ?

- \rightarrow Let the data choose \Rightarrow use the best-fit values (*Profiling*)
- ⇒ Profile Likelihood Ratio (PLR)

$$t_{s_0} = -2\log \frac{L(S=S_0, \hat{\hat{\theta}}(S_0))}{L(\hat{S}, \hat{\theta})} \qquad (\text{conditional MLE})$$

$$\hat{\theta} \text{ overall best-fit value} (unconditional MLE)$$

Wilks' Theorem: same properties as plain likelihood ratio

$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0}) \quad \text{also with NPs present}$$

 \rightarrow Profiling "builds in" the effect of the NPs

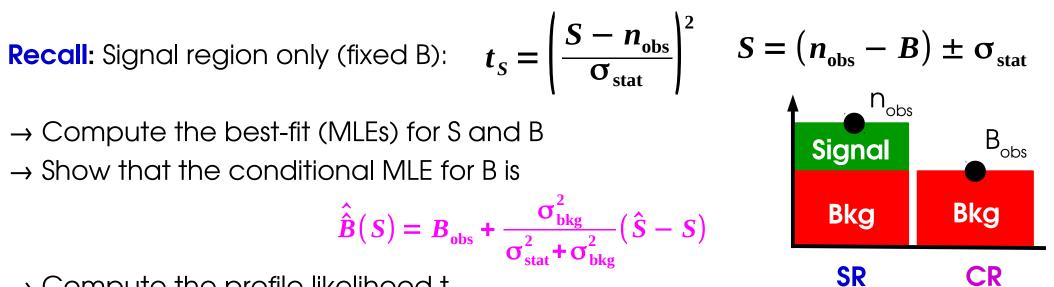
 \Rightarrow Can use t_{s_0} to compute limits, significance, etc. in the same way as before

Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: n = S + B:

 $\rightarrow \text{Signal region (SR): } n_{obs} \sim G(S + B, \sigma_{stat}) \\ \rightarrow \text{Control region (CR): } B_{obs} \sim G(B, \sigma_{bkg}) \\ \end{bmatrix} L(S, B) = G(n_{obs}; S + B, \sigma_{stat}) G(B_{obs}; B, \sigma_{bkg})$

$$\hat{\hat{B}}(S) = B_{obs} + \frac{\sigma_{bkg}^2}{\sigma_{stat}^2 + \sigma_{bkg}^2} (\hat{S} - S)$$



 \rightarrow Compute the profile likelihood t_s

 \rightarrow Compute the 1 σ confidence interval on S

$$S = (n_{obs} - B_{obs}) \pm \sqrt{\sigma_{stat}^2 + \sigma_{bkg}^2}$$

$$\sigma_s = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{bkg}}^2}$$

Stat uncertainty (on n) and systematic (on B) add in quadrature

Systematics Implementation

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

 \rightarrow Build the combined likelihood of the main+auxiliary measurements

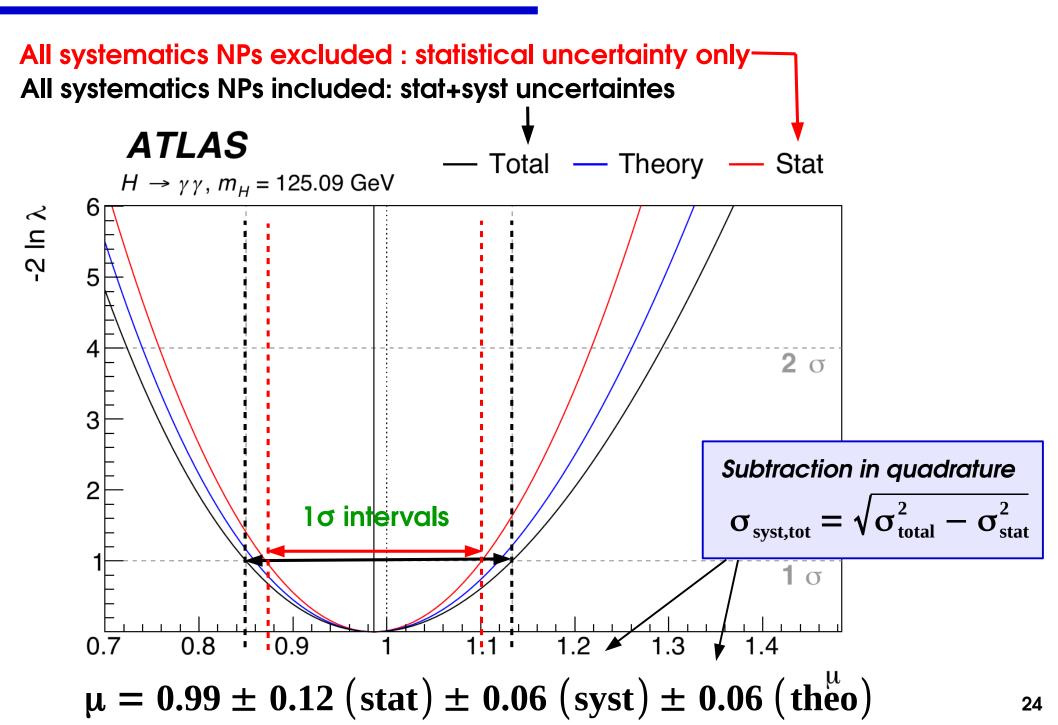
 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) L_{aux}(\theta; aux. data)$

Independent measurements: ⇒ just a product

Gaussian form often used by default: $L_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

→ Often no clear setup for auxiliary measurements
 e.g. theory uncertainties on missing HO terms from scale variations
 → Implemented in the same way nevertheless ("pseudo-measurement")

Uncertainty decomposition

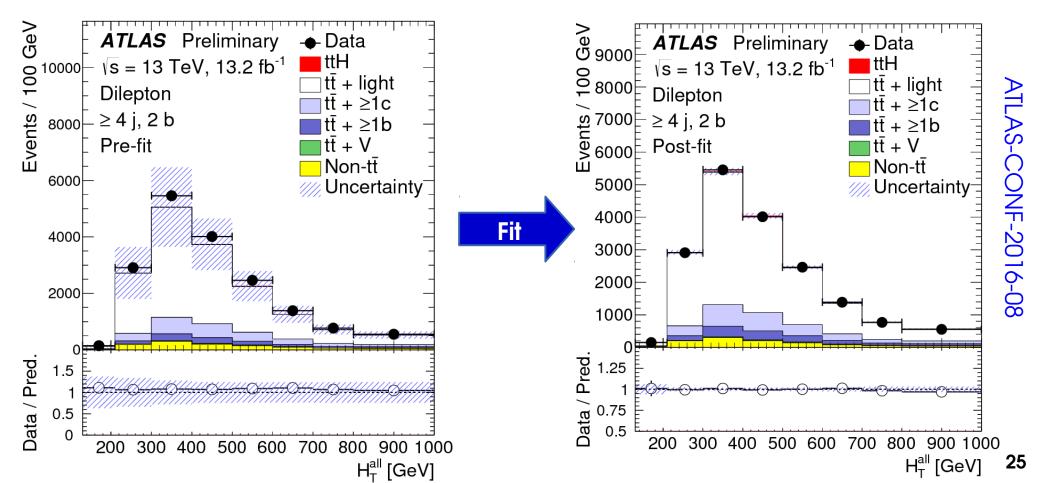


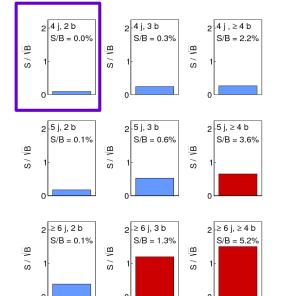
Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.

