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NLO basics

start with simple example: e+e- annihilation

o
7* 1 at leading order: O-LO —
_ (£ exchange not considered)
et q

split off leptonic part and consider f}/* — qq

NLO: order a5 corrections at cross section level
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NLO basics

start with simple example: e+e- annihilation

_ 2
e Ao
7* 1 at leading order: O-LO — eg NC
3
_ (£ exchange not considered)
et q

split off leptonic part and consider f}/* — qq

NLO: order v corrections at cross section level will be interfered with
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NLO basics

o0 = /d@ |M0’2—|—/ d¢3‘Mrea1’2+/ dg2 2Re (M M)
R V

5LO

U

real radiation virtual corrections

N

» virtual corrections contain UV divergences, but they cancel here due to Ward |dentity

m IS zero for massless quarks (scaleless integral)

(see later, dimensional regularisation)

in fact it is something like BN

EUV €IR
4



NLO basics

U

real radiation virtual corrections

|./\/l|2 pictorially: M left of the cut, M™ right of the cut

claim: sum over all cuts above is finite

individual diagrams contain infrared singularities

must be so due to KLN-Theorem

5




cancellation of IR singularities

KLN Theorem Kinoshita, Lee, Nauenberg, 1960’s

Soft and collinear singularities cancel in the sum
over degenerate states

what are degenerate states ?

« a quark emitting a soft gluon, or a collinear quark-gluon system cannot be
distinguished from simply a quark

» virtual corrections are not directly observable

—>in the considered inclusive cross section,
singularities cancel between real and virtual corrections

2 2




cancellation of IR singularities

KLN Theorem Kinoshita, Lee, Nauenberg, 1960’s

Soft and collinear singularities cancel in the sum
over degenerate states

what are degenerate states ?

« a quark emitting a soft gluon, or a collinear quark-gluon system cannot be
distinguished from simply a quark

» virtual corrections are not directly observable

warning:
—>in the considered inclusive cross section, does not hold for
singularities cancel between real and virtual corrections | initial state radiation
> 5 In hadronic collisions

o / / . reason: cannot sum over
+ + + = finite
AN\ degenerate states for
partons in the proton

(see later)




IR singularities

two types: (a) soft, (b) collinear

Consider the emission of a gluon from a hard quark:
p = FE(1,0,0,1)
k = w(1,0,sin6, cosh)

(p—l—l{i)2 =2F w (1 — cosB)

will go to zero if the gluon becomes soft (w — 0)

or if quark and gluon become collinear (6 — 0)

note: collinear singularity will be absent for massive quarks (p

2:m2)

1/propagator ~ (p 4+ k)? —m? =2Fw (1 — Bcosh), B = /1 —m?2/E?

nonzero for § — (0, but soft singularity still present

therefore collinear singularities are sometimes called mass singularities



soft singularities

Consider real emission diagrams in more detail:

P1

—eyt k. e

_I_

P2

poo_ = ANt R
Mgy = u(p1) (—igt™y) (p1 + k)2 (—iev”) v(p2)
e i)
+  u(pr) (—ien”) (9 + )2 (—igt™¢) v(p2)

If gluon becomes soft: neglect k except for linear terms in denominator:

B Sozft o A — L4 %ﬁl o ¢2¢
Migy 2L iegttalp) 7 (20— P ) o

2 soft 2 P1P2
Mggl” = Mgl 9°Cr

(D1F)(p2F) \

Factorisation into Born matrix element and Eikonal factor



soft singularities

Consider real emission diagrams in more detail:

P1

—eyt k. e

_I_

P2

poo_ = ANt R
Mgy = u(p1) (—igt™y) (p1 + k)2 (—iev”) v(p2)
e i)
+  u(pr) (—ien”) (9 + )2 (—igt™¢) v(p2)

If gluon becomes soft: neglect k except for linear terms in denominator:

Migy 2L iegttalp) 7 (20— P ) o

2pk  2pok
Note: colour will in
soft 2 9 P1p2 eneral not factorise in
Mgl =25 [Myl” 6*C J
Mg Maal” °Cr 508 \ the soft limit

