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Reminders From Lecture 1

Description Observable Likelihood

Counting n Poisson

Binned shape 
analysis

ni, i=1..Nbins Poisson product

Unbinned 
shape analysis

mi, i=1..nevts Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S ,B)=e−(S + B) (S + B)
n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Physics measurement data are produced through random processes,
Need to be described using a statistical model:

Model can include multiple categories, each with a separate description
Includes parameters of interest (POIs) but also nuisance parameters (NPs)
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Reminders from Lecture 2: Discovery Significance
Given a statistical model P(data; μ), define likelihood ), define likelihood L(μ) = P(data; μ)μ) = P(data; μ)) = P(μ) = P(data; μ)data; μ) = P(data; μ))

To estimate a parameter, use the value μ) = P(data; μ) ̂that maximizes L(μ), define likelihood ).

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n > 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 =−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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Reminders from Lecture 2: Limits & Intervals
Limits : use LR-based test statistic:

→ Use CLs procedure to avoid negative limits

Poisson regime, n=0 : Sup = 3 events

Confidence intervals: use

→ 1D: crossings with tμ), define likelihood 0 = Z2 for ±Zσ intervals

Gaussian regime: μ), define likelihood  = μ), define likelihood ̂ ± σGauss for a 1σ interval

qS0
= −2 log

L(S=S0)

L( Ŝ)
Ŝ ≤ S0

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
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Generating Pseudo-data
Model describes the distribution of the observable: P(μ) = P(data; μ)data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

Generate 

P (λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned
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Expected Results
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Expected Limits: Toys
Expected results: median outcome under a given hypothesis
→ usually B-only for searches, but other choices possible.

Two main ways to compute:
→ Pseudo-experiments (μ) = P(data; μ)toys):
• Generate a pseudo-dataset in B-only hypothesis
• Compute limit
• Repeat and histogram the results
• Central value = median, bands 

based on quantiles

Computed limit

95% of toys68% of toys

    Repeat for each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105

https://arxiv.org/abs/1007.1727
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
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Expected Limits: Asimov Datasets
Expected results: median outcome under a given hypothesis
→ usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets
• Generate a “perfect dataset” – e.g. for binned

data, set bin contents carefully, no fluctuations.
• Gives the median result immediately:

median(μ) = P(data; μ)toy results)  result(μ) = P(data; μ)median dataset) ↔ result(median dataset) 
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (μ) = P(data; μ)1 “toy”)
⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov dataset if
X̂ = X0 for all parameters X, 

where X0 is the generation value
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Beyond Asymptotics: Toys
Asymptotics usually work well, but break down in 
some cases – e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, 
under the tested hypothesis
→ Also randomize the observable 
(θobs) of each auxiliary experiment:
→ Samples the true distribution of the PLR

 ⇒ Integrate above observed PLR to get the p-value
→ Precision limited by number of generated toys, 
Small p-values (5σ : p~10-7!) Þ large toy samples 

p(μ) = P(data; μ)data|x)

PDF

Pseudo data

CMS-PAS-HIG-11-022

q0

Repeat Ntoys times

G (θ
obs ;θ ,σ syst)

http://cds.cern.ch/record/1376643
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Toys: Example  JHEP 10 (2017) 112

ATLAS X→Zγ Search: covers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low event counts Þ derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue) 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/
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Historical Aside
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Classic Discoveries (μ) = P(data; μ)1)

y Discovery 
Lo

g 
sc

al
e!

Z0 Discovery

Huge signal
S/B~50
Several 1000 events

(μ) = P(data; μ)almost) no 
background

Logbo ok of J. Roh lf, 1983 -05-3 0
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Classic Discoveries (μ) = P(data; μ)2) y' : discovered in the control room 
by the (μ) = P(data; μ)lucky) shifters

First hints of top at D0: 
O(μ) = P(data; μ)10) signal events, 

a few bkg events, 2.4σ
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And now ?
Short answer: The high-signal, low-background experiments have been done 
already (although a surprise would be welcome...)
e.g. at LHC:
• High background levels, need precise modeling
• Large systematics, need to be described accurately
• Small signals: need optimal use of available information :

– Shape analyses instead of counting
– Categories to isolated signal-enriched regions

