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• Energy loss in the medium by elastic 

and inelastic processes

• Quark-mass dependence expected

– Fragmentation needs to be considered

– Harder fragmentation of quark over gluon

• RAA of D and B mesons

– Analysis complex due to small S/B ratio

– Mass dependence of energy loss
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• Quarkonia (c-cbar, b-bar) “melt” due 
to color screening in the QGP

– J/ suppression

– Abundance of c at LHC so large 
that J/ regenerate statistically

– States with lower binding energy are 
more suppressed

• Hadron yields described by statistical 
models for sNN = 2-2760 GeV
– Matter created in HI collisions is in 

local thermal equilibrium

• Expansion of QGP changes 
momenta of particles

– Radial flow 
(dependent on particle mass)
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Elliptic Flow
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Overlap of colliding nuclei not isotropic in non-central collisions
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Defines reaction plane RP

(spanned by beam axis 

and impact parameter vector)

 Pressure gradients 

dependent on direction

in plane

out of plane



• Spatial anisotropy (almond shape)
– Quantified by eccentricity e

• Pressure gradient larger in-plane

• Pressure pushes partons
– More in in-plane than out-of-plane

• Spatial anisotropy converts into 
momentum-space anisotropy 
– “Faster” particles in-plane

– Measurable in the final state!
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Elliptic Flow (2)
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• Particles as a function of j - RP

• Define v2 = < cos 2 (j - RP) >

– Second coefficient of Fourier expansion

• RP common symmetry plane 

(for all particles)

• What if there were no 

correlations with RP?
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Elliptic Flow (3)
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• Reaction plane angle

– From the particles themselves

– RP approximates true reaction-plane angle (called event plane)

• Calculation of integrated v2 = < cos 2 (j - RP) >

• v2(pT) by considering only particles at given pT

• Called event plane method, denoted v2{EP}
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Measuring Elliptic Flow
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v2 = < cos 2 (j – RP) >

Measure reaction-plane angleMeasure tracks
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• Increases with sNN

• At LHC v2 ~ 0.06

– What does that mean?

– 2v2 = 12% of particles “move” 

from out-of-plane to in-plane
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sNN Dependence

Introduction to Heavy-Ion Physics – Jan Fiete Grosse-Oetringhaus

CMS, PRC 87(2013) 014902
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• Strong centrality dependence

• v2 largest for 40-50%

• Spatial anisotropy very small 

in central collisions

• Largest anisotropy in mid-

central collisions

• Small overlap region in 

peripheral collisions
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Centrality Dependence

Introduction to Heavy-Ion Physics – Jan Fiete Grosse-Oetringhaus

CMS, PRC 87(2013) 014902

v2 vs. Centrality



• Centrality dependence 

independent of pT

• Largest v2 for 

pT ~ 3 GeV/c

• Low and intermediate pT, 

v2 caused by collective 

expansion

• Large pT, v2 caused by 

length-dependent jet 

quenching

– Longer path length out of 

plane than in plane
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pT Dependence
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CMS, PRC 87(2013) 014902

in plane

out of plane

v2 vs. pT



• Pressure in dense medium affects momenta

• Isotropic expansion effect called radial flow

• Overlap of colliding nuclei causes spatial anisotropy

• Converted into momentum-space anisotropy in medium 

evolution

• Modulation of observed particles

• Quantified by v2 = < cos 2 (j - RP) >
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What effect do jet-related particles have on v2?

What other methods exist to measure v2?



• Reaction-plane estimation can be experimentally tricky

• Rewrite as 

• v2 can also be measured from 2-particle correlations
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Two-Particle Correlations
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• Trivial extension to 4-particles (and higher-orders)

– NB. sign is arbitrary as long as same amount of positive and 

negative angles

 rotational symmetry
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Higher-Order Correlations
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Cumulants

• Cumulants extract genuine n-particle correlations

• For 2-particle correlations

• Rewrite (trivially)

• For 3-particle correlations

c212121 xxxxxx 

measured 

correlation

lower order

“correlations”

genuine 2-particle 

correlations

212121 xxxxxx 
c

cccc 321132231321321321 xxxxxxxxxxxxxxxxxx 

j dependence 

only from 

detector 

acceptance

Higher-order cumulants zero  no genuine multi-particle correlation ! 

