

### Nitrogen as a gas jet for the BGC

**Ray VENESS** 



BGC Collaboration meeting - Liverpool University – June 2019

### Contents

- Why are we talking about this again?
- What is the interest in using N2 as a jet?
- What are the issues?
- Possible options for use
- Associated 'next steps'



# What has changed since the GSI Meeting last year?

- Good analysis from Serban/Peter highlight the benefits of N<sub>2</sub>, considering also the whole optical signal chain
  - Also validated by experimental results at CI and Munchen
- Experimental results with residual gas in the LHC from Stefano reveal the signal/noise issue that we will face, highlighting the importance of a strong signal
- Closer collaboration with the CERN vacuum group has allowed for a more open discussion on possible risks and benefits of different gasses in the LHC
- New simulation code at GSI gives hope that the e-m distortion of the N<sub>2</sub><sup>+</sup> ion can be understood (and even corrected-for?)



### **Fluorescence signal**

Table 2: Average integration time  $<_{t}>_{MCP}$  for the detection of one emitted photon and total estimated integration time for the three working gases considered, using the parameters defined in Table 1.

| Projectile | Emitter | λ [nm]                   | σ [cm <sup>2</sup> ]  | I [A] | $\eta_{pc}$ | Estimated                     | Estimated Integration time [s]                                                         |  |
|------------|---------|--------------------------|-----------------------|-------|-------------|-------------------------------|----------------------------------------------------------------------------------------|--|
|            |         |                          |                       |       |             | Single photon<br><ti>MCP</ti> | <b>Total</b><br>protons: 10 <sup>2</sup> photons<br>electrons: 10 <sup>4</sup> photons |  |
| electron   | $N_2^+$ | 391.4                    | 9.1.10-19             | 5     | 0.19        | 2.9.10-7                      | 0.003                                                                                  |  |
| proton     | $N_2^+$ | 391.4                    | 3.7.10-20             | 1     | 0.19        | 3.6.10-5                      | 0.004                                                                                  |  |
| electron   | Ne      | 585.4                    | 1.4.10-20             | 5     | 0.09        | 4.0.10-5                      | 0.4                                                                                    |  |
| proton     | Ne      | 585.4                    | 4.7.10-22             | 1     | 0.09        | 5.9.10-3                      | 0.59                                                                                   |  |
| electron   | Ar      | 750.4 & 751.5            | 7.4.10-20             | 5     | 0.02        | 3.4.10-5                      | 0.34                                                                                   |  |
| proton     | Ar      | 750.4 & 751.5            | 3.3.10-21             | 1     | 0.02        | 3.8.10-3                      | 0.38                                                                                   |  |
| electron   | $Ar^+$  | 454.5 <b>&amp;</b> 476.5 | 9.9·10 <sup>-21</sup> | 5     | 0.20        | 2.5.10-5                      | 0.25                                                                                   |  |
| proton     | $Ar^+$  | 454.5 & 476.5            | 1.7.10-21             | 1     | 0.20        | 7.4.10-4                      | 0.074                                                                                  |  |

From our IBIC '18 paper (Serban/Peter)

We would expect **138x more signal** for 10 keV electrons and **164x more signal** for 7 TeV protons from  $N_2$  than from Ne

Results from the CI test bench for 5 keV electrons (presented 29/3/2019) compare well with these numbers, with 10-40% differences, (which seem acceptable) considering assumptions and experimental errors

Results from the tests at Munchen with 13.8 MeV protons (presented by Serban on 27/11/18) also confirm these simulations