- \rightarrow Reduction in large uncertainties on tt bkg
- \rightarrow Propagates to the high-S/B categories through the statistical modeling
- ⇒ Care needed in the propagation (e.g. different

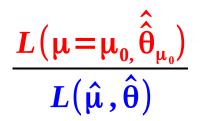
kinematic regimes)





Profiling Takeaways

When testing a hypothesis, use the best-fit values of the nuisance parameters: *Profile Likelihood Ratio*.



Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. Gaussian:

$$\sigma_{\rm total} = \sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2}$$

Guaranteed to work well as long as everything is Gaussian, but typically also robust against non-Gaussian behavior.

Profiling can have unintended effects – need to carefully check behavior

Outline

Expected results and toys Pseudo-experiments and Asimov datasets Dealing with non-asymptotic situations

Profiling

Look-Elsewhere Effect

Bayesian methods

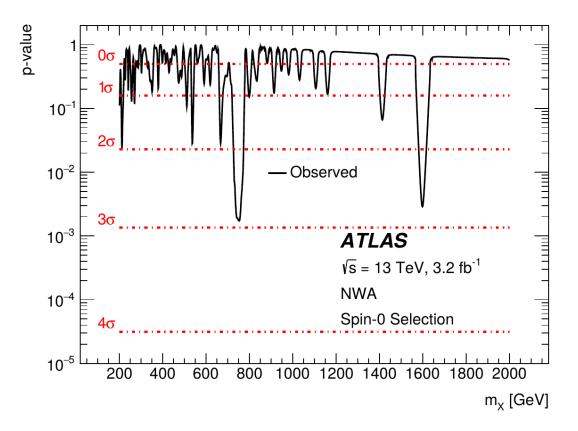
Presentation of results

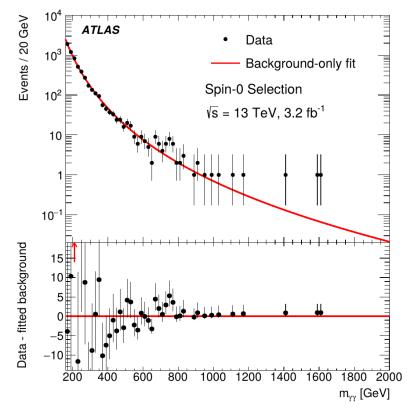
Look-Elsewhere effect

Sometimes, unknown parameters in signal model e.g. p-values as a function of m_{χ}

 \Rightarrow Effectively: multiple, simultaneous searches

 \rightarrow If e.g. small resolution and large scan range, many independent experiments





→ More likely to find an excess
 anywhere in the range, rather
 than in a predefined location
 ⇒ Look-elsewhere effect (LEE)

Global Significance

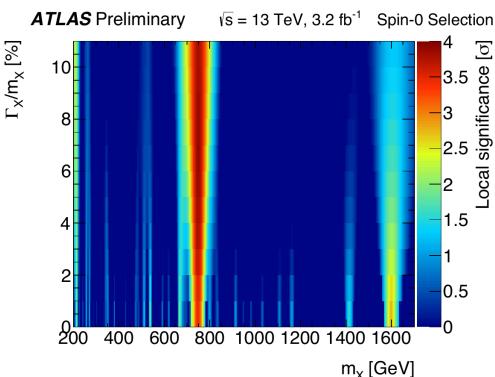
Probability for a fluctuation **anywhere** in the range \rightarrow **Global** p-value. at a given location \rightarrow **Local** p-value

For searches over a parameter range, the global p-value is the relevant one \rightarrow Accounts for the actual search procedure: look for an excess anywhere in the scanned range ATLAS Preliminary $\sqrt{s} = 13$ TeV 3.2 fb⁻¹ Spin-0 Selection

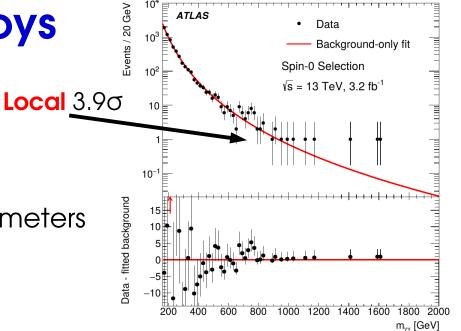
→ Depends on the scanned parameter ranges

- **e.g.** X→γγ :
- 200 < m_x< 2000 GeV
- 0 < Γ_x < 10% m_x.

 $\rightarrow p_{local}$ is what comes out of the usual formulas How to compute p_{global} (or N_{trials}) ?



Global Significance from Toys



- **Principle**: repeat the analysis in toy data:
- \rightarrow generate pseudo-dataset
- → perform the search, scanning over parameters as in the data
- \rightarrow report the largest significance found
- \rightarrow repeat many times
- \Rightarrow The frequency at which a given Z₀ is found **is** the global p-value

e.g. X \rightarrow $\gamma\gamma$ Search: $Z_{local} = 3.9\sigma$ ($\Rightarrow p_{local} \sim 5 \ 10^{-5}$),

 \rightarrow However we are scanning 200 < m_{_X}< 2000 GeV and 0 < $\Gamma_{_X}$ < 10% m_{_X} !

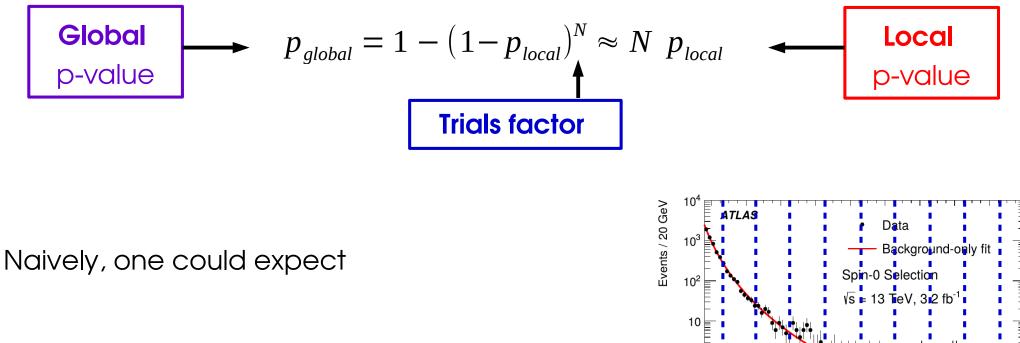
→ Toys : find such an excess 2% of the time somewhere in the range ⇒ $p_{global} \sim 2 \ 10^{-2}$, $Z_{global} = 2.1 \sigma$ Less exciting, and better indication of true Z!

