QCD and precision calculations Lecture 2: NLO

Gudrun Heinrich

Max Planck Institute for Physics, Munich

image:
ThoughtCo.com
PREFIT School, March 3, 2020

Contents

- building blocks of NLO cross sections
- infrared singularities and their cancellation
- dimensional regularisation
- hadronic initial states
- parton distribution functions
- one-loop integrals
- regularisation schemes

NLO basics

start with simple example: e+e- annihilation

at leading order: $\quad \sigma^{L O}=\frac{4 \pi \alpha^{2}}{3 s} e_{q}^{2} N_{c}$
(Z exchange not considered)
split off leptonic part and consider $\gamma^{*} \rightarrow q \bar{q}$
NLO: order α_{s} corrections at cross section level
 virtual

$+$

real

NLO basics

start with simple example: e+e- annihilation

split off leptonic part and consider $\gamma^{*} \rightarrow q \bar{q}$
NLO: order α_{s} corrections at cross section level
will be interfered with

real

NLO basics

$$
\sigma^{N L O}=\underbrace{\int \mathrm{d} \phi_{2}\left|\mathcal{M}_{0}\right|^{2}}_{\sigma^{L O}}+\int_{R} \mathrm{~d} \phi_{3}\left|\mathcal{M}_{\text {real }}\right|^{2}+\int_{V} \mathrm{~d} \phi_{2} 2 R e\left(\mathcal{M}_{\mathrm{virt}} \mathcal{M}_{0}^{*}\right)
$$

real radiation

virtual corrections

- virtual corrections contain UV divergences, but they cancel here due to Ward Identity

is zero for massless quarks (scaleless integral)
(see later, dimensional regularisation)
in fact it is something like $\frac{1}{\epsilon_{U V}}-\frac{1}{\epsilon_{I R}}$

NLO basics

real radiation

virtual corrections
$|\mathcal{M}|^{2}$ pictorially: \mathcal{M} left of the cut, \mathcal{M}^{*} right of the cut

claim: sum over all cuts above is finite individual diagrams contain infrared singularities must be so due to KLN-Theorem

cancellation of IR singularities

KLN Theorem

Soft and collinear singularities cancel in the sum over degenerate states

what are degenerate states ?

- a quark emitting a soft gluon, or a collinear quark-gluon system cannot be distinguished from simply a quark
- virtual corrections are not directly observable
\Rightarrow in the considered inclusive cross section, singularities cancel between real and virtual corrections

cancellation of IR singularities

KLN Theorem

Kinoshita, Lee, Nauenberg, 1960's

Soft and collinear singularities cancel in the sum over degenerate states

what are degenerate states ?

- a quark emitting a soft gluon, or a collinear quark-gluon system cannot be distinguished from simply a quark
- virtual corrections are not directly observable
\Rightarrow in the considered inclusive cross section, singularities cancel between real and virtual corrections

warning:

does not hold for initial state radiation in hadronic collisions reason: cannot sum over degenerate states for partons in the proton
(see later)

IR singularities

two types: (a) soft, (b) collinear
Consider the emission of a gluon from a hard quark:

$$
\begin{aligned}
p & =E(1,0,0,1) \\
k & =\omega(1,0, \sin \theta, \cos \theta) \\
(p+k)^{2} & =2 E \omega(1-\cos \theta)
\end{aligned}
$$

will go to zero if the gluon becomes soft $(\omega \rightarrow 0)$
or if quark and gluon become collinear $(\theta \rightarrow 0)$
note: collinear singularity will be absent for massive quarks $\left(p^{2}=m^{2}\right)$
1/propagator $\sim(p+k)^{2}-m^{2}=2 E \omega(1-\beta \cos \theta), \beta=\sqrt{1-m^{2} / E^{2}}$
nonzero for $\theta \rightarrow 0$, but soft singularity still present
therefore collinear singularities are sometimes called mass singularities

soft singularities

Consider real emission diagrams in more detail:

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g}^{\mu} & =\bar{u}\left(p_{1}\right)\left(-i g t^{A} \notin\right) \frac{i\left(\not p_{1}+\not \nless\right)}{\left(p_{1}+k\right)^{2}}\left(-i e \gamma^{\mu}\right) v\left(p_{2}\right) \\
& +\quad \bar{u}\left(p_{1}\right)\left(-i e \gamma^{\mu}\right) \frac{-i\left(\not p_{2}+\not k\right)}{\left(p_{2}+k\right)^{2}}\left(-i g t^{A} \notin\right) v\left(p_{2}\right)
\end{aligned}
$$