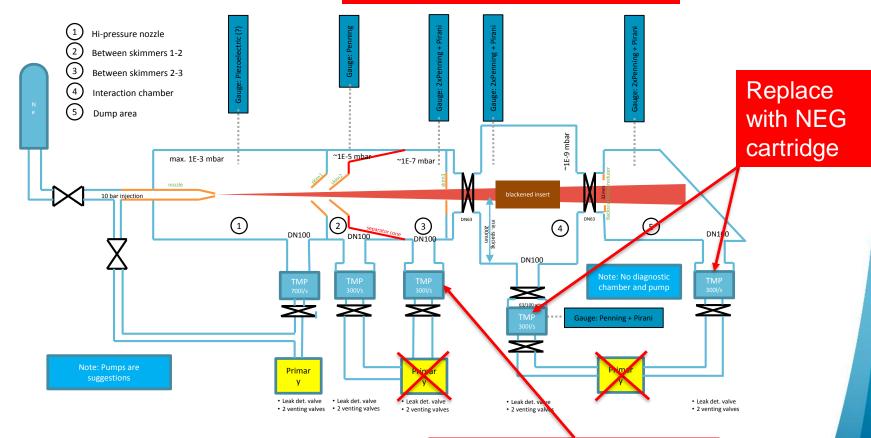


### N2 and the LHC Vacuum System

#### Neon

- Noble gas, not pumped by NEG (either on the LHC vacuum chambers, or in cartridges), or by ion pumps
- Low condensation temperature (24 K) so not suitable for commercial cryo-pumps
- Neon requires turbo pumps, which have <u>unlimited capacity</u> and good pumping speeds over a wide pressure range, but these do not work well in magnetic fields
- Neon will not saturate local NEG surfaces (good), <u>but can travel along the beampipe</u> <u>until it encounters cold surfaces</u> (not good)
- Nitrogen
  - Good pumping speed with NEG, ion pumps and can be cryo-pumped (77 K condensation temp.)
  - Will saturate local NEG coatings (not good), so careful 'inventory management' may be needed, <u>but effects should be local</u>
  - Can use NEG cartridges <u>but their capacity is limited</u>. NEG cartridges are insensitive to magnetic fields, so no issue with solenoid stray field




## **Could we use NEG cartridges for Nitrogen?**

- Estimated gas load in the interaction and dump chambers
  - IP pressure is 3.3e-10 and Dump is 3.4e10 mbar with effective pumping speed of 170 l/s
  - Corresponds to 6e-8 mbar.l.s<sup>-1</sup> gas load
  - 'Capacitorr' HV 200/1600 NEG cartridges have N<sub>2</sub> capacity of more than 10 mbar.I and a similar size to a 300 I/s turbo pump
  - This gives a time between re-activation of more than 20 years of 24/365 operation
    - Could even imagine to use this in the Skimmer 2-3 region where pressures are 100x higher



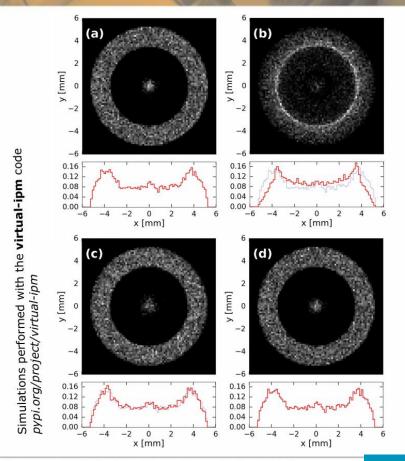
#### **CERN V3 Installation**

Changes for a N<sub>2</sub> gas jet



Perhaps also replace with NEG cartridge?




### Working gases overview

|                                    | N <sub>2</sub>                                                                                                  | Ne                                                                                                                                                                                                           | Ar                                                                                                                                                                                                                                                  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| General<br>remarks                 | Fluorescence almost exclusively due to $N_2^+$ at $\lambda$ around 391 nm. Highest photon yield.                | Strong fluorescence due to Ne at $\lambda > 580$ nm relatively strong emission due to Ne <sup>+</sup> .                                                                                                      | Strong Ar lines at $\lambda > 700$ nm, relatively strong Ar <sup>+</sup> lines for 400 < $\lambda$ < 500 nm.                                                                                                                                        |  |  |  |  |
| Life times<br>(τ)                  | The relevant transition of $N_2^+$<br>has $\tau \approx 60$ ns. Cascades seem<br>to play no role. No branching. | The relevant Ne <sup>+</sup> transitions<br>have $\tau \le 10$ ns, unknown<br>cascade influence. The 2p <sub>1</sub> Ne<br>level has $\tau \approx 15$ ns, negligible<br>branching and cascade<br>influence. | Relevant Ar <sup>+</sup> transitions have $10 < \tau \le 20$ ns, little cascade influence,<br>branching can be advantageous(*).<br>Ar lines have $20 \le \tau \le 40$ ns,<br>cascades are not expected to<br>significantly influence image quality. |  |  |  |  |
| Mass                               | 28 u                                                                                                            | 20 u                                                                                                                                                                                                         | 40 u                                                                                                                                                                                                                                                |  |  |  |  |
| т²/m                               | 129 ns²/u                                                                                                       | $\leq$ 5 ns <sup>2</sup> /u, if no cascades!                                                                                                                                                                 | $(*)2 \le \tau \le 10 \text{ ns}^2/\text{u}$                                                                                                                                                                                                        |  |  |  |  |
| Exp. data<br>availability<br>for σ | Up to 1 keV for e <sup>-</sup> , up to<br>450 GeV for p.                                                        | Ne: up to 1 keV for e <sup>-</sup> , up to<br>1 MeV for p.<br>Ne <sup>+</sup> : no data identified yet.                                                                                                      | Ar: up to 1 keV for e <sup>-</sup> , none for p.<br>Ar <sup>+</sup> : up to 1 keV for e <sup>-</sup> , none for p.                                                                                                                                  |  |  |  |  |
| γ-cathode<br>efficiency            | Good for the strongest $N_2^+$ lines.                                                                           | Poor for main Ne lines, good for Ne $^+$ lines.                                                                                                                                                              | Very poor for main Ar lines, good for Ar $^{\scriptscriptstyle +}$ lines.                                                                                                                                                                           |  |  |  |  |
| e.m. fields<br>influence           | Relatively strong distortion expected due to large $\tau^2/m$                                                   | None for Ne, relatively low distortion expected for Ne <sup>+</sup> because of low $\tau^2/m$                                                                                                                | None for Ar, relatively low distortion expected for Ar <sup>+</sup> because of low $\tau^2/m$                                                                                                                                                       |  |  |  |  |
| Integration<br>time                | Very low for $e^{-}$ , low for p, as estimated for the $N_2^+$ 391.4 nm line.                                   | Low for $e^2$ , large for p, as estimated for the Ne 585.4 nm line.                                                                                                                                          | Lower than for Ne but large as compared to N <sub>2</sub> <sup>+</sup> . Integration over $400 < \lambda < 500$ nm may be useful!                                                                                                                   |  |  |  |  |
| GSI GSI                            |                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |  |  |  |  |

