

Developments at GSI

Peter Forck & Serban Udrea

Summary of Fluorescence Investigations at Technical University München Raphael Hampf, Jochen Wieser, Andreas Ulrich (only peripheral with GSI participation) Talk by Raphael Hampf, January 2019, Hirschegg, Austria

Setup at TANDEM TU München

Ion beams from the Munich Tandem Accelerator

DC beams, ³²S ions, ~87MeV & protons 13.8 MeV

Advantage: Some 100 nA dc beam, some days exclusive beam time

Blue underlay: Measurement and statements from TU München

Technische Universität München

Goals of the experiment

- Determining the shape of an ion beam
- Development of a beam monitor for GSI/FAIR at 10⁻⁷mbar gas pressure

Strategy

- Study of the light emission
- \rightarrow spectroscopically
- → photographs of light emission of certain ion lines and atomic lines using appropriate filters

R. Hampf, Physik Dept. E12/E15 TUM

ЪШ

Peter Forck, BGC collaboration meeting 13th of June 2019

Status and results from GSI

Setup at TANDEM TU München

Beam:

 $\mathsf{S^{8+}}$ at 2.7 MeV/u and proton 13.8 MeV

Optical spectrum:

VUV monochromator with PMT (S20)

 \rightarrow spectral lines

> Images:

f = 60mm λ = 315...1100nm apochromat various interference filters

\rightarrow profiles and cross section

> Camera:

Either Cooled CCD (ATIK KAF-8300) *or* emCCD (PI ProEm 512B+) *or* intensified CCD (one MCP Pi Max4)

> Gas inlet:

 $p = 10^{-5} \dots 10^2 \text{ mbar}$

Vacuum separation:

p < 1mbar: differential pumping

- \Rightarrow S⁸⁺ collisions at 2.7 MeV/u
- p > 1mbar: Ti foil 1.3 mg/cm²
- \Rightarrow stripping S⁸⁺ to \approx S^{q+} q \approx 12.5, 2.3 MeV/u

Spectrosopic setup (110nm to 3.5µm)

Gas purification

Quartz window

 MgF_2 window

Status and results from GSI

Setup at TANDEM TU München

- \succ N₂, Ne and Ar as gas
- Spectrometer & camera for profile and cross section
- Depending on gas transition different interference filters
- > Principle of equal velocities: 13.8 MeV p^+ should be equivalent to 7.5 keV e^- .

Overview Spectra by Ion Impact

Seban's report: Estimated cross section for 7 TeV protons at low pressure p << 10⁻³mbar

Gas	Wavelength λ [nm]	Lifetime [ns]	σ [10) ⁻²¹ cm ²] (Serban, 7TeV)
Ne	585	15	0.5	(one line)
Ne ⁺	337	6		
Ar	750 & 751	30	3.3	(two lines)
Ar+	454 & 476	10	1.7	(two lines)
N_2^+	391	60	37.	(one line)

Atomic Physics for Proton Impact on Neon: Neutral Transitions

Fig. 4. Absolute emission cross sections for the ten levels of the neon 3p configuration as a function of proton impact energy

Peter Forck, BGC collaboration meeting 13th of June 2019

Atomic Physics for Proton Impact on Neon : Neutral Transitions

GSÏ

Paper: M. Eckhardt et al., Proton impact on Neon for 0.1 to 1 MeV, Z. Physik A 292, 337 (1979)

Results for transition at λ = 585 nm:

- > Experimental error $\Delta \sigma / \sigma = 35 \%$
- ▶ Pressure: $2x10^{-4}$ mbar \Leftrightarrow single collision
- \succ High energies: Comparable σ for protons & electrons
 - \Rightarrow 'principle of equal velocities': p@7TeV = e@3.8GeV
 - ⇒ estimation by 'simple' Born approximation but extrapolation over 3 orders of magnitude
- Low cascade contributions, below 2 % (exp. error)
 - \Rightarrow Lifetime of au = 15 ns is relevant

Fig. 6. Absolute excitation cross sections for the neon $2p_1({}^1S_0)$ level. $\bullet \blacktriangle$ present results, \bigcirc Dufay et al. [3], \bigtriangleup Sharpton et al. [5], \blacksquare de Heer et al. [1], \square York et al. [4] (sum of all ten 3p levels), — Albat and Gruen [7]

Neon Spectra with Ion Impact

Result spectrum:

- Line position as expected from Serban's report
- Ratio ionic to neutral transitions depends on pressure (as expected)
- Ratio σ for ion-neutral changes
 Reason: Secondary electrons excite
 neutral atoms i.e.