No matter what multi particles correlations (i.e. not cumulants) show



• For uniform detector acceptance, 

cumulants of 2nd and 4th order:

• c2{4} is genuine 4-particle correlations

– I.e. if only pairs of particles are correlated  c2{4} = 0
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Cumulants for Elliptic Flow
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• Now we have tons of methods to measure flow

– Event plane

– 2-particle and 4-particle correlations, …

– 2-particle and 4-particle cumulants, …
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Flow Methods
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They all estimate v2, so what?

Let’s have a look, what spoils the flow measurement…



• Particles are correlated through 
reaction plane RP

• Additional isotropically distributed 
particles 

– Add to baseline, reduce cos 2Dj
magnitude, but don’t distort shape

• Jets

– Particles which exhibit correlations 
close in angle (within the same jet) 
and at Dj =  (back-to-back jet)

– Distort RP estimate 

– Distorts shape in 2 particle 
correlations

• A pure jet-signal results in v2 > 0 
(e.g. Pythia)
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Non-Flow
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Counts vs. Dj



• Different effect on different flow methods

• 2-particle correlations / cumulants

• 4-particle correlations

• 4-particle cumulants

18

Non-Flow (2)
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Experiment
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PRC 87(2013) 014902
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for v2{2} than v2{4}

* neglects fluctuations, see backup

v2 vs. Centrality
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Up to 8 Particles…
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EPJC (2014) 74: 3157

v2{4} ~ v2{6} ~ v2{8}

 influence of non-

flow (and fluctuations) 

small for >= 4 particles

v2 vs. Npart



• Elliptic flow can be measured with different methods

• Cumulants of nth order measure genuine n-particle 

correlations – not reducible to lower orders

• Mini(jets) and resonances distort the v2 measurement

• Non-flow influence is different for different methods

– The higher the order of the cumulant, the smaller the influence
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Recap
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For now we have discussed elliptic flow v2 – is that all?



• Geometrical picture 

 2nd order modulation (v2)

• In practice interacting nucleons 

need to be considered

– E.g. estimated with Glauber MC

– Initial state density fluctuations

• These produce all kinds of shapes

– Elliptic, triangular, quadruple, …

– And mixtures of those
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Higher-Order Flow
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nucl-ex/0701025, PRC81 (2010) 054905



• Reaction plane RP  nth order participant plane n

• Formalism can be trivially extended from v2 to vn

• E.g. 
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Higher-Order Flow (2)
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Experiment
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PRL107, 032301 (2011)

v2{2}

v3{2}

v3 sizable

v3 ~ ½ v2

Weaker centrality dependence

Two-particle correlations can 

be fully described by v2 … v5

vn vs. Centrality C(Dj) vs. Dj



And even higher orders…
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PLB708 (2012) 249

ATLAS-CONF-2011-074Significant up to 6 orders

VnD = (vn)2 vs. n vn vs. pT



• Geometry of overlapping nuclei  elliptic flow

• Initial-state density fluctuations lead to different ‘shapes’ 

of overlap region  flow at higher orders

• Flow measured up to 6th order
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Recap
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What does a medium need for collective effects?

What can we learn from these results?



• Calculating space-time evolution of QGP from first 

principles (QCD Lagrangian) is too complex (non-

abelian, strong coupling, many-body system, …)

• Expanding medium can be described macroscopically 

with hydrodynamical models

– Conservation of energy-momentum

– Conservation of charges, mainly baryon number

– Local thermodynamical equilibrium

• Needed input

– Initial conditions

– Equation of State (EoS), from lattice QCD

– Relativistic fluid dynamics

• Perfect or dissipative ( transport coefficients)
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Hydrodynamics
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• Once dynamics well described, hydrodynamic “output” 

can be used in other calculations: jet quenching, J/

melting, etc.