E-Lens Collab. Meeting, Nov. 27th, 2018

IL-LHC

### Simulations of expected images for N<sub>2</sub><sup>+</sup>, Ne<sup>+</sup> and Ar<sup>+</sup>



2D and 1D histograms of the detected photons assuming **ideal gas curtain and optics with unit magnification**. The bin size is 0.15 mm. The 1D histograms are normalized.

(a) No distorsions (b)  $N_2^+$ ,  $T_{BIF} = 60$  ns (c) Ne<sup>+</sup>,  $T_{BIF} = 11$  ns (d) Ar<sup>+</sup>,  $T_{BIF} = 9$  ns

The 1D histogram from (a) is reproduced in grey in all the others.

Simulation parameters  $B_{sol} = 1 T$ 

 $I_{e} = 5 A$  $D_{e} = 10.5 mm$ 

 $d_{e} = 7 \text{ mm}$   $<I_{p}> = 1 \text{ A}$   $\sigma_{tp} = 0.3 \text{ mm}$   $4 \cdot \sigma_{tp} = 1.01 \text{ ns}$   $N_{\gamma}^{e} \approx 12500$   $N_{\gamma}^{p} \approx 250$ 

Such simulations should be performed with a realistic gas curtain too for a better reproduction of the image to be expected.

GSI

E-Lens Collab. Meeting, Nov. 27th, 2018

2019

# **Possible options for using N<sub>2</sub>**

- Use N<sub>2</sub> jet for post-LS2 fluorescence tests
  - Should give significant improvement in p+ signal for these early tests (enough even for a profile?)
  - No issue with solenoid field distortion
  - Should be compatible with existing pumping solutions. Could imagine to switch between gases?
  - Would need discussion with VSC and a new gas system (purification?). N<sub>2</sub> already injected in LHCb?
  - Gas volume injected for these background tests is higher than for the final BGC instrument – how could we maintain a stable pressure without significant saturation of NEG coated surfaces?
- Use a N<sub>2</sub> jet to fully replace Ne for the BGC
  - Give improvement for both e- and p+ signals
  - Could implement NEG cartridge option for e-lens
  - Would need to resolve the field distortion issue



### **Key questions**

- Which is more of an issue for the CERN vacuum group:
  - Gas migration on non-NEG gasses (Ne) into cold sectors, or possible saturation of NEG coated surfaces by pumped gasses (N<sub>2</sub>)
- Can we measure profiles (or at least ensure a correct overlap measurement) for N<sub>2</sub>, either:
  - In the presence only of the p<sup>+</sup> beam
  - With both P<sup>+</sup> and e<sup>-</sup> (and associated solenoid field)



11

### **Possible next steps**

- Simulations of e-m distortion of a N2 gas jet in the presence of (only) the LHC p+ beam
- Discussions with VSC on the pro's and con's of these gases
  - Should we be planning to use this for the LHC background gas test in Run 3? This could be more 'delicate' than the final BGC instrument
- Tests with NEG cartridge pumps?
  - Do we need to qualify their performance?
- Investigate integration with NEG cartridges
  - Should be easier than a turbo...
- Will we need to wait until we can take data from the HEL Test Stand?
  - This could be quite late for a project decision. How could we work with this?





### **Discussion?**

Special thanks to Serban, Hao and Gerhard for their valuable input



Ray VENESS - BGC Collaboration meeting, 13-14 June 2019