Exact treatment

 Θ CPU-intensive especially for large Z (need ~O(100)/p_{global} toys)

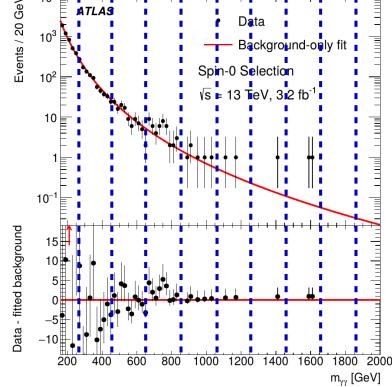
Trials Factor

Trials factor N = # of independent searches:

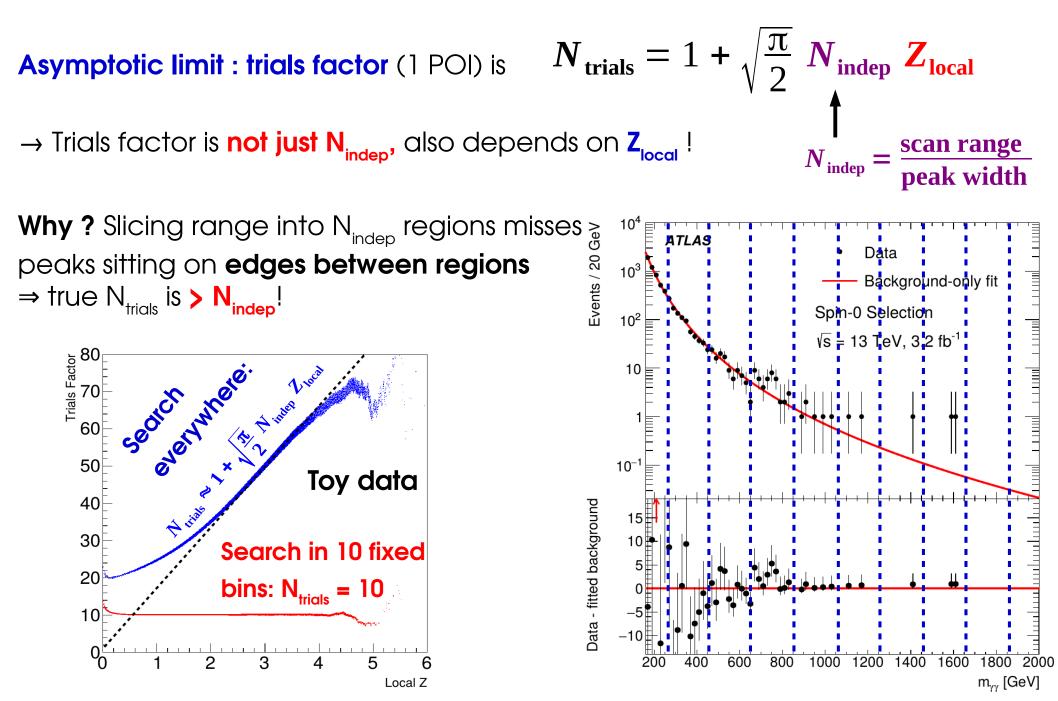


$$N_{\text{trials}} \equiv N_{\text{indep}} = \frac{\text{scan range}}{\text{peak width}}$$

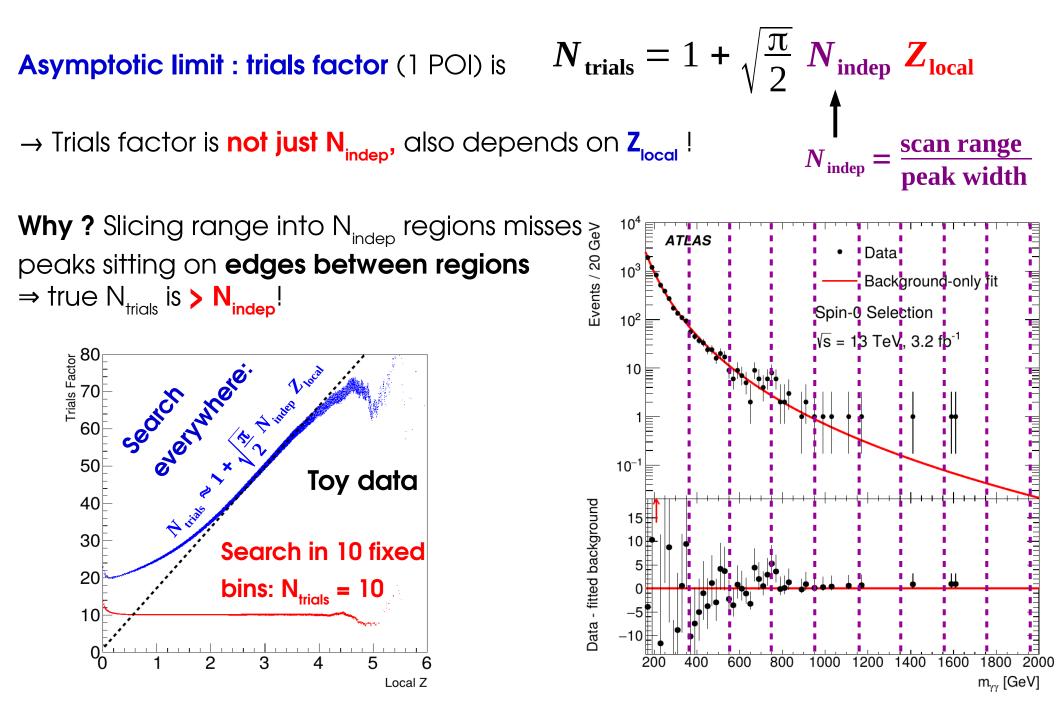
However this is usually wrong !