AT
LA

S-
C

O
N

F-
20

17
-0

45

JH
EP

 1
2 

(2
01

7)
 0

24

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
https://link.springer.com/article/10.1007/JHEP12(2017)024
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Reminder: Wilks’ Theorem

Consider

→ Assume Gaussian regime (e.g. large nevts, 
    Central-limit theorem) : then:

Wilk’s Theorem:  tS0 is distributed as a χ2 
       under HS0(S=S0):

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

f ( tS0
∣ S=S0 ) = f

χ
2
(ndof=1) ( tS0 )

 ⇒ The significance is:

S ≤ 0

q0

Observed 
value q0

obs

χ2(μ) = P(data; μ)ndof=1) 

large S

p-value

√q0

tS0
=−2 log

L(S=S0)

L( Ŝ)
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Profiling
How to deal with nuisance parameters in likelihood ratios ?
→ Let the data choose  Þ use the best-fit values (μ) = P(data; μ)Profiling)

Þ Profile Likelihood Ratio (PLR)

t S0
=−2 log

L(S=S0,

^̂
θ (S0))

L( Ŝ , θ̂ )
θ̂ overall best-fit value

^̂
θ (S0) best-fit value for S=S0

Wilks’ Theorem: same properties as plain likelihood ratio

→ Profiling “builds in” the effect of the NPs

 ⇒ Can use tS0 to compute limits, significance, etc. in the same way as before

f ( tS0
∣ S=S0 ) = f

χ
2
(ndof=1) ( tS0 ) also with NPs present

(conditional MLE)

(unconditional MLE)
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Homework 7: Gaussian Profiling
Counting experiment with background uncertainty: n =  S + B :
→ Signal region (μ) = P(data; μ)SR): nobs ~ G(μ) = P(data; μ)S + B, σstat)
→ Control region (μ) = P(data; μ)CR): Bobs ~ G(μ) = P(data; μ)B, σbkg)

Recall: Signal region only (fixed B): 

→ Compute the best-fit (MLEs) for S and B
→ Show that the conditional MLE for B is
 

→ Compute the profile likelihood tS

→ Compute the 1σ confidence interval on S

σ S = √ σ stat
2
+ σ bkg

2

L (S , B) = G (nobs ;S + B ,σ stat) G (Bobs ;B ,σ bkg)

S = (nobs−Bobs) ± √ σ stat
2
+ σ bkg

2

Stat uncertainty (μ) = P(data; μ)on n) and systematic (μ) = P(data; μ)on B) add in quadrature

t S = (
S − nobs

σ stat )
2

S = (nobs − B) ± σ stat

SR CR

nobs

Signal

Bkg Bkg^̂
B(S) = Bobs +

σ bkg
2

σ stat
2

+σ bkg
2

( Ŝ − S)

Bobs

https://arxiv.org/abs/1007.1727
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Systematics Implementation
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale variations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product
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Uncertainty decomposition
All systematics NPs excluded : statistical uncertainty only

1σ intervals

All systematics NPs included: stat+syst uncertaintes

σ syst,tot = √σ total
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
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Profiling Example: ttH→bb
Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. different 
kinematic regimes)

ATLA
S- C

O
N

F- 2016-08
0

Fit
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Profiling Takeaways

When testing a hypothesis, use the best-fit values
of the nuisance parameters: Profile Likelihood Ratio.

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. 
Gaussian:

Guaranteed to work well as long as everything is Gaussian, but typically
also robust against non-Gaussian behavior.

L(μ=μ0,

^̂
θμ 0

)

L(μ̂ , θ̂)

σ total = √σ stat
2

+ σ syst
2

Profiling can have unintended effects – need to carefully check behavior 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
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Look-Elsewhere effect

Sometimes, unknown parameters in signal model
e.g. p-values as a function of mX

Þ Effectively: multiple, simultaneous searches
→ If e.g. small resolution and large scan range, 
many independent experiments

→ More likely to find an excess 
anywhere in the range, rather 
than in a predefined location

 ⇒ Look-elsewhere effect (LEE)
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Global Significance
Probability for a fluctuation anywhere in the range → Global p-value.

 at a given location       → Local p-value

For searches over a parameter range, the global p-value is the relevant one
→ Accounts for the actual search procedure: look for an excess anywhere in 
the scanned range

→ Depends on the scanned 
     parameter ranges

e.g. X→γγ :
• 200 < mX< 2000 GeV
• 0 < ΓX < 10% mX.