• Flow observables:

Initial-state anisotropies  final-state anisotropies

– Translate from initial-state eccentricity en to final-state flow vn

• Deduce conclusions on initial conditions, EoS and 

transport coefficients by data comparison
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Hydrodynamics (2)
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• Shear viscosity washes out initial-state anisotropies

– Expressed as h/s (shear viscosity over entropy)

– Ideal hydrodynamics : h/s = 0

– Viscous hydrodynamics : h/s > 0

– Large influence on higher-order flow
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Shear Viscosity
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Initial conditions h/s = 0 h/s = 0.16

not to confuse with ideal 

(free streaming) gas

 no interactions

MUSIC, Sangyong JeonWater: h/s ~ 30 | Olive oil h/s ~ 240

Density in collision region (x vs. y)



Example: Shear Viscosity
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PRC 82, 034913 (2010)

h/s = 0.08

h/s = 0.16

Shear viscosity hampers the build-up of flow !

Larger h/s

reduces flow

v3 vs. pT



Hydro vs. Data
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• v2 measured for 7 different species

• Strong species dependence

– Different masses and quark content

• Stringent test for hydro

– Very good agreement with VISHNU 
(hydro + hadronic cascade model (UrQMD), 

initial conditions MC-KLN, h/s ~ 0.16)
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Hydro vs. Data (2)
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JHEP 06 (2015) 190

30-40%v2 vs. pT

 K p f L X W

 p L

K f X

v2 vs. pT



• Quark-gluon plasma expands rapidly (up to ~0.65c)

• Spatial anisotropy of collision region causes anisotropic 

flow quantified as Fourier coefficients vn

– Measured up to 6th order

– Initial-state fluctuations influence vn

• Well described by viscous hydrodynamics with a very 

low shear viscosity (h/s ~ 0.08 – 0.16) “perfect liquid”
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Summary

Collective Flow & Hydrodynamics
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Matter created in HI 

collisions is in local 

thermal equilibrium

Hydrodynamical models 

describe collective flow



Collectivity in 

Small Systems

Some surprises…
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• For vn measurement, we discussed contribution 

from flow and non-flow ((mini)jets)

• This can also be looked at in two dimensions

– Azimuth Dj and pseudorapidity Dh
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Recap Two-Particle Correlations
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Typical Two-Particle Correlation

Near-side jet

+ resonances, ...

(Dj ~ 0, Dh ~ 0)

Away-side jet + flow

(Dj ~ , elongated in Dh)

Near-side flow ridge

(Dj ~ 0, elongated in Dh)



Pb-Pb vs. pp
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Pb-Pb pp

Near-side ridge 

(flow) only in Pb-Pb

at least everyone thought so for a long time…



• …observed in very high-

multiplicity pp collisions

– 0.005% events with highest 

multiplicity

• …observed in high multiplicity 

p-Pb collisions

– ~40% events with highest 

multiplicity

– Surprisingly large magnitude
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Near-Side Ridge
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The Double Ridge

• Subtraction procedure to “isolate” ridge contribution from 

jet correlations

– No ridge seen in 60-100% and similar to pp

–

0-20% 60-100%

=

ALICE, PLB719 (2013) 29

here: h = hlab

Two ridges !



• Various “HI observables” in p-Pb and high-multiplicity pp

– v2, v3, …

– Multi-particle correlation v2{4} = v2{6} = v2{8}

– Mass ordering of particle species E.g. v2{p} < v2{} for pT < 2 GeV/c
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Today’s Understanding
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• Particle ratios and strangeness

– Smooth increase of strange baryon 

production 

– From pp, over p-Pb to Pb-Pb

– Multiplicity dependence not 

reproduced by MC generators

• But: No sign of parton energy loss
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Today’s Understanding (2)
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Nature Phys. 13 (2017) 535

Strange /  ratio vs. Nch

pp

p-Pb
Pb-Pb

K0/

L/

X/

W/

Pythia



• Typical Pb-Pb collision effects observed in pp and p-Pb

• Paradigm shift in interpretation of small systems

• Many hints that (mini) QGP is created in high-multiplicity 

p-Pb collisions (and pp collisions?)