Trials Factor from Asymptotics



Trials Factor from Asymptotics



Outline

Expected results and toys Pseudo-experiments and Asimov datasets Dealing with non-asymptotic situations

Profiling

Look-Elsewhere Effect

Bayesian methods

Presentation of results

Frequentist vs. Bayesian

All methods described so far are **frequentist**

- Measurement outcomes are random
- Parameters value are fixed but unknown

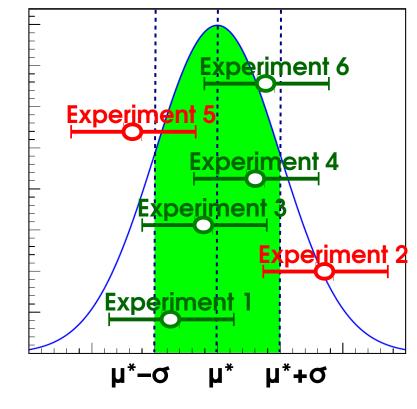
Must be careful about meaning:

\rightarrow "5 σ Higgs discovery"

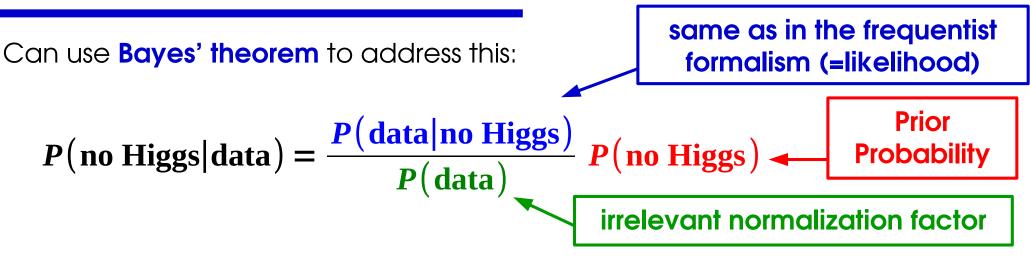
 → if there is really no Higgs, such fluctuations are observed in only one in 3 million experiments : P(data | no Higgs) is small

This is not the crucial question! What we would really like to know is *What is the probability that the excess we see is a fluctuation*

 \rightarrow we want P(no Higgs | data) – but all we have is P(data | no Higgs) However P(no Higgs | data) is not well-defined in the frequentist framework



Frequentist vs. Bayesian



Can compute P(no Higgs | data), if we provide P(no Higgs)

- \rightarrow An hypothesis ("no Higgs") is now considered something random
 - Is the presence of the Higgs in a experiment randomly chosen ?
 - In fact, different definition of p: *degree of belief*, not from frequencies.
 - P(no Higgs) Prior degree of belief critical ingredient in the computation

Compared to frequentist PLR:

- answers the "right" question
- ⊖ answer depends on the prior
- ⊕ In practice, frequentist and Bayesian methods usually give similar results

"Bayesians address the questions everyone is interested in by using assumptions that no one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to anyone." - Louis Lyons

Bayesian methods

Probability distribution (= likelihood) :

 \rightarrow Same as frequentist case, but treat systematics by **integrating over priors**, instead of profiling:

 \rightarrow Integrate out θ to get P(μ) : $P(\mu) = \int P(\mu, \theta) C(\theta) d\theta$

 \rightarrow Use probability distribution P(µ) directly for limits & intervals

e.g. define 68% CL ("Credibility Level") interval (A, B) by: $\int_{A}^{B} P(\mu) d\mu = 68\%$

 Θ No simple way to test for discovery

⊖ Integration over NPs can be CPU-intensive (but can use MCMC methods)

Priors : most analyses use flat priors in the analysis variable(s)

 \Rightarrow **Parameterization-dependent**: if flat in $\sigma \times B$, them not flat in couplings....

 \rightarrow Can use the Jeffreys' or reference priors, but difficult in practice

Homework 8: Bayesian methods and CL_s

Gaussian counting problem with systematic on background: $n = S + B + \sigma_{syst}\theta$

 $P(n;S,\theta) = G(n;S+B+\sigma_{syst}\theta,\sigma_{stat}) G(\theta_{obs}=0;\theta,1)$

 \rightarrow What is the 95% CL upper limit on S, given a measurement n_{obs}?

1. CLs computation:

- Use the result of Homework 7 to compute the PLR for S
- Use the result of Homework 6 to compute the CLs upper limit

2. Bayesian computation:

- Integrate $P(n; S, \theta)$ over θ to get the marginalized P(n | S)
- Use Bayes' theorem to compute $P(S|n) \propto P(n|S) P(S)$, with P(S) a constant prior over S>0.
- Find the 95% CL limit by solving $\int_{c}^{\infty} P(S \mid n) dS = 5\%$

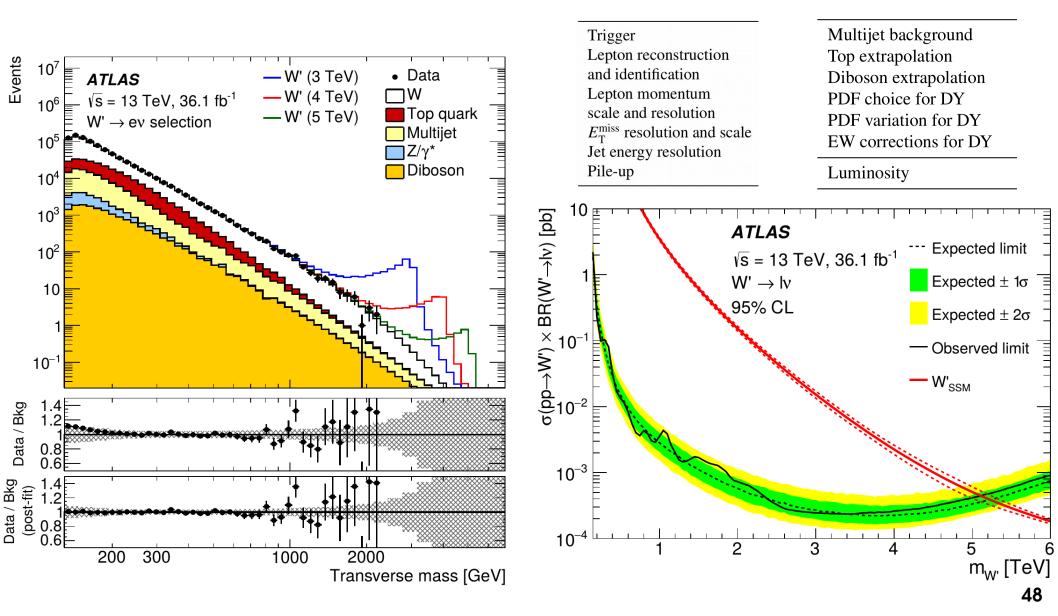
Solution:

In both cases

$$S_{up}^{CL_s} = n - B + \left[\Phi^{-1} \left| 1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right| \right] \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}$$

Example: W'→Iv Search

- POI: W' $\sigma \times B \rightarrow \text{use}$ flat prior over $[0, +\infty[$.
- NPs: syst on signal ϵ (6 NPs), bkg (6), lumi (1) \rightarrow integrate over Gaussian priors



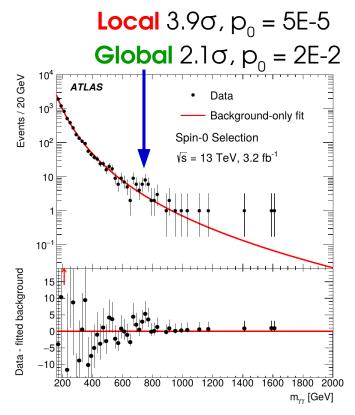
Why 5*o* ?