Factorisation into Born matrix element and Eikonal factor



collinear singularities

> (pr + k) =2Ew (1 —cosf) — 0 for § —0

—iey” k, e
convenient parametrisation of momenta:

p (13 - . b} )
2 Sudakov parametrisation

k2 n# p" collinear direction

pr = zp'+ k) —
Z 2pin n* light-like auxiliary vector

b K k1 nt

ki _ _ky
$2p1]€ = _Z(l—z) Z_E1—|—Eg

collinear limit in this parametrisation: k;, — 0

1
p1-k

Mi(p1, k,po)]? S ¢ Pu(2) [Mo(pr + k, po)|’

Pyq(2): splitting functions



collinear singularities

factorisation property of amplitudes in the collinear limit:

2 2

| b
— & a
0—0
®
o C
o]

, dk3 d
M2 AP,y — (M, [2dD,, > =2 ‘ dZ
2w k% 2w

note that the phase space also can be factorised in this limit

dq)m+1—>dq)m®dq)k (k+:k-n:(1—z)p-n)
d*k 1 do dET 1 dz

dd, = §(k*) = dk? = dk?

’ (K) 8m22r 2k+ - 16m2(1—2z)

(2m)°

this factorisation does not depend on the details of M,



splitting functions

Dokshitzer, Gribov, Lipatov, Altarerlli, Parisi

it only depends on the types of splitting partons

z . 1

S Pae) = Te[F+1-27, Ta=g,
1-z

z . R

}-e PQQ(Z) = CF 1 _ ;
1-z ( Z)

’ . 1+ (1—2

% Pgq(z) = CF ( " ’
1-z <

i A 2z | 1 —=z |

Pyg(z) = Ca | -z (1 — z)

1-7 (1—2) 2




real radiation matrix element

1

remember | M|* — ZA My =
,C

1

> IMuP
Hinitial N polN col ’

final pol,col

2

Lo M = SACQIN.s W<
with extra gluon radiation: p” = +/s(1,0,0,0)
pP1 = El(l,0,0,l) . A4
si; = (pi +p;)° pe = F5(1,0,sin6,cosh) )
k= p3=p —p1—po
S — . 20°Cr (s S S
!./\/11\2:\./\/10\29 F(13I 23I28 12)
523 513 513523
define x1 = 2E1/+/s,20 = 2E5/+/s
:HM |2 3 ‘ﬂ ‘2 292 C'r ﬁ +$% gluon energy:
1 — 0 s (].—331)(1—332) Eg:\/§<1—£€1—£€2)




singularity structure

Mi* = [Mof

2
29~ CF (813 - S23 94 512 )
| |

S 5923 513 513523

2 2 2
— ‘MO‘Q 29 CF L1 + 12 L1 — 2E1/\/§, L9 — 2E2/\/§
S (1 —21)(1 — x9)

r1 — 1. collinearsingularity pq || p3 , T2 — 1 * collinear singularity P9 H D3

T —1—29 ! soft gluon E,=+vs(1—x1 — xo)

in these limits the matrix element is singular

* we know that the singularities should cancel with the virtual corrections

e however we first have to isolate them to make the cancellation manifest



cancellation of singularities

real and virtual corrections live on different phase spaces

2

< + < | 3-particle phase Space

M< + <E 2-particle phase space

O'NLO — /d¢2 |./\/l()|2 ‘|‘/ d¢3 ’Mreal’2 + / d¢2 2Re (MvirtMg)
R V

oLO




cancellation of singularities
widely used procedure, for n-particle production:
B, = /d% Mo|* = /dqann

Vi = /d¢n 2Re (MvirtMS) = /dﬂﬁn% + finite

1
Rn — /d¢n+1 |Mr0al’2 — /dgbn/ dajx—l_ﬁ Rn(x) + finite’
0

- v, !
SNLO _ / d,, { (Bn + ?> J(p] e D O) + / dr r— 1€ R,,,,(:zj) J(p1 ... P, I)}

0

with lim J(p1...pn,x) = J(P1...pn,0) (%)

x—0

J is called measurement function and defines the observable,

the property () is called infrared safety

+ Finite



cancellation of singularities
widely used procedure, for n-particle production:
B, = /d¢n Mo|* = /dqann

Vn — /d¢n 2Re (MvirtMS) — /d¢71% + finite

1
Rn — /d¢n+1 |Mr0al’2 — /dqbn/ dajx—l_ﬁ Rn(x) + finite’
0

- v, !
SNLO _ / dé,, { (Bn + ?> J(p] e D O) + / dr 1 R,,,,(:c) J(p1 ... P, T)}

0

with lim J(p1...pn,x) = J(P1...pn,0) (%)

x—0

J is called measurement function and defines the observable,

the property () is called infrared safety

but whatis € ?