• Debate on influence of the initial state effect as opposed 

to a collective approach (rescattering)
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Summary Collectivity 

in Small Systems
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Topic of ongoing exciting research – Stay tuned… or even better: join in!

For LHC pp p-Pb Pb-Pb

Size collision region (fm2) 2 12 150

Volume at freeze-out (fm3) 25 160 5000

Energy density (GeV/fm3) ? 3 (?) 10

more info



• Observations challenge two paradigms at once

– For how small systems does the HI “standard model” remain valid?

– Can the standard tools for pp physics remain standard?
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What Next?
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Run 1 + 2 (2009-2018)

•Discovery of heavy-ion like phenomena in small systems

•Characterization of multi-particle correlations and strangeness enhancement

Non-flow-free correlation measurements 

 nature of higher-order correlations

Energy-loss signals 

 role of final-state interactions

Thermal radiation 

 isotropization / equilibration

Strangeness enhancement

 insight into baryon production

Run 

3 + 4

Chance to find unified description of underlying dynamics across system size 



Summary

Medium Evolution
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Density fluctuations 



spatial anisotropies

Chemical 

freeze-out 

~ 155 MeV

Values for central sNN = 2.76 TeV collisions (LHC)

* from direct photons (not discussed)

Kinetical

freeze-out 

~ 90 MeV

dNch/dh ~ 1600 particles

Viscous hydrodynamics

h/s ~ 0.08 – 0.16

Dense medium 



Energy loss, 

Quarkonia melting

Large pressure 



collective flow

Initial 

temperature* 

~ 300 MeV



• Dense colored strongly coupling medium is produced in 

heavy-ion collisions (the Quark-Gluon Plasma)

– Particle production is strongly suppressed

• Created matter is in local thermal equilibrium

– Particle production described by statistical models

– Expansion described by viscous hydrodynamics “perfect liquid”

• Recent discoveries and observations in p-Pb collisions 

hint at collective “QGP-like” effects in small systems

– Universal description across system size?
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Take-Home Messages
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Many thanks for useful discussions and inspiring 

previous lectures to Federico Antinori, Davide

Caffarri, Leticia Cunqueiro, Andrea Dainese, 

Michele Floris, Alexander Kalweit, Andreas 

Morsch, Raimond Snellings, Alberica Toia

Thank you for 

your attention
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Backup
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• Initial-state density fluctuations cause higher-order flow

• For a given order

– Value is not the same event by event

– Usually we look at averages

– However we look for

• without fluctuations

• Deviates with fluctuations
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Fluctuations
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• v2 distribution is broad

• Influence of fluctuations 

significant

• Estimate of fluctuations
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Fluctuations (2)
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JHEP11(2013)183
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• Observed effects associated to hydrodynamical

evolution in Pb-Pb collisions

• Hydrodynamics in p-Pb

collisions?

– Number of interactions?

– Sufficient time for 

constituents to see 

each other?

• Hydrodynamics in p-Pb

collisions reproduces 

measurements

– Assuming 0.2-0.6 fm/c for beginning of hydro evolution
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Interpretation
Hydro?

Introduction to Heavy-Ion Physics – Jan Fiete Grosse-Oetringhaus

arXiv:1304.3044

v2: Hydro vs. Data



• At low x, gluon density rises

• In nucleus density increases by A1/3 ~ 6

 saturation

• Model of Color Glass Condensate
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Interpretation
Initial-state effect?
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Gluons 

(suppressed 

by factor 20)

Color: gluon color charge

Glass: solid on short time scale, liquid on large time scales

Condensate: high density

q/g densities vs. x



• Saturation enhances certain graphs by orders of aS

– Glasma graph enhanced by twice the order of magnitudes than 

jet graph

51

Interpretation (2)
Initial-state effect?
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PRD 87, 094034 (2013)

Low color 

density

High color 

density

x108 x1016

Within these models, ridge can be calculated quantitatively

Then there are lots of other qualitative ideas…