→ plocal is what comes out of the usual formulas
How to compute pglobal (μ) = P(data; μ)or Ntrials) ? 
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Global Significance from Toys

Principle: repeat the analysis in toy data:
→ generate pseudo-dataset
→ perform the search, scanning over parameters
     as in the data
→ report the largest significance found
→ repeat many times 

 ⇒ The frequency at which a given Z0 is found is the global p-value

e.g. X→γγ Search: Zlocal = 3.9σ (  p⇒ local ~ 5 10-5), 
→ However we are scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX !
→ Toys : find such an excess 2% of the time somewhere in the range 

 p⇒ global ~ 2 10-2, Zglobal = 2.1σ Less exciting, and better indication of true Z!

 ⊕ Exact treatment
 CPU-intensive⊖  especially for large Z (need ~O(100)/pglobal toys)

Local 3.9σ
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Trials Factor

Trials factor N = # of independent searches:

Naively, one could expect

However this is usually wrong !

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width
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Trials Factor from Asymptotics

Asymptotic limit : trials factor (1 POI) is

→ Trials factor is not just Nindep, also depends on Zlocal ! 

Why ? Slicing range into Nindep regions misses
peaks sitting on edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width

Gross & Vitells, 
EPJ.C70:525-
530,2010

Search in 10 fixed 
bins: Ntrials = 10

Se
arch

 
ev

ery
whe

re:

Toy data
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Trials Factor from Asymptotics

Asymptotic limit : trials factor (1 POI) is

→ Trials factor is not just Nindep, also depends on Zlocal ! 

Why ? Slicing range into Nindep regions misses
peaks sitting on edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width

Gross & Vitells, 
EPJ.C70:525-
530,2010

Search in 10 fixed 
bins: Ntrials = 10

Se
arch

 
ev

ery
whe

re:

Toy data
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Frequentist vs. Bayesian

All methods described so far are frequentist
• Measurement outcomes are random
• Parameters value are fixed but unknown

Must be careful about meaning:

→ “5σ Higgs discovery”
• → if there is really no Higgs, such fluctuations are observed in only 

one in 3 million experiments : P(μ) = P(data; μ)data | no Higgs) is small

This is not the crucial question! What we would really like to know is
What is the probability that the excess we see is a fluctuation

→ we want P(μ) = P(data; μ)no Higgs |data) – but all we have is P(μ) = P(data; μ)data | no Higgs)
However P(μ) = P(data; μ)no Higgs |data) is not well-defined in the frequentist framework

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ) = P(data; μ)*–σ     μ) = P(data; μ)*    μ) = P(data; μ)*+σ
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Frequentist vs. Bayesian
Can use Bayes’ theorem to address this:

Can compute P(no Higgs|data), if we provide P(μ) = P(data; μ)no Higgs)
→ An hypothesis (“no Higgs”) is now considered something random

– Is the presence of the Higgs in a experiment randomly chosen ?
– In fact, different definition of p: degree of belief, not from frequencies.
– P(no Higgs) Prior degree of belief – critical ingredient in the computation

Compared to frequentist PLR:
⊕ answers the “right” question
⊖ answer depends on the prior
⊕ In practice, frequentist and Bayesian
    methods usually give similar results

P (no Higgs∣data) =
P (data∣no Higgs)

P (data)
P (no Higgs )

“Bayesians address the questions everyone is 
interested in by using assumptions that no one 
believes. Frequentist use impeccable logic to 
deal with an issue that is of no interest to 
anyone.”  - Louis Lyons

same as in the frequentist 
formalism (μ) = P(data; μ)=likelihood)

irrelevant normalization factor

Prior 
Probability
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Bayesian methods
Probability distribution (= likelihood) :
→ Same as frequentist case, but treat systematics by integrating over priors, 
instead of profiling:

→ Integrate out θ to get P(μ), define likelihood ) : 

→ Use probability distribution P(μ), define likelihood ) directly for limits & intervals

e.g. define 68% CL (“Credibility Level”) interval [A, B] by: 

 ⊖ No simple way to test for discovery
⊖ Integration over NPs can be CPU-intensive (but can use MCMC methods)

Priors : most analyses use flat priors in the analysis variable(s)
Þ Parameterization-dependent: if flat in σ´B , them not flat in couplings….
→ Can use the Jeffreys’ or reference priors, but difficult in practice

P (μ) =∫ P (μ ,θ)C (θ ) d θ

∫
A

B

P (μ ) dμ = 68 %
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Homework 8: Bayesian methods and CLs

P (n ;S ,θ) = G(n ;S+B+σ syst θ ,σ stat) G (θobs=0 ;θ ,1)

Sup
CL s = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2
+σ syst

2

Gaussian counting problem with systematic on background: n = S + B + σsystθ

→ What is the 95% CL upper limit on S, given a measurement nobs ?