If gluon becomes soft: neglect k except for linear terms in denominator:

$$
\begin{gathered}
\mathcal{M}_{q \bar{q} \bar{q}}^{\mu} \stackrel{\text { soft }}{=}-\text { iegt } t^{A} \bar{u}\left(p_{1}\right) \gamma^{\mu}\left(\frac{\phi p_{1}}{2 p_{1} k}-\frac{p_{2} \notin}{2 p_{2} k}\right) v\left(p_{2}\right) \\
\left|\mathcal{M}_{q \bar{q} g}\right|^{2} \stackrel{\text { soft }}{\rightarrow}\left|\mathcal{M}_{a \bar{q}}\right|^{2} g^{2} C_{F} \frac{p_{1} p_{2}}{\left(p_{1} k\right)\left(p_{2} k\right)}
\end{gathered}
$$

Factorisation into Born matrix element and Eikonal factor

soft singularities

Consider real emission diagrams in more detail:

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g}^{\mu} & =\bar{u}\left(p_{1}\right)\left(-i g t^{A} \notin\right) \frac{i\left(\not p_{1}+\not \nless\right)}{\left(p_{1}+k\right)^{2}}\left(-i e \gamma^{\mu}\right) v\left(p_{2}\right) \\
& +\quad \bar{u}\left(p_{1}\right)\left(-i e \gamma^{\mu}\right) \frac{-i\left(\not p_{2}+\not k\right)}{\left(p_{2}+k\right)^{2}}\left(-i g t^{A} \oint\right) v\left(p_{2}\right)
\end{aligned}
$$

If gluon becomes soft: neglect k except for linear terms in denominator:

$$
\begin{array}{cc}
\mathcal{M}_{q \bar{q} g}^{\mu} \stackrel{\text { soft }}{=}-\text { iegt }^{A} \bar{u}\left(p_{1}\right) \gamma^{\mu}\left(\frac{\notin p_{1}}{2 p_{1} k}-\frac{\not p_{2} \notin}{2 p_{2} k}\right) v\left(p_{2}\right) \\
\left|\mathcal{M}_{q \bar{q} g}\right|^{2} \stackrel{\text { soft }}{\rightarrow}\left|\mathcal{M}_{q \bar{q}}\right|^{2} g^{2} C_{F} \frac{p_{1} p_{2}}{\left(p_{1} k\right)\left(p_{2} k\right)} & \begin{array}{c}
\text { Note: colour will in } \\
\text { general not factorise in } \\
\text { the soft limit }
\end{array}
\end{array}
$$

Factorisation into Born matrix element and Eikonal factor

collinear singularities

$$
\left(p_{1}+k\right)^{2}=2 E \omega(1-\cos \theta) \rightarrow 0 \text { for } \theta \rightarrow 0
$$

convenient parametrisation of momenta:
"Sudakov parametrisation"

$$
\begin{aligned}
p_{1} & =z p^{\mu}+k_{\perp}^{\mu}-\frac{k_{\perp}^{2}}{z} \frac{n^{\mu}}{2 p_{1} n} & & p^{\mu} \text { collinear direction } \\
k & =(1-z) p^{\mu}-k_{\perp}^{\mu}-\frac{k_{\perp}^{2}}{1-z} \frac{n^{\mu}}{2 p_{1} n} & & n^{\mu} \text { light-like auxiliary vector } \\
\Rightarrow 2 p_{1} k & =-\frac{k_{\perp}^{2}}{z(1-z)} & & z=\frac{E_{\perp} n=0}{E_{1}+E_{g}}
\end{aligned}
$$

collinear limit in this parametrisation: $k_{\perp} \rightarrow 0$
$\left|\mathcal{M}_{1}\left(p_{1}, k, p_{2}\right)\right|^{2} \xrightarrow{\text { coll }} g^{2} \frac{1}{p_{1} \cdot k} P_{q q}(z)\left|\mathcal{M}_{0}\left(p_{1}+k, p_{2}\right)\right|^{2}$
$P_{q q}(z)$: splitting functions

collinear singularities

factorisation property of amplitudes in the collinear limit:

$$
\left|\mathcal{M}_{m+1}\right|^{2} \mathrm{~d} \Phi_{m+1} \rightarrow\left|\mathcal{M}_{m}\right|^{2} \mathrm{~d} \Phi_{m} \frac{\alpha_{s}}{2 \pi} \frac{\mathrm{~d} k_{\perp}^{2}}{k_{\perp}^{2}} \frac{\mathrm{~d} \phi}{2 \pi} \mathrm{~d} z P_{a \rightarrow b c}(z)
$$