- One-sided discovery: $5\sigma \Leftrightarrow p_0 = 3 \ 10^{-7} \Leftrightarrow 1 \ chance \ in \ 3.5M$
- \rightarrow Overly conservative ?
- \rightarrow Do we even control such small probabilities ?

Reasons for sticking with 5 σ (from Louis Lyons):

- LEE : searches typically cover multiple independent regions ⇒ Global p-value is the relevant one N_{trials} ~ 1000 : local 5σ ⇔ O(10⁻⁴) more reasonable
- Mismodeled systematics: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...
- History: 3o and 4o excesses do occur regularly, for the reasons above
- "Subconscious Bayes Factor" : p-value should be at least as small as the subjective p(S):

Extraordinary claims require extraodinary evidence \Rightarrow Stay with 5 σ ...



Outline

Expected results and toys Pseudo-experiments and Asimov datasets Dealing with non-asymptotic situations

Profiling

Look-Elsewhere Effect

Bayesian methods

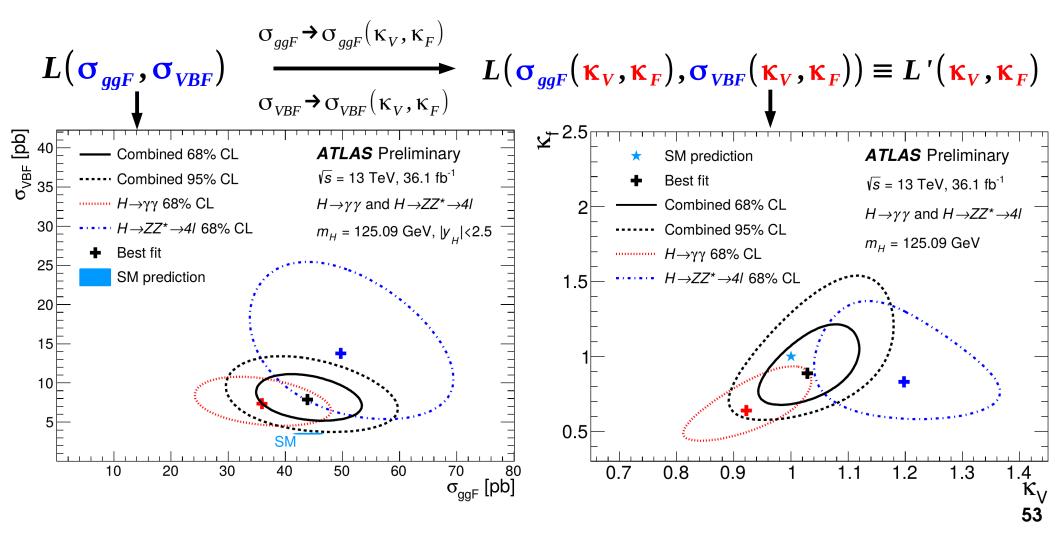
Presentation of results

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

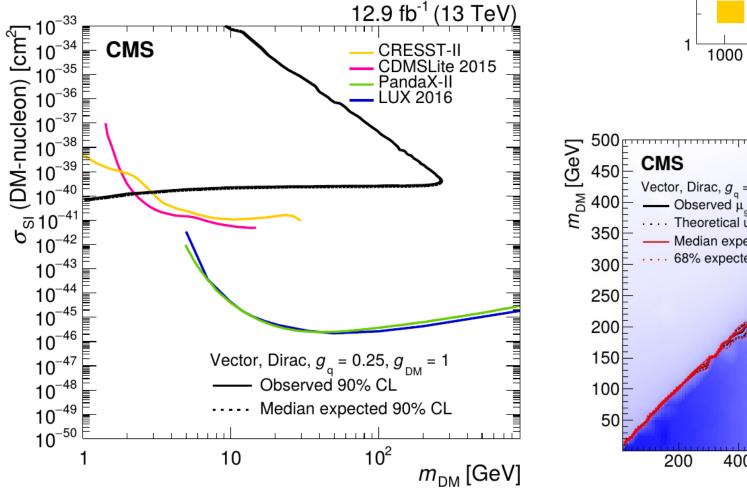
 \rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood:

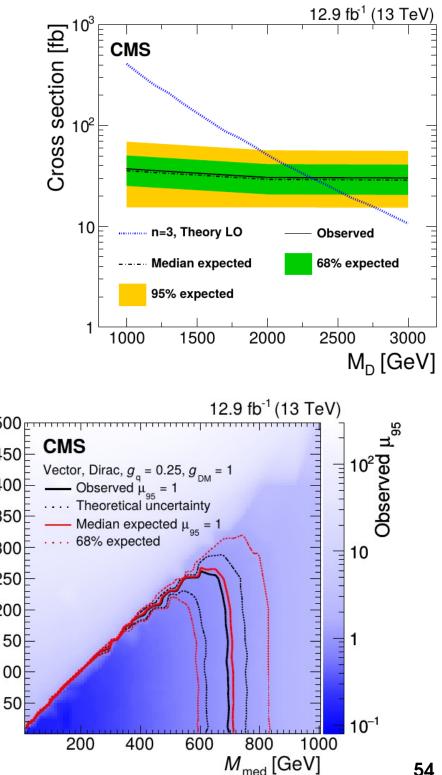
e.g. Higgs couplings: σ_{qgF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .



Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_s in a counting experiment reparameterized according to various DM models

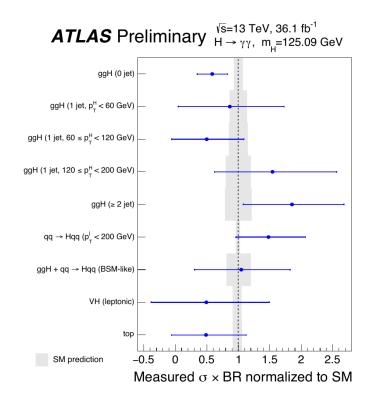


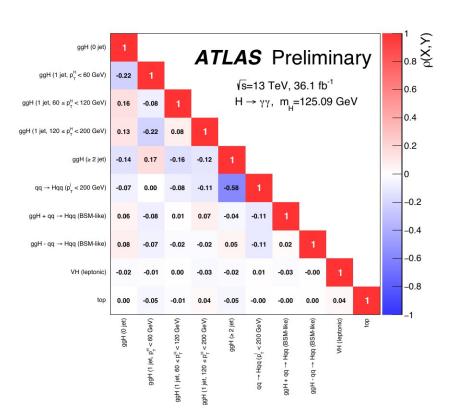


Presentation of Results

 \rightarrow Cannot test every model : need to make enough information public so that others (theorists) are able to do it independently

→ Gaussian case: sufficient to provide measurements + covariance matrix \rightarrow For example using the HEPData repository.