1. CLs computation:
● Use the result of Homework 7 to compute the PLR for S
● Use the result of Homework 6 to compute the CLs upper limit
2. Bayesian computation:
● Integrate P(n; S, θ) over θ to get the marginalized P(n| S)
● Use Bayes’ theorem to compute P(S|n)  P(n|S) P(S), with P(S) a constant ∝ P(n|S) P(S), with P(S) a constant 

prior over S>0.
● Find the 95% CL limit by solving 

 

∫
Sup

∞

P (S∣ n) dS = 5 %

Solution:
In both cases
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Example: W’→lν Search
• POI: W’ σ´B → use flat prior over [0, +¥[.
• NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate over Gaussian priors

arXiv:1706.04786 
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Why 5σ ?

Local 3.9σ, p0 = 5E-5
Global 2.1σ, p0 = 2E-2

One-sided discovery:  5σ  p⇔ p 0 = 3 10-7   1 chance in 3.5M⇔ p

→ Overly conservative ?
→ Do we even control such small probabilities ?

Reasons for sticking with 5σ (from Louis Lyons):
• LEE : searches typically cover multiple 

independent regions 
 Global p-value is the  relevant one⇒ 

Ntrials ~ 1000 : local 5σ   O(μ) = P(data; μ)10⇔ p -4) more reasonable
• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒ 
• History: 3σ and 4σ excesses do occur regularly,

for the reasons above
• “Subconscious Bayes Factor” : p-value should be

at least as small as the subjective p(S):

Extraordinary claims require extraodinary evidence
      ⇒ Stay with 5σ...
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure derived quantities (couplings, parameters in some theory 
model, etc.) ?  → just reparameterize the likelihood:
e.g. Higgs couplings: σggF, σVBF sensitive to Higgs coupling modifiers κV, κF. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF( κV ,κF)) ≡ L' ( κV ,κF)

σggF→σ ggF(κV , κF)

σVBF→σVBF (κV , κF)
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Reparameterization: Limits
CMS Run 2 Monophoton Search: measured 
NS in a counting experiment reparameterized  
according to various DM models
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Presentation of Results
→ Cannot test every model : need to make enough information public so that 
others (theorists) are able to do it independently

  ⇒ Gaussian case: sufficient to provide measurements + covariance matrix
→ For example using the HEPData repository.

Non-Gaussian case: no simple method
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Conclusion
• Significant evolution in the statistical methods used in HEP

• Variety of methods, adapted to various situations and target results

• Allow to
– model the statistical process with high precision in difficult situations 

(large systematics, small signals)
– make optimal use of available information

• Implemented in standard RooFit/RooStat toolkits within the ROOT 
framework, as well as other tools (BAT)

• Still many open questions and areas that could use improvement
→ e.g. how to present results with all available information
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Homework solutions for Lecture 2
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Homework 1: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

MLE for S : Ŝ = n – B

Test statistic: assume Ŝ > 0,

Finally: 

L(S ;n) = e
−

1
2 (

n−(S+B)

√S+B )
2

S+B

√(μ) = P(data; μ)S+B)
n

q0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ

√B )
2

Z = √ q0 =
Ŝ

√B

λ (S ;n) = (
n−(S+B)

√S+B )
2

Known formula!
→ Strictly speaking only 
valid in Gaussian regime
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Homework 2: Poisson Counting
Same problem but now not assuming Gaussian behavior:

MLE: Ŝ = n – B, same as Gaussian

Test statistic (for Ŝ > 0):

Assuming asymptotic distribution for q0,

L(S ;n) = e−(S+ B)
(S+B)

n λ (S ;n) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

See G. Cowan’s slides for case with B uncertainty
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Homework 3: Gaussian CLs+b

Usual Gaussian counting example with known B:

Reminder:
Best fit signal : Ŝ = n - B
Significance: Z = Ŝ/√B

Compute the 95% CL upper limit on S:

so

And finally

S+B

σ 
n

λ (S) = ( n−(S+B)
σ S )

2

qS0
=−2 log

L(S=S0)

L( Ŝ)
= λ (S0) − λ ( Ŝ) = ( n−(S0+B)

σ S )
2

= ( S0− Ŝ
σS )

2 for 
S0 > Ŝ 

qS0
= 2.70  for  S0 = Ŝ + √2.70 σ S

Sup = Ŝ + 1.64σ S  at 95 % CL
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Usual Gaussian counting example with known B:

Reminder 
Best fit signal : Ŝ = n - B
CLs+b limit:  

CLs upper limit : still have 
so need to solve

for Ŝ = 0,  

S+B

ÖB

n

λ (S) = ( n−(S+B)
σ S )

2

qS0
= ( S0− Ŝ

σ S )
2

(for S0 > Ŝ) 

Sup = Ŝ + 1.64σ S  at 95 % CL
Ŝ ~ G(S, σS) so
Under H0(μ) = P(data; μ)S = S0) :

Under H0(μ) = P(data; μ)S = 0) :
pCLs

=
pS0

1 − pB

=
1−Φ(√ qS0

)

1−Φ(√ qS0
− S0/ σ S)

= 5%

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S  at 95 %  CL

pS0
= 1−Φ(√qS0

)

pB = Φ(√ qS0
−S0 / σ S)

√ qS0
∼ G (S0 / σ S ,1)

√ qS0
∼ G (0, 1)

Homework 4 : Gaussian CLs

file:///home/nberger/Data/Applications/analysisDoc/PDF/1706.04786.pdf
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Homework 5: Poisson CLS

Same exercise, for the Poisson case
Exact computation : sum probabilities of cases “at least as extreme as data” (n)

For n = 0: 

 ⇒ Rule of thumb: when nobs=0, the 95% CLs limit is 3 events (μ) = P(data; μ)for any B)

Asymptotics: as before, 

For n = 0,

 ⇒ Sup ~ 2, exact value depends on B 
 Asymptotics not valid in this case (n=0) – need to use exact results, or toys⇒ 

qS0
= λ (S0) − λ ( Ŝ) = 2(S0 + B − n)−2n  log

S0+B

n

pS0
(n) =∑

0

n

e−(S0+B) (S0+B)k

k !

pCLs
=

pSup
(0)

p0(0)
= e−Sup = 5% ⇒ Sup = log (20) = 2.996 ≈ 3

and one should solve pCLs
=

pSup
(n)

p0(n)
= 5 %  for Sup

pCLs
=

pS0

p0

=
1−Φ(√ qS0

(n=0))

1−Φ(√ qS0
(n=0)−√qS0

(n=B))
= 5%

qS0
(n=0) = 2(S0+B)
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Consider a parameter m (e.g. Higgs boson mass)
whose measurement is Gaussian with known
width σm, and we measure mobs:

→ Best-fit value (MLE): m̂ = mobs. 

→ Test statistic : 

→ 1σ Interval

m

σm

mobs

m = mobs ± σm

λ (m;mobs) = (
m−mobs

σm )
2

Homework 6: Gaussian Intervals

λ (m;mobs) = (
m−mobs

σm )
2

tm = ( m−mobs
σm

)
2

JHEP 1 1 (201 7) 047



66

Homework solutions for Lecture 3

https://arxiv.org/abs/1409.1903
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Homework 7: Gaussian Profiling
Counting experiment with background uncertainty: n =  S + θ :
→ Signal region: n ~ G(μ) = P(data; μ)S + θ, σstat)
→ Control region: θobs ~ G(μ) = P(data; μ)θ, σsyst)

Then: 

PLR: 

1σ interval σ S = √ σ stat
2
+ σ syst

2

L (S ,θ) = G (n ;S + θ ,σ stat) G (θ
obs ;θ ,σ syst)

Ŝ = n − θ
obs

θ̂ = θ
obs

^̂
θ (S) = θ

obs
+

σ syst
2

σ stat
2
+σ syst

2
( Ŝ − S)

λ (S ,θ) = ( n − (S + θ)
σ stat )

2

+ ( θ
obs

− θ
σ syst )