note that the phase space also can be factorised in this limit

$$
\begin{gathered}
\mathrm{d} \Phi_{m+1} \rightarrow \mathrm{~d} \Phi_{m} \otimes \mathrm{~d} \Phi_{k} \quad\left(k^{+}=k \cdot n=(1-z) p \cdot n\right) \\
\mathrm{d} \Phi_{k} \equiv \frac{\mathrm{~d}^{4} k}{(2 \pi)^{3}} \delta\left(k^{2}\right)=\frac{1}{8 \pi^{2}} \frac{\mathrm{~d} \phi}{2 \pi} \frac{\mathrm{~d} k^{+}}{2 k^{+}} \mathrm{d} k_{\perp}^{2}=\frac{1}{16 \pi^{2}} \frac{\mathrm{~d} z}{(1-z)} \mathrm{d} k_{\perp}^{2}
\end{gathered}
$$

this factorisation does not depend on the details of \mathcal{M}_{m}

splitting functions

Dokshitzer, Gribov, Lipatov, Altarerlli, Parisi

it only depends on the types of splitting partons

$$
\begin{aligned}
& \text { 1-z } \\
& \hat{P}_{q g}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad T_{R}=\frac{1}{2}, \\
& \hat{P}_{q q}(z)=C_{F}\left[\frac{1+z^{2}}{(1-z)}\right], \\
& \hat{P}_{g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right], \\
& \hat{P}_{g g}(z)=C_{A}\left[\frac{z}{(1-z)}+\frac{1-z}{z}+z(1-z)\right]
\end{aligned}
$$

real radiation matrix element

remember $\quad|\overline{\mathcal{M}}|^{2} \rightarrow \bar{\sum}_{\lambda, c}\left|\mathcal{M}_{\lambda, c}\right|^{2}=\frac{1}{\prod_{\text {initial }} N_{\text {pol }} N_{\text {col }}} \sum_{\text {frailpol,col }}\left|\mathcal{M}_{\lambda, c}\right|^{2}$

$$
\text { at LO: } \quad\left|\overline{\mathcal{M}}_{0}\right|^{2}=\frac{1}{3} 4 e^{2} Q_{q}^{2} N_{c} s \quad|\sim|^{2}
$$

with extra gluon radiation: $p^{\gamma}=\sqrt{s}(1,0,0,0)$

$$
s_{i j}=\left(p_{i}+p_{j}\right)^{2} \quad \begin{aligned}
p_{1} & =E_{1}(1,0,0,1) \\
p_{2} & =E_{2}(1,0, \sin \theta, \cos \theta) \\
k & \equiv p_{3}=p^{\gamma}-p_{1}-p_{2}
\end{aligned}
$$

$$
\left|\overline{\mathcal{M}}_{1}\right|^{2}=\left|\overline{\mathcal{M}}_{0}\right|^{2} \frac{2 g^{2} C_{F}}{s}\left(\frac{s_{13}}{s_{23}}+\frac{s_{23}}{s_{13}}+2 s \frac{s_{12}}{s_{13} s_{23}}\right)
$$

define $\quad x_{1}=2 E_{1} / \sqrt{s}, x_{2}=2 E_{2} / \sqrt{s}$

$$
\Rightarrow\left|\overline{\mathcal{M}}_{1}\right|^{2}=\left|\overline{\mathcal{M}}_{0}\right|^{2} \frac{2 g^{2} C_{F}}{s}\left(\frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}\right) \quad \begin{array}{ll}
& \text { gluon energy: } \\
E_{g}=\sqrt{s}\left(1-x_{1}-x_{2}\right)
\end{array}
$$

singularity structure

$$
\begin{aligned}
\left|\overline{\mathcal{M}}_{1}\right|^{2} & =\left|\overline{\mathcal{M}}_{0}\right|^{2} \frac{2 g^{2} C_{F}}{s}\left(\frac{s_{13}}{s_{23}}+\frac{s_{23}}{s_{13}}+2 s \frac{s_{12}}{s_{13} s_{23}}\right) \\
& =\left|\overline{\mathcal{M}}_{0}\right|^{2} \frac{2 g^{2} C_{F}}{s}\left(\frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}\right) \quad x_{1}=2 E_{1} / \sqrt{s}, x_{2}=2 E_{2} / \sqrt{s}
\end{aligned}
$$

$x_{1} \rightarrow 1:$ collinear singularity $p_{1} \| p_{3}, x_{2} \rightarrow 1:$ collinear singularity $p_{2} \| p_{3}$ $x_{1} \rightarrow 1-x_{2}:$ soft gluon $\quad E_{g}=\sqrt{s}\left(1-x_{1}-x_{2}\right)$ in these limits the matrix element is singular