Ne + ion \rightarrow (Ne⁺)^{*}+ e⁻ + ion

 \rightarrow Ne⁺+ γ + e⁻+ ion

and

Ne + e⁻ \rightarrow (Ne)^{*}+ e⁻ \rightarrow Ne+ γ + e⁻

expected: probability ∞ (pressure)² for high pressure

Neutral lines Ne

Neon Spectra with Sulfur Ion Impact at 3.1 MeV/u

Result for cross section:

- \blacktriangleright Ne⁺ : σ is independent on pressure
- Ne & high pressure p > 10⁻² mbar: caused be secondary electrons
- Ne & low pressure $p < 10^{-3}$ mbar: σ is constant i.e. reflects correct beam profile
- > Absolute systematic error $\Delta \sigma_{sys}$ = 50 %

Estimation of cross section for neutral Ne:

Sulfur ${}_{16}S^{8+}$ **no** Titanium foil $\sigma_s(2.7 \text{MeV/u}) = 2.5 \cdot 10^{-17} \text{ cm}^2$

> $dE/dx \propto q^2$ scaling with charge state q = 8 (Bethe-Bloch scaling)

 \Rightarrow Proton $\sigma_p(2.7 \text{MeV}) = \sigma_s(2.7 \text{MeV/u}) / q^2 = 3.9 \cdot 10^{-19} \text{ cm}^2$

Energy loss from 2.7 MeV to 7 TeV by factor 0.03, but non Bethe-Bloch scaling for neutrals

 \Rightarrow Bethe-Bloch scaling $\sigma_p(7\text{TeV}) = 0.03 \cdot \sigma_p(2.7\text{MeV}) = 1.2 \cdot 10^{-20} \text{ cm}^2$

- \Rightarrow Bethe-Born scaling σ_p (7TeV) = 0.007 $\cdot \sigma_p$ (2.7MeV) = 2.8 $\cdot 10^{-21}$ cm²
- > Serban's estimation: $\sigma_p(7\text{TeV}) = 4.7 \cdot 10^{-22} \text{ cm}^2 \Rightarrow \text{factor } \mathbf{6} \text{ too large (25 for B-Bloch)}$

Peter Forck, BGC collaboration meeting 13th of June 2019

Neon Spectra with Proton Impact at 14 MeV

Result for cross section:

- > Ne & low pressure $p < 10^{-3}$ mbar: σ is constant
 - i.e. reflects beam profile
- > Absolute systematic error $\Delta \sigma_{sys}$ = 50 %

Estimation of cross section for neutral Ne:

- > Proton $\sigma_p(14 \text{MeV}) = 4 \cdot 10^{-21} \text{ cm}^2$
- Energy loss from 14 MeV to 7 TeV by factor 0.1
 - \Rightarrow Bethe-Bloch scaling $\sigma_p(7\text{TeV}) = 0.1 \cdot \sigma_p(14\text{MeV}) = 4.0 \cdot 10^{-22} \text{ cm}^2$
 - \Rightarrow Bethe-Born scaling
- Serban's estimation

 $\sigma_p(7\text{TeV}) = 0.06 \cdot \sigma_p(14\text{MeV}) = 2.3 \cdot 10^{-22} \text{ cm}^2$

 σ_p (7TeV) = 4.7·10⁻²² cm² \Rightarrow factor 2 too small (1.1 for B-Bloch)

(scaling from S⁸⁺ factor 6 too large)

Argon Spectra with Ion Impact: Ionic Lines

Ionic transition:

 $Ar + p/e^{-} \rightarrow (Ar^{+})^{*} + e^{-} + p/e^{-} \rightarrow Ar^{+} + \gamma + e^{-} + p/e^{-}$

- \succ Wavelength λ = 400 ... 500 nm, lifetime $\tau \approx 10$... 20 ns
- Cross section available up to 1 keV for e⁻ impact
- > Might be populated by cascades, contribution \approx 5%.
- \succ Same upper level \Rightarrow shorter eff. lifetime, double σ

Initial [3s ² 3p ⁴ (³ P)]4p	Final [2s ² 2p ⁴ (³ P)]4s	λ [nm]	τ [ns]
² P ^o _{3/2}	² P _{3/2}	454.5	21
² P ⁰ _{3/2}	² P _{1/2}	476.5	16

Further remarks:

- Good wavelength range for image intensifier
- > Larger signal for band λ = 440 480 nm
- Low space charge influence due to short lifetime and large mass A = 40
- But: Cluster formation within jet ?
- \Rightarrow Could be good candidate if no clusters!