+ Finite



dimensional regularisation
't Hooft, Veltman '72; Bollini, Gambiagi 72

A convenient way to isolate singularities:

continue space-time from4to D =4 — 2¢ dimensions

* regulates both UV and IR divergences
formally UV: € > 0,IR: ¢ <0

e does not violate gauge invariance

* poles can be isolated in terms of 1/eb

= need phase space integrals in D dimensions

= need integration over virtual loop momenta in D dimensions

2/00 d'k \226/00 d"k % . . .
g . (27)4 r g H 00(27T)D , M~ Isintroduced to keep coupling

(mass-)dimensionless in D dim.



virtual corrections

<+ Mgw{;

we will not go through the calculation but only quote the result:

RVt — RLO %5 o, [+l = o) ( —° ){ £ _2%_ g, 0(6)}

2T ['(1 — 2¢) 4 1 €2



phase space in D dimensions

1 to N particle phase space:
Q—>pr+...+pN

N N
[dok = a ooy [Ta%, 5 62 - mdo® (Q - 3 ")
j=1 i=1

In the following consider massless case p? =(0. Usefori=1,...,N —1

/ dei5+ (pzz )

/ AP p:8(p2)0(Er) — / P15, dE, §(E2 — 52)0(E))

1
_ dD—l —*Z
2F, / P

and eliminate py by momentum conservation

E;=|p;|

N /d@ﬁ _ (27T)N—D(N—1) 21—N/ H dD—lﬁj % 5T ([Q — Zpi]Q) i

for polar coordinates need phase space volume of unit sphere in D dimensions

D
2

2T T
/dQD_1 = V(D)= 27 V(D) = /0 d91/0 d@gSiH@Q.../ dfp_1(sinOp_1 )P

r'(5) 0



real radiation in D dimensions

D—-1>

d ~
polar coord. 5 P r(1p) = dQp_o dp] |51P3 £(1p]) > use |Pj| = E;
b (massless case)

1 to 3 particle phase space: p* = (v/5,0097Y)
m = E; (1,072 1)
p2 = Ly (1,6(D_3),sin 0, cos ) z, = 2p; - p?

ps = p'—p2—p 5

1
dq)1_>3 — 1(27'(')3_21) dEldEQd(g [ElEQ Sin H]D_ngD_Q dQD_g

24—D i ‘@
— (277)3_2D 5 sP7% dQp_s dQp_3|(1 —21) (1 —m22) (1 - x3),_€

dﬂ?l dil?g dﬂfg @(1 — fl) @(1 — 372) @( — $3)5(2 — X1 — X9 — 1'3)

— 2 @229 Cr (2 +23)(1—€) +2e(1 —13)
= S (B



combine real and virtual

(1 —¢) s\ [2 3 19
Rreal _ RLO % C _ _ _
“or ['(1 —3¢) \ 4mp? €2 " € " 2 +0(e)

gluon both soft and collinear

vt _ pro ., Qs o PA+ P —¢) [ —s Y\ f 2 3
=R XZWCF ['(1 — 2e¢) A7 112 €2 € 8+ 0Le)

KLN theorem at work!

B pLO {1 3 ¢ () 0(@2)}



hadrons in the initial state

deeply inelastic scattering (DIS) e(k) +p(P) — e(k') + X

4 L./ s = (P +k)? [cms energy]”
€
k q ¢" = k¥ — k'* [momentum transfer]
Q? = —¢?* = 2M Exy (Q* > 1GeV?)
Y;p p i
- T= o5 p [scaling variable]
proton ,
_Pra_ 1— B [relative energy loss]
y=5=1- % gy
d?c  4ma? | 1 —y
= 1+ (1 —y)?)F - Fy — 2zF
dz dy y Q2 _( + ( y)) 1 ( 2 x 1)