Non-Gaussian case: no simple method

Conclusion

- Significant evolution in the statistical methods used in HEP
- Variety of methods, adapted to various situations and target results
- Allow to
 - model the statistical process with high precision in difficult situations (large systematics, small signals)
 - make optimal use of available information
- Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as well as other tools (BAT)

• Still many open questions and areas that could use improvement \rightarrow e.g. how to present results with all available information

Homework solutions for Lecture 2

Homework 1: Gaussian Counting

Count number of events n in data

- \rightarrow assume n large enough so process is Gaussian
- \rightarrow assume B is known, measure S

$$L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^2}$$

Likelihood :

$$\lambda(S;n) = \left(\frac{n - (S + B)}{\sqrt{S + B}}\right)^2$$

MLE for $S : \hat{S} = n - B$

Test statistic: assume $\hat{S} > 0$,

$$q_0 = -2\log\frac{\boldsymbol{L(S=0)}}{\boldsymbol{L(\hat{S})}} = \lambda(S=0) - \lambda(\hat{S}) = \left|\frac{n-B}{\sqrt{B}}\right|^2 = \left|\frac{\hat{S}}{\sqrt{B}}\right|^2$$

~

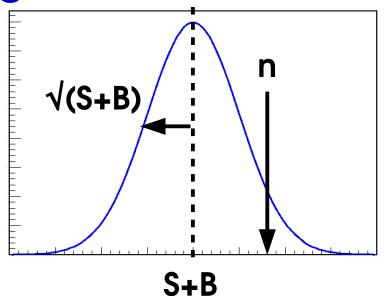
Finally:

$$Z = \sqrt{q_0} = \frac{S}{\sqrt{B}}$$

Known formula!

 \rightarrow Strictly speaking only

valid in Gaussian regime



Homework 2: Poisson Counting

Same problem but now *not* assuming Gaussian behavior:

 $L(S;n) = e^{-(S+B)}(S+B)^n$ $\lambda(S;n) = 2(S+B) - 2n\log(S+B)$

MLE: $\hat{S} = n - B$, same as Gaussian

Test statistic (for $\hat{S} > 0$):

$$q_0 = \lambda(S=0) - \lambda(\hat{S}) = -2\hat{S} - 2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$$

Assuming asymptotic distribution for q_0 ,

$$Z = \left(\hat{S} + B \right) \log \left| 1 + \frac{\hat{S}}{B} \right| - \hat{S}$$

See G. Cowan's slides for case with B uncertainty 61

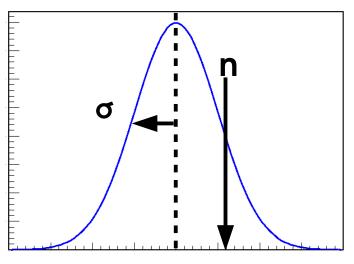
Homework 3: Gaussian CL_{s+b}

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_s}\right)^2$$

Reminder:

Best fit signal : $\hat{S} = n - B$ Significance: $Z = \hat{S}/\sqrt{B}$



S+B

1

Compute the 95% CL upper limit on S:

$$q_{S_0} = -2\log\frac{L(S=S_0)}{L(\hat{S})} = \lambda(S_0) - \lambda(\hat{S}) = \left(\frac{n - (S_0 + B)}{\sigma_s}\right)^2 = \left(\frac{S_0 - \hat{S}}{\sigma_s}\right)^2 \quad \text{for} \quad S_0 > \hat{S}$$

1

 $q_{S_0} = 2.70$ for $S_0 = \hat{S} + \sqrt{2.70} \sigma_s$ SO

And finally $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95% CL

Homework 4 : Gaussian CL

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_S}\right)^2$$

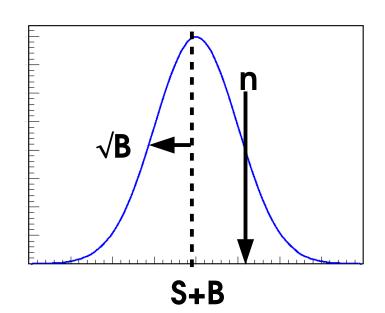
Reminder

fo

Best fit signal : $\hat{S} = n - B$ CL_{s+b} limit: $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95% CL, upper limit : still have so need to solve

$$p_{CL_{s}} = \frac{p_{S_{0}}}{1 - p_{B}} = \frac{1 - \Phi(\sqrt{q_{S_{0}}})}{1 - \Phi(\sqrt{q_{S_{0}}} - S_{0}/\sigma_{S})} = 5\%$$

For $\hat{S} = 0$,
$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_{S}) \right) \right] \sigma_{S} \text{ at } 95\% \text{ CL}$$



$$\frac{1 - \Phi(\sqrt{q_{S_0}})}{\Phi(\sqrt{q_{S_0}} - S_0/\sigma_s)} = 5\%$$

$$\frac{1 - \Phi(\hat{s}/\sigma_s)}{\Phi(\sqrt{q_{S_0}} - S_0/\sigma_s)} = 5\%$$

$$\frac{1 - \Phi(\hat{s}/\sigma_s)}{\Phi(\sqrt{q_{S_0}} - S_0/\sigma_s)} = 5\%$$

$$\frac{1 - \Phi(\sqrt{q_{S_0}})}{\Phi(\sqrt{q_{S_0}} - S_0/\sigma_s)} = 5\%$$

Homework 5: Poisson CL_s

Same exercise, for the Poisson case

Exact computation : sum probabilities of cases "at least as extreme as data" (n)

$$p_{S_0}(n) = \sum_{0}^{n} e^{-(S_0 + B)} \frac{(S_0 + B)^k}{k!} \quad \text{and one should solve } p_{CL_s} = \frac{p_{S_{up}}(n)}{p_0(n)} = 5\% \text{ for } S_{up}$$

For n = 0:
$$p_{CL_s} = \frac{p_{S_{up}}(0)}{p_0(0)} = e^{-S_{up}} = 5\% \Rightarrow S_{up} = \log(20) = 2.996 \approx 3$$

 \Rightarrow Rule of thumb: when n_{obs}=0, the 95% CL_s limit is 3 events (for any B)

Asymptotics: as before,
$$q_{S_0} = \lambda(S_0) - \lambda(\hat{S}) = 2(S_0 + B - n) - 2n \log \frac{S_0 + B}{n}$$