Argon Spectra with Ion Impact: Neutral Lines

Neutral transition:

- $Ar + p/e^{-} \rightarrow (Ar)^{*} + p/e^{-} \rightarrow Ar + \gamma + p/e^{-}$
- Care: Intensifier's photo cath. 2% sensitive, emCCD or sCMOS is better
- Cross section data available up to 1keV for e⁻ impact
- ▶ Significant \approx 25 % cascades

Initial [3s ² 3p ⁵ (² P)]4p	Final [3s ² 3p ⁵ (² P)]4s	λ [nm]	τ [ns]
2 p ₁	1s ₂	750.4	22
2p ₅	1s ₄	751.5	25

Further remarks:

- > Used filter: Mainly transmitting line at λ = 738.4 nm
- > Line λ = 738.4 nm, $\tau \approx$ 118 ns: **no** estimation by Serban (concerning cross section, cascades)
- But: Bad wavelength range for image intensifier
- But: Cluster formation within jet ?

Argon Spectra with Ion Impact: Cross Section

Result for cross section:

- More complex scaling as for Ne
- Ar & low pressure p < 10⁻³ mbar: constant cross section for Ar⁺ and Ar

Estimation of cross section:

> Neutral: $\sigma_s(2.7 \text{ MeV/u}) = 9 \cdot 10^{-17} \text{ cm}^2$

 \Rightarrow Proton $\sigma_p(2.7 \text{MeV/u}) = \sigma_s(2.7 \text{MeV/u}) / q^2 = 1.4 \cdot 10^{-18} \text{ cm}^2$

 \Rightarrow Bethe-Born scaling σ_p (7TeV) = 0.007 $\cdot \sigma_p$ (2.7MeV) = 1.0 $\cdot 10^{-20}$ cm²

Serban's estimation: $\sigma_p(7\text{TeV}) = 3.3 \cdot 10^{-22} \text{ cm}^2 \Rightarrow \text{factor } 30 \text{ too large (but improper filter)}$

- > lonic: $\sigma_s(3.1 \text{ MeV/u}) = 2.2 \cdot 10^{-17} \text{ cm}^2$
 - \Rightarrow Proton $\sigma_p(3.1 \text{MeV}) = \sigma_s(2.7 \text{MeV/u}) / q^2 = 3.4 \cdot 10^{-19} \text{ cm}^2$
 - \Rightarrow Bethe-Bloch scaling: $\sigma_p(7\text{TeV}) = 0.03 \cdot \sigma_p(2.7\text{MeV/u}) = 1.0 \cdot 10^{-20} \text{ cm}^2$
 - Serban's estimation λ =476nm: σ_p (7TeV) = 1.0 · 10⁻²¹ cm² \Rightarrow factor 10 too large

Nitrogen Molecule Spectra with Ion Impact: Cross Section

N₂ as working gas for process:

$$N_2 + ion \rightarrow (N_2^+)^* + e^- + ion$$

 $\rightarrow N_2^+ + \gamma + e^- + ion$

Result for cross section:

- ► lonic lines: B²Σ_u⁺ (v''=0) → X²Σ_g⁺ (v'=0) ⇒ Constant σ over entire range
- ➢ Neutral lines: C³Π_u(v''=0) → B³Π_g(v'=0) Increasing σ as generated by secondary electrons only (spin forbidden by proton impact)

$I_{0}^{10^{-15}}$

Estimation of cross section:

- > lonic: $\sigma_s(2.7 \text{ MeV/u}) = 4 \cdot 10^{-16} \text{ cm}^2$
 - \Rightarrow Proton $\sigma_p(2.7 \text{MeV/u}) = \sigma_s(2.7 \text{MeV/u}) / q^2 = 6.3 \cdot 10^{-18} \text{ cm}^2$
 - \Rightarrow Bethe-Bloch scaling σ_p (7TeV) = 0.03 $\cdot \sigma_p$ (2.7MeV) = 1.8 $\cdot 10^{-19}$ cm²

Serban's estimation: σ_p (7TeV) = 3.7·10⁻²⁰ cm² \Rightarrow factor 5 too large

Neutral: Can't be excited by proton & ion impact!