2

Conditional MLE:

t S=−2 log
L(S ,

^̂
θ (S))

L( Ŝ , θ̂ )
= λ (S ,

^̂
θ (S)) − λ ( Ŝ , θ̂ ) =

(S− Ŝ)2

σ stat
2

+ σ syst
2

MLEs:

For S = Ŝ, matches 
MLE as it should 

S = Ŝ ± √ σ stat
2
+ σ syst

2

Stat uncertainty (μ) = P(data; μ)on n) and systematic (μ) = P(data; μ)on θ) add in quadrature
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Homework 8: CLs computation

L(n ;S ,θ) = G (n ;S+B+σ systθ ,σ stat) G(θobs=0 ;θ ,1)

Conditional MLE: ^̂θ(μ) =
σ syst

σ stat
2

+σ syst
2

(n − S−B)
PLR : λ(μ) = (

S+B − n

√ σ stat
2

+σ syst
2 )

2

This boils down to the Gaussian case of HW 6, so the CLs limit is

CLs :    Sup
CLs = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2

+σ syst
2

MLE: Ŝ = n−B

Gaussian counting with systematic on background: n = S + B + σsystθ
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Homework 8: Bayesian computation

P (n ∣ S ,θ) = G (n ;S+B+σ syst θ ,σ stat) G (θ ∣ 0, 1)

Gaussian counting with systematic on background: n = S + B + σsystθ

Bayesian: G(θ) is actually a prior on θ  perform integral (⇒ marginalization)

P (n ∣ S) = G (S ; n−B , √σ stat
2

+σ syst
2

)

∫
Sup

∞

P (S∣ n) dS = 5 % = [ 1−Φ (
Sup−(n−B)

√σ stat
2

+σ syst
2 ) ] [ Φ (

n−B

√σ stat
2

+σ syst
2 ) ]

−1

P (S ∣ n) = G (S ;n−B ,√σ stat
2

+σ syst
2

) [ Φ (
n−B

√σ stat
2

+σ syst
2 ) ]

−1

same result as CLs!

same effect as profiling!

Need P(S|n)  a prior for S – take flat PDF over S > 0⇒ 

 Truncate Gaussian at S=0: ⇒ P (S ∣ n) = P (n ∣ S) P (S)

Bayesian Limit:

Sup
Bayes

= n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2

+σ syst
2 ) ) ] √σ stat

2
+σ syst

2

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-039/
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Extra Slides
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Illustrative Example
Test on a simple example: generate toys with
→ flat background (100 events/bin)
→ count events in a fixed-size sliding window, look for excesses
Two configurations:
1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Predefined
Slices

Largest excess in predefined slices

Example toy

Largest excess anywhere
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Illustrative Example (μ) = P(data; μ)2)
Very different results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

https://hepdata.net/
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Illustrative Example (μ) = P(data; μ)3)

Zlocal

pglobal(μ) = P(data; μ)Zlocal)

Normalized 
Zlocal distribution

No LE
E

Search in predefined 
bins: Ntrials = 10

Search 
everywhere:

Searching everywhere gives the 
extra Zlocal dependence

N tr
ia

ls
≈

1
+ √

π
2

N in
de

p
Z lo

ca
l

Search in predefined bins

Search everywhere
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ZGlobal Asymptotics Extrapolation
Asymptotic trials factor (1 POI):

How to get Nindep ? Usually work with a slightly different formula:

 ⇒ calibrate for small Ztest, apply result to higher Zlocal.

Can choose arbitrarily small Ztest 
 ⇒ many excesses
 ⇒ can measure Nup in data (1 “toy”)

Can also measure <Nup> in multiple toys
if large stat uncertainty from
too few excesses

N trials = 1 + √
π
2

N indep Zlocal

Number of excesses with Z > Ztest 

Ztest

Zlocal

Nup ~ 20

N trials = 1 +
1

plocal
⟨Nup(Ztest)⟩ e

Ztest
2
−Z local

2

2
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In 2D O. Vitells and E. Gross, Astropart. Phys. 35 (2011) 230

Generalization to 2D scans: consider
sections at a fixed Ztest, compute its
Euler characteristic φ, and use

→ Generalizes 1D 
bump counting

Now need to determine
2 constants N1 and N2,
from Euler φ measurements
at 2 different Ztest values.

1 – 1 = 0

5

1 – 4
= -3

φ = 2
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