For n = 0, $q_{S_0}(n=0) = 2(S_0+B)$ $p_{CL_s} = \frac{p_{S_0}}{p_0} = \frac{1-\Phi(\sqrt{q_{S_0}(n=0)})}{1-\Phi(\sqrt{q_{S_0}(n=0)}-\sqrt{q_{S_0}(n=B)})} = 5\%$

⇒ $S_{up} \sim 2$, exact value depends on B ⇒ Asymptotics not valid in this case (n=0) – need to use exact results, or toys

Homework 6: Gaussian Intervals

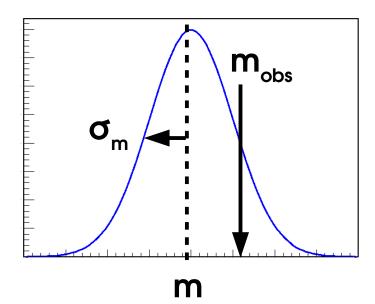
Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width σ_m , and we measure m_{obs} :

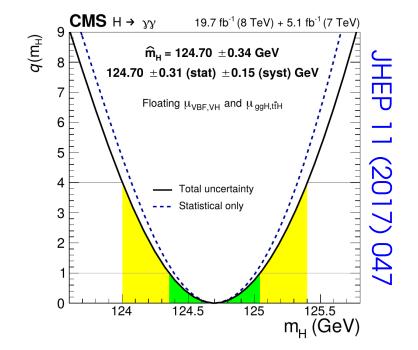
$$\lambda(m;m_{obs}) = \left(\frac{m - m_{obs}}{\sigma_m}\right)^2$$

 \rightarrow Best-fit value (MLE): $\hat{m} = m_{obs}$.

$$\rightarrow$$
 Test statistic : $t_m = \left(\frac{m - m_{obs}}{\sigma_m}\right)^2$

 $\rightarrow 1\sigma$ Interval $m = m_{obs} \pm \sigma_m$





Homework solutions for Lecture 3

Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: $\mathbf{n} = \mathbf{S} + \mathbf{\Theta}$:

→ Signal region: $\mathbf{n} \sim \mathbf{G}(\mathbf{S} + \mathbf{\theta}, \sigma_{stat})$ → Control region: $\mathbf{\theta}^{obs} \sim \mathbf{G}(\mathbf{\theta}, \sigma_{syst})$ $L(S, \mathbf{\theta}) = G(n; S + \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta}^{obs}; \mathbf{\theta}, \sigma_{syst})$

Then:
$$\lambda(S, \theta) = \left(\frac{n - (S + \theta)}{\sigma_{stat}}\right)^2 + \left(\frac{\theta^{obs} - \theta}{\sigma_{syst}}\right)^2$$

MLEs: $\hat{S} = n - \theta^{obs}$ **Conditional MLE:** $\hat{\theta}(S) = \theta^{obs} + \frac{\sigma_{syst}^2}{\sigma_{stat}^2 + \sigma_{syst}^2}(\hat{S} - S)$
 $\hat{\theta} = \theta^{obs}$

PLR:
$$t_s = -2\log\frac{L(S,\hat{\theta}(S))}{L(\hat{S},\hat{\theta})} = \lambda(S,\hat{\theta}(S)) - \lambda(\hat{S},\hat{\theta}) = \frac{(S-\hat{S})^2}{\sigma_{stat}^2 + \sigma_{syst}^2}$$

1 σ interval $S = \hat{S} \pm \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$ $\sigma_S = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$

Stat uncertainty (on n) and systematic (on θ) add in quadrature

Homework 8: CL_s computation

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $L(n; S, \mathbf{\theta}) = G(n; S + B + \sigma_{syst} \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta}_{obs} = \mathbf{0}; \mathbf{\theta}, \mathbf{1})$

MLE:
$$\hat{S} = n - B$$

Conditional MLE: $\hat{\hat{\theta}}(\mu) = \frac{\sigma_{\text{syst}}}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2} (n - S - B)$

$$PLR: \lambda(\mu) = \left(\frac{S + B - n}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}}\right)^2$$

This boils down to the Gaussian case of HW 6, so the CL_s limit is

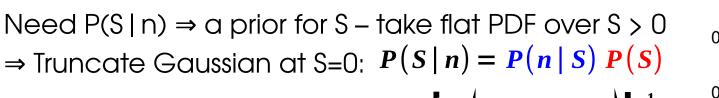
CL_s:
$$S_{up}^{CL_s} = n - B + \left[\Phi^{-1} \left(1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right) \right] \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}$$

Homework 8: Bayesian computation

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $P(n \mid S, \theta) = G(n; S + B + \sigma_{svst} \theta, \sigma_{stat}) G(\theta \mid 0, 1)$

Bayesian: $G(\theta)$ is actually a *prior* on $\theta \Rightarrow$ perform integral (*marginalization*)

$$P(n \mid S) = G(S; n-B, \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2})$$
 some effect as profiling!



$$P(S \mid n) = G(S; n-B, \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}) \left[\Phi\left(\frac{n-B}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}}\right) \right]^{-1}$$

Bayesian Limit:

$$P(S \mid n) dS = 5\% = \left[1 - \Phi\left(\frac{S_{up} - (n - B)}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}}\right)\right] \left[\Phi\left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}}\right)\right]^{-1}$$

Ω

$$S_{up}^{Bayes} = n - B + \left[\Phi^{-1} \left[1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right] \right] \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2} \text{ same result as CL}_s!$$

69

Extra Slides

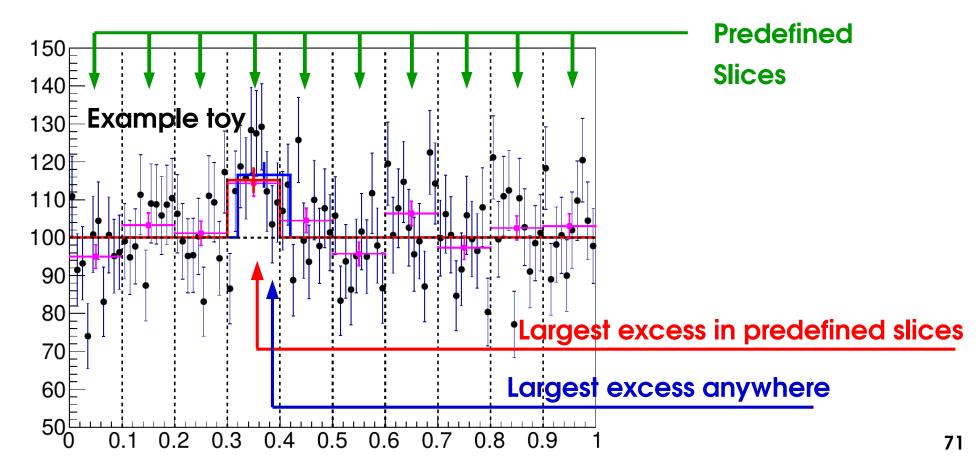
Illustrative Example

Test on a simple example: generate toys with

- \rightarrow flat background (100 events/bin)
- \rightarrow count events in a fixed-size sliding window, look for excesses