F1, F5 @ structure functions

21



Deep-inelastic scattering

in the scaling limit Q% — oo with x fixed:
2¢Fy — F5 (Callan-Gross relation) and Fy(x, Q%) — Fy(x)

characteristic for elastic scattering at spin-1/2 particles

— confirmation of the parton model, since it predicts
1
:Z/ d€ f; (&) xe O — ¢ _QSZG
— Jo

fi(€) denotes the probability that a parton (4, 7, 9) with flavour i

carries a momentum fraction of the proton between & and & + d&

fi(€) : parton distribution functions (PDFs)

are fitted from data, but their energy scale dependence is calculable
In perturbation theory



PDF sets

& c © © & https:/Ihapdf.hepforge.org/pdfsets.html B -9V a Q - ¥ INn @

@ Getting Started

Ihapdf is hosted by Hepforge, IF

LHAPDF 6.3

Main page ‘ PDF sets l Class hierarchy | Examples | More.. Q- Search

PDF sets

Official LHAPDF 6.2 PDF sets: currently 884 available, of which 882 are validated.
See htip://Ihapdfsets.web.cern.ch/lhapdfsets/current/ for data downloads.

All sets migrated from LHAPDF v5 behave very closely to the originals, usually within 1 part in 1000 across x,Q space. Sometimes larger, but very
localised, deviations are found at the edges of the x,Q grid or on flavour thresholds: these should not be physically important. See
http://Ihapdf.hepforge.org/validationpdfs/ for a full set of validation plots for each set's central member.

In the table, green rows indicate sets which have been officially approved for LHAPDFG6 by their authors. Red rows indicate those which have not
yet been so approved. Unvalidated sets may still be used, but please take care.

Latest

1D SelRame set members dat.a
version

LHAPDF Number of

23



hadronic initial states

In general:

—  factorisation allows to separate short-distance from
o long-distance effects

 hadronic cross section is written as a convolution of

) the partonic cross section &; with the corresponding
y PDF fi/u

on(P) =Y /O 0z fiy () :(xP)

In principle the same for two hadrons in the initial state



hadron-hadron collisions

1 1
dOpp—sB+X = Z/o drq fi/pa(wl,as,ﬂf)/o dzo f;/p, (T2, s, i)
1,)

55 pex (D) 1 2. i) o i) J(p)) £+ O (%)

factorisation scale L f measurement function /

L. partonic momenta
renormalisation scale p,. , cts(tr)



back to DIS
Fy(x)=x ) e [qi(z)+ q(x)
1=u,d,s,...

corresponds to the naive parton model

There are perturbative corrections from the “splitting” of partons
as well as non-perturbative effects

1
For example Z/ dr z |q;(z) + qi(z)] ~ 0.5

So quarks carry only about half of the proton momentum,

the rest is carried by gluons



sea quarks and gluons 0.9}
play a larger role than 0.8
valence quarks at 0.7)

e low X

e large Q2

PDFs

1—

0.6/
05/
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| NNPDF3.0 (NNLO) _
] xf(xu2=10 GeV?)

| IIIIIIll

I llllllll I LI BRI

d

C

[ ||||1 B

a)

0
10° 107 107
X
Proton Structure energy
>
medium high

image source: Utrecht University

—

—

1 LI III 1 1 lllllll 1 I llllll_
10
0.9 o 4 5.
\ xf(x,u2=10" GeV?)]
0.8f b) -
0.7F .
0.6F .
0.5[ 1
' u,
0.4 , -
0.3F » \ -
0.2F A
: \
0.1 \
0 L gl L |‘1|‘\|-;.|-‘.T\F‘:—l’:|- PRI N
107° 1072 10" 1

X
source: Particle Data Group



(almost) Scaling

-

=)

—]

—

=10
=)
T

K,

* scaling is violated for small x

e can be understood from
higher order perturbative
corrections in (v s

I x=y-s

x=0.000102

- 0.000161 —— ZEUS NLO QCD fit

] tot.error

x=0.0005
x=0.000632
x=0.0008

e H1 94-00

s H196/97

x=0.0013 e ZEUS 96/97

x=0.0021 + BCDMS

x=0.0032

v NMC

x=0.005

x=0.008

x=0.013

x=0.021

4
10 10°

2 2
Q' (GeV?) hep-ex/0212008



beyond the parton model

Fg,q(w) — e

o

parton model

2

Q2

:MT@ ( (

N

v

S) Pl + c§<x>)