Nitrogen: Energy Scaling for ionic Transition

N₂ as working gas for process:

- Cross section scaling according to Bethe-Bloch equation
- Good correspondence between electron and proton impact
 ⇔ principle of equal velocities
- ➢ Systematic deviation between low and high energy proton *σ*

¹ R.H. Hughes et al., Phys.Rev. 123, 1961
J.L. Philpot et al., Phys.Rev. 133, 1964
P..C. Sercal et al., NIMB 31, 1988
Y. Itikawa, J. Phys. Cem. Ref Data 6, 1997
R.F. Holland et al., Phys.Rev. 41, 1990

² M. Plum et al., NIMA 492, 2002
A. Variola et al., Phys.Rev Accel. Beams 11, 2007

Profile Distortions by secondary Electrons

Peter Forck, BGC collaboration meeting 13th of June 2019

Pressure [mbar] Peter Forck, BGC collaboration meeting 13th of June 2019 17

Profile Measurement with Argon

Results for profile reading:

- High pressure p > 10 mbar: Same profile for Ar & Ar⁺ due to r_{mfp} << r_{beam}
- Medium pressure p ≈ 10 mbar: Wider profile for Ne caused by sec. e⁻

due to $r_{mfp} \approx r_{beam}$

> Low pressure $p < 10^{-3}$ mbar: Same profile for Ar & Art due to r

Same profile for Ar & Ar⁺ due to $r_{mfp} \ll r_{beam}$

Profile Measurement with Neon and Nitrogen

Results for Neon:

Position [mm]

0

5

10

100mbar

15

-5

Ne, 337nm-Filter

Ne, 589nm-Filter

-15 -10

10³

An electron gun installed in same chamber using the same spectrometer Current measurement was not possible \Rightarrow no absolute σ determined

Comparison Electrons to Ions for Neon

Neon spectra for electron – ion comparison:

- High pressure p = 300 mbar comparable lines and relative strength explanation: Dominated by secondary electron excitation
- Medium pressure p = 3 mbar comparable for neutral lines some correspondence for ionic lines
- Low pressure p = 0.03 mbar comparable for neutral lines some correspondence for ionic lines

Result:

Neutral line: equally excited lonic lines: λ = 337 nm equally excited λ = 371 nm not excited by electrons

Comparison Electrons to Ions for Neon

Neon spectra for electron – ion comparison: Ionic lines:

- > Comparable for λ = 337 nm
- Excitation of λ = 371.3 nm

only by Sulfur impact

(heavy ion due to inner shell electrons?)

Less pronounced by proton impact

Reason unknown!

Remark:

Line $\lambda = 371.3$ nm, $\tau = 8$ ns $2s^22p^4({}^{3}P)3p {}^{2}D^{\circ} {}^{5}/_2 \rightarrow 2s^22p^4({}^{3}P)3s {}^{2}P {}^{3}/_2$ i.e. not an exotic configuration

Summary

Relevant measurements at TU-München performed; results for ion impact and low pressure:

- > For $p < 10^{-3}$ mbar correct beam profile measured i.e. no excitation by secondary electrons
- \succ Neutral transition for Ne at 585 nm: cross section σ same order of magnitude as estimation
- > lonic transition for Ne⁺ at 337 nm: σ same order of magnitude as neutral, no estimation
- > Neutral transition for Ar at 750 nm: significant different σ , but improper filter
- \succ lonic transition for Ar⁺ at 476 nm: σ factor of 6 too large
- > lonic transition N_2^+ at 391 nm: σ factor of 5 too large

Electron impact: Same spectral lines for Ne excited, some differences for Ne⁺, analysis ongoing

Gas	λ [nm]	τ [ns]	σ_p [10 ⁻²¹ cm ²] (estimated)	σ_{p} [10 ⁻²¹ cm ²] (TU München)	Factor	Remark
Ne	585	15	0.47	2.8 (S ⁸⁺) & 0.23 (p)	6 (S ⁺⁺) & 0.5 (p)	
Ne ⁺	337	6		4.8		
Ar	750 & 751	30	0.33	10.	30	Improper filter
Ar+	454 & 476	10	1.7	10.	6	
N_2^+	391	60	37.	180.	5	