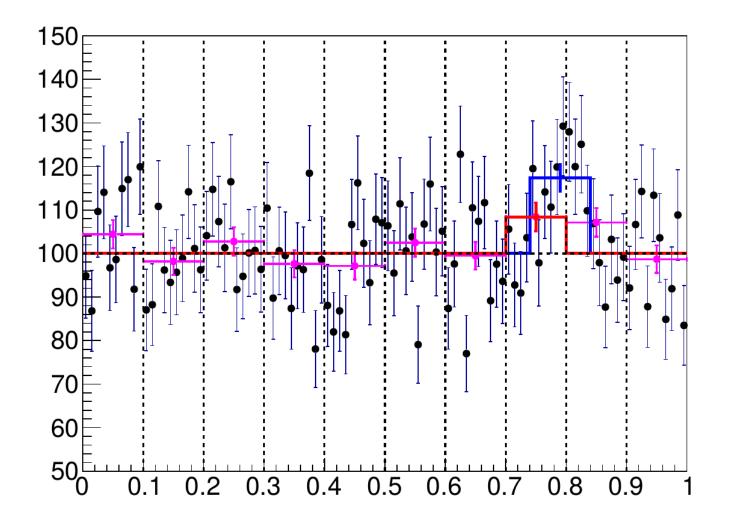
Two configurations:

- 1. Look only in 10 slices of the full spectrum
- 2. Look in any window of same size as above, anywhere in the spectrum



Illustrative Example (2)

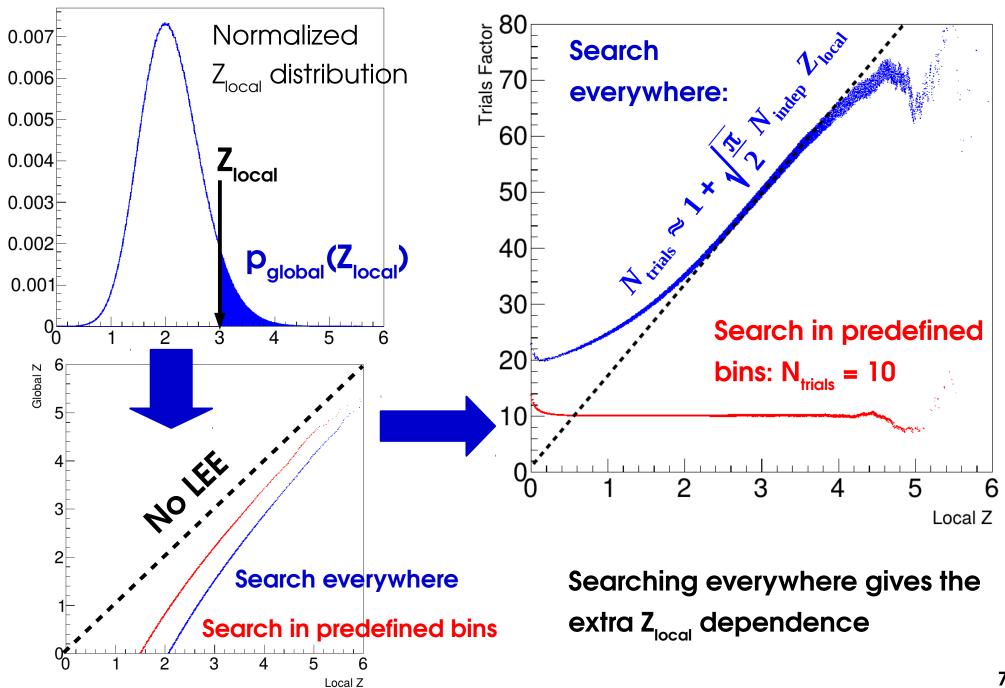
Very different results if the excess is **near a boundary :**



1. Look only in 10 slices of the full spectrum

2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (3)



Z_{Global} Asymptotics Extrapolation

Asymptotic trials factor (1 POI): $N_{\text{trials}} = 1 + \sqrt{\frac{\pi}{2}} N_{\text{indep}} Z_{\text{local}}$

How to get \mathbf{N}_{indep} ? Usually work with a slightly different formula:

$$N_{trials} = 1 + \frac{1}{p_{local}} \langle N_{up}(Z_{test}) \rangle e^{\frac{Z_{test} - Z_{local}}{2}}$$

Number of excesses with Z > Z_{test}

 \Rightarrow calibrate for small Z_{test}, apply result to higher Z_{local}.

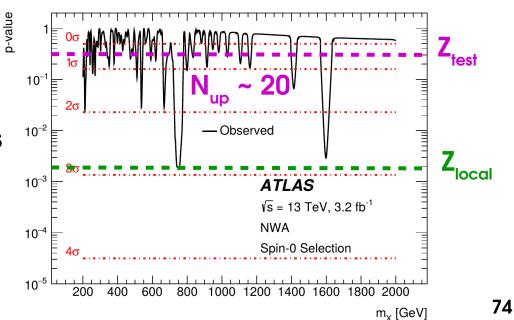
Can choose arbitrarily small Z_{test}

⇒ many excesses

 \Rightarrow can measure N_{up} in data (1 "toy")

Can also measure $\langle N_{uv} \rangle$ in multiple toys

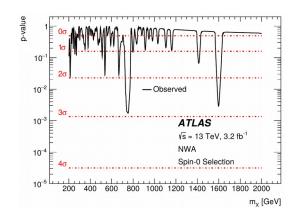
if large stat uncertainty from too few excesses



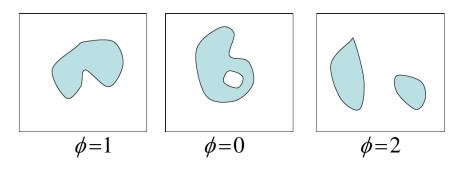
In 2D

Generalization to 2D scans: consider sections at a fixed Z_{test} , compute its **Euler characteristic** φ , and use $p_{global} \approx E[\phi(A_u)] = p_{local} + e^{-u/2}(N_1 + \sqrt{u}N_2)$

→ Generalizes 1D bump counting



Now need to determine 2 constants N_1 and N_2 , from Euler ϕ measurements at 2 different Z_{test} values.



 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ Spin-2 Selection ATLAS [™]0.3 [<u>0</u>] Ь -ocal significance 3.5 = 0 $\omega = 2$ Λ 0.25 3 0.2 2.5 5 2 0.15 1.5 0.1 0.05 0.5 800 2000 600 1000 1200 1400 600 1800 1 m_{G*} [GeV]