gluon emission
decreases parton momentum

>
‘66656{’\ splitting of a gluon into a
quark-antiquark pair



PDFs and DGLAP evolution

consider the emission of one gluon in the initial state ~ (we have encountered
this already for

s
Ve

y final state emission)
E. phase space factor for one gluon emission:
dD_lk —1—e¢ 2 2\—¢€
TR 2k
] In the collinear limit k5 — 0

s  dk? . -
= dz (1 —2)" P,z €) }]\40(2;9)‘2

rreal 2
ad ‘Ml (p,k)| - (k2 )1+

1+ 22
P,(z,¢) = Cp - —€(1—2) t

virtual corrections in IR Iimit: ~ |MO (p)\2

note that soft limitisz — 1 => cancellation in soft limit but not in collinear limit



PDFs and DGLAP evolution

Recap:

gluon emission in final state:

1

7 7
7
7
y 7
e

gluon emission in initial state:

=
1
z

E

1

K

both soft and collinear singularities
cancel between real and virtual
corrections

only soft singularities
cancel between real and
virtual corrections



PDFs and DGLAP evolution

Absorb initial state singularities at factorisation scale [t
into “bare PDFs” to obtain the measured PDFs

) = 10 + 52 [ EL00 | -2 (%) P (£) + Ko |

evolution with ,u2 can be predicted within perturbative QCD

s afZ/H al) Z/ iz 1 fJ/H(x )

DGLAP evolution equation

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)

can be extended to higher orders in o

,LL afZ/H x Iu Z / dz zg Ofs )]4- f]/H(%a:UJ)

Pi(an(), 2) = PO (2) + %f) PP+ (B2) PP+

LO (1974) NLO (1980) NNLO (2004, Moch, Vermaseren Vogt)




DGLAP evolution

nf

(flavour) singlet evolution equations: %(z,Q%) = ) (¢(z, Q?) + Gi(z, Q%))
i1

9 (2, Q?) _/ dy [ Pag 5 0s(Q?)) 2ns Py (y,as(cf)) <Z(y,Q2)>
om@Q* \g(@Q>) ) Jo y \PS —aS(QQ) ps (g S(Q2)) g(y, Q%)
non-singlet: ¢;;° (v, Q%) = ai(z, Q) — g;(z, Q%)

0
o1n Q2 QZ] / _PNS ( (QQ)) qgs(yaQZ)

1 ny
constraints: . 2\ | = 2 2y| — 1 (total momentum of the proton
/0 dz x [; (4i(z, Q%) + Gi(x,Q7%)) + g(,Q )] is carried by its constituents)

1
/ dz (¢i(z, Q%) — 4i(z,Q%)) =ni  (ny =2,n4 = 1,n5.p+ =0) (baryon number conservation)
0

number of valence quarks



recent developments
from PDF determination “wishlist” 2013  [S.Forte, G.Watt, 1301.6754]

* The parametrisation should be sufficiently general and unbiased
e.g. new approach based on deep learning [S.Carrazza et al. "19]

* The experimental uncertainties should be understood and carefully propagated

LHAPDF6: metadata ErrorType, ErrorConfLevel [A.Buckley et al. *14]

* PDFs including electroweak corrections will have to be constructed

QED corrections done (see next slide)

* The treatment of heavy quarks will have to include mass-suppressed terms
in progress, see e.g. Blumlein, Moch et al.

* The strong coupling, in addition to being determined simultaneously with PDFs,
should also be decoupled from the PDF determination,

available, see e.g. PDF4LHC15 J. Butterworth et al. “15

* An estimate of theoretical uncertainties should be performed together with PDF sets

depends ...



PDFs with QED corrections

2015
CT14qed
A
2004 2013
MRST2004 NNPDF2.3QED

@® Model based
() Data based

@ Theory based

2016
NNPDF3.0QED

A 2016
LUXged16

A 2017
LUXqed17

A 2017

NNPDF3.1luxQED

A 2019
MMHT2015qed

2020
o0 i-l-»

2017 2018
xFitter MMHT

S.Carrazza, E.Villa et al, 1909.10547



One-loop integrals

— k

simple example: w figure: Stephan Jahn

k+p—

I /OO d*k 1
T ) (2m)4 [K2 — m2 +40)[(k + p)2 — m2 + 1]
for |k| — 0 denominator cannot vanish if m # 0

for |k| — oo : spherical coordinates:

= k3 Y
Izm/dQ;g/ d‘k‘ﬁ ~ lim I
|k|min i

divergent for |k| — oo (UV)

36



one-loop integrals

we can isolate the divergence in terms of log A

however a regulator that preserves Lorentz covariance is
much more convenient (gauge invariance, renormalisation, ...)

dimensional regularisation: (see previous lecture)

work in DD = 4 — 2¢ dimensions

2/00 d*k . 26/00 dP Lk
Tl enr T Y @en)p

decreasing the dimension will help the UV problem
(less powers of |k| in the numerator)

so to regulate UV divergences, formally € > (

(however it is an analytic continuation of the integral where the sign
does not need to be specified)

37



dimensional regularisation

to cure IR divergences, it helps to increase the dimension (e < 0)

how can we use both signs at the same time?

formally:

* first calculate amplitude assuming IR divergences are regulated
(off-shell, mass)

- then all 1/eps poles will be of UV nature — perform UV renormalisation
- for UV finite amplitude, analytically continue to Re(D) > 4

« remove auxiliary IR regulator — IR poles will manifest as 1/eps poles

In practice, we just use D, both UV and IR poles appear as powers of 1/6

note: other methods than dim. reg. exist and are appealing, making pole
cancellations manifest at integrand level; however this is not straightforward



regularisation schemes

Clifford algebra needs to be extended to D dimensions:

{v*,7"} =2¢" with g}, =D

leads for example to v, pY' =(2— D) p

problem:

V5 = 1Y0Y1Y2Y3 =

0 uv po
—&
4]

YuYvYp Yo

IS an intrinsically 4-dim. quantity

In 4-dim:

cHV PO

totally antisymmetric
tensor

"Yg =1, {7u775} =0, Ir ('YM’YV’Yp’Ya’%) — 47:5;1,1/,00

iIn D-dim. these conditions cannot hold simultaneously!



regularisation schemes

proof: consider the expression €Tt (YV+Yu Yo Yo Yoy V5)

and use {’Y“, v5} = 0 and the cyclicity of the trace or {y*,7*} = 2 g"**
to contract vy =D
eadsto (D —4) e Tr (vu17p7075) = 0

different prescriptions are available in the literature to remedy this, e.qg.
[ ‘tHooft,Veltman '72; Breitenlohner, Maison "77; Larin '93 |

Yu = Vu + Vu o %}_{O ne{0,1,2,3}
7 - ~//L .

5, : (D — 4) — dim. 2yF~s otherwise.

breaks axial Ward ldentities, fix by “finite renormalisation”

or give up cyclicity of the trace, but keep {VISD ) , Y5} = 0 [Kreimer, Kémer, Schilcher '92 ]

see also recent paper by N.Zerf https://arxiv.org/abs/1911.06345



regularisation schemes

even without Y5 the extension to D dimensions is not unique

in principle only the unobserved momenta need to be D-dim.
some possibilities: (see also Signer, Stockinger 0807.4424 )

e CDR: “conventional dim. reg.”

internal and external gluons (and other vector fields) are treated as D-dim.

e HV: “t Hooft-Veltman” internal: D-dim., external: 4-dim.

e DR: “dimensional reduction” only loop momenta D-dim., otherwise (quasi-) 4-dim.

e FDH: “four-dimensional helicity scheme” as DR, but external states strictly 4-dim.

 at one loop, CDR and HV are equivalent,
similarly DR and FDH are equivalent,
as terms of order epsilon in external momenta do not play a role

* different beyond one loop!

more about schemes when we discuss UV renormalisation ...



addendum to regularisation schemes
CDR HV DR FDH

diStingUiSh internal gluon g g g g

V —

y external gluon | g*
g"¥ quasi-4-dim.

ﬁ“ Y  D-dim. (subspace of above)

g"'”  strictly 4-dim.

g“ng = 4, §W§W =D =4 —2e, gwguu =4
In projections dimensionality matters!

I S 1) N 1 Z i N (T U 7 R 17 e
g v 7g v 79 gl/ g



Summary

* We know the building blocks of NLO cross sections

* \We have seen how IR singularities arise

* We have seen how they cancel in inclusive quantities

* \We know the origin and evolution of parton distribution
functions to deal with hadronic initial states

* Dimensional regularisation: we know about different
regularisation schemes
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