Conclusion & Outlook

GSI

- > Neutral transition Ne at 585 nm: low σ , no space charge (SC) effects
 - \Rightarrow gas jet density optimization required
- Ionic transition Ne⁺ at 337 nm: medium , good for image intensifier, medium SC effects ?
- ▶ Neutral transition Ar at 750 nm, medium σ , bad for image intensifier, emCCD required But: $\approx \approx 25$ % cascade transitions, cluster build-up in gas jet \Rightarrow questionable
- Ionic transition for Ar⁺ at 476 nm: medium σ, good for image intensifier, low SC effects ?
 But: 5 % cascade transitions i.e. enlarged lifetime, clusters
- \succ lonic transition N₂⁺ at 391 nm: high σ , larger SC effects, bad for vacuum pumping
- Electron impact: comparable spectral lines (as expected)

Gas	λ [nm]	τ [ns]	$\sigma_{\!p}$ [10 ⁻²¹ cm ²] (estimated)	$\sigma_{\! m m m p}$ [10 ⁻²¹ cm²] (TU München)	Pros	Cons
Ne	585	15	0.47	2.8 (S ⁸⁺) & 0.23 (p)	No SC	Low σ
Ne⁺	337	6		4.8	Low SC (?)	Medium σ
Ar	750 & 751	30	0.33	10.	No SC	Casc., cluster, only emCCD
Ar+	454 & 476	10	1.7	10.	Low SC	Cluster
N_2^+	391	60	37.	180.	Large σ	Vacuum, large SC

Backup slides

Atomic Physics for Proton Impact on Neon: Neutral Transition xxxx

'cascades' 2p⁵nd ns'1-nd6 H⁺(500 KeV) —— Ne n ≥ 4 $2p^5 ns \equiv$ ≣(n-2)s₂ -(n-2)s₅ 2p1 INTENSITY / arb. units ·2 2p⁵3p $2p_1 - 2p_{10}$ strongest line ∆**E**=0.6eV $\lambda = 585$ nm 2P₁₀-155 2p, $2p^5 3s \equiv 1s_2 - 1s_5$ 16.6 eV = 75 nm ∆*E*=0.2eV Ionization 21.5 eV 7000 6000 6500 WAVELENGTH / Å 2p6(1Sn) ground state EMISSION CROSS SECTION σ_{ij} / 10²⁰cm² CROSS SECTIONXENERGY(norm)/arbunits → Ne H⁺ ---+Ne H⁺---→Ne H⁺→ Ne 25 • 2p₁₀(³S₁) ∘ 2p₁ (¹S₀) o 2p₁₀ -1s₂ • 2p3 (3Ph) • 2p₆(¹D₂) -1s, o 2p1-1s2 2p - 2pg(PD) 20 △ 2p-7 (3D1) 2p₅ -1s₅ -15, = 2p4(3P2) □ 2p₅ (¹P₁ $\triangle 2p_8 - 1s_7$ -1s₃ • 2 pg (βD2) • 2p2 (P □ 2p₂ -1s₂ 15 ▼ 2p_g -1s_g 585nm 585nm 10

Paper: M. Eckhardt et al., Proton impact on Neon for 0.1 to 1 MeV, Z. Physik A 292, 337 (1979)

100 100 500 500 1000 ENERGY / keV

Fig. 5. Normalized Bethe-Fano-plots ($\sigma \times E = f(\ln E)$) for the dipole forbidden excitation of the ten neon 3p levels by proton impact

Fig. 4. Absolute emission cross sections for the ten levels of the neon 3*p* configuration as a function of proton impact energy

ENERGY / keV

200 400 600 800

1000

Peter Forck, BGC collaboration meeting 13th of June 2019

1000

200

400

600

1000

Strongest emission from Ar⁺ blue/green lines mainly corresponding to different $[3s^23p^4(^{3}P)]4p \rightarrow 4s$ transitions with life times of 10-20 ns.

Several Ne⁺ UV lines mainly corresponding to different $[2s^22p^4(^{3}P)]3p \rightarrow 3s$ transitions with life times below 10 ns.

Several Ne yellow/red lines mainly corresponding to different $[2s^22p^5(^{2}P)]3p \rightarrow 3s$ transitions with life times of about 20 ns.

The strong UV/blue lines correspond to the $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ electronic transition band of N_2^+ , life times are of about 60 ns.

F. Becker, Ph.D. thesis, T.U. Darmstadt, Germany, 2009