- we know that the singularities should cancel with the virtual corrections
- however we first have to isolate them to make the cancellation manifest

cancellation of singularities

real and virtual corrections live on different phase spaces

cancellation of singularities

widely used procedure, for n-particle production:

$$
\begin{aligned}
& \mathcal{B}_{n}=\int \mathrm{d} \phi_{n}\left|\mathcal{M}_{0}\right|^{2}=\int \mathrm{d} \phi_{n} B_{n} \\
& \mathcal{V}_{n}=\int \mathrm{d} \phi_{n} 2 R e\left(\mathcal{M}_{\text {virt }} \mathcal{M}_{0}^{*}\right)=\int \mathrm{d} \phi_{n} \frac{V_{n}}{\epsilon}+\text { finite } \\
& \mathcal{R}_{n}=\int \mathrm{d} \phi_{n+1}\left|\mathcal{M}_{\text {real }}\right|^{2}=\int \mathrm{d} \phi_{n} \int_{0}^{1} \mathrm{~d} x x^{-1-\epsilon} R_{n}(x)+\text { finite' } \\
& \sigma^{N L O}=\int \mathrm{d} \phi_{n}\left\{\left(B_{n}+\frac{V_{n}}{\epsilon}\right) J\left(p_{1} \ldots p_{n}, 0\right)+\int_{0}^{1} \mathrm{~d} x x^{-1-\epsilon} R_{n}(x) J\left(p_{1} \ldots p_{n}, x\right)\right\} \\
& \text { with } \lim _{x \rightarrow 0} J\left(p_{1} \ldots p_{n}, x\right)=J\left(p_{1} \ldots p_{n}, 0\right) \quad(*) \quad \text { + Finite }
\end{aligned}
$$

J is called measurement function and defines the observable, the property $(*)$ is called infrared safety

cancellation of singularities

widely used procedure, for n-particle production:

$$
\begin{aligned}
& \mathcal{B}_{n}=\int \mathrm{d} \phi_{n}\left|\mathcal{M}_{0}\right|^{2}=\int \mathrm{d} \phi_{n} B_{n} \\
& \mathcal{V}_{n}=\int \mathrm{d} \phi_{n} 2 R e\left(\mathcal{M}_{\text {virt }} \mathcal{M}_{0}^{*}\right)=\int \mathrm{d} \phi_{n} \frac{V_{n}}{\epsilon}+\text { finite } \\
& \mathcal{R}_{n}=\int \mathrm{d} \phi_{n+1}\left|\mathcal{M}_{\text {real }}\right|^{2}=\int \mathrm{d} \phi_{n} \int_{0}^{1} \mathrm{~d} x x^{-1-\epsilon} R_{n}(x)+\text { finite' } \\
& \sigma^{N L O}=\int \mathrm{d} \phi_{n}\left\{\left(B_{n}+\frac{V_{n}}{\epsilon}\right) J\left(p_{1} \ldots p_{n}, 0\right)+\int_{0}^{1} \mathrm{~d} x x^{-1-\epsilon} R_{n}(x) J\left(p_{1} \ldots p_{n}, x\right)\right\} \\
& \text { with } \lim _{x \rightarrow 0} J\left(p_{1} \ldots p_{n}, x\right)=J\left(p_{1} \ldots p_{n}, 0\right) \quad(*) \quad \text { + Finite }
\end{aligned}
$$

J is called measurement function and defines the observable, the property $(*)$ is called infrared safety but what is ϵ ?

dimensional regularisation

't Hooft, Veltman '72; Bollini, Gambiagi ‘72
A convenient way to isolate singularities:
continue space-time from 4 to $D=4-2 \epsilon$ dimensions

- regulates both UV and IR divergences formally UV: $\epsilon>0$, IR: $\epsilon<0$
- does not violate gauge invariance
- poles can be isolated in terms of $1 / \epsilon^{b}$

\Rightarrow need phase space integrals in D dimensions
\Rightarrow need integration over virtual loop momenta in D dimensions

$$
g^{2} \int_{-\infty}^{\infty} \frac{d^{4} k}{(2 \pi)^{4}} \longrightarrow g^{2} \mu^{2 \epsilon} \int_{-\infty}^{\infty} \frac{d^{D} k}{(2 \pi)^{D}} \quad, \quad \mu^{2 \epsilon} \begin{aligned}
& \text { is introduced to keep coupling } \\
& \text { (mass-)dimensionless in D dim. }
\end{aligned}
$$

virtual corrections

we will not go through the calculation but only quote the result:

$$
R^{\mathrm{virt}}=R^{L O} \times \frac{\alpha_{s}}{2 \pi} C_{F} \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\left(\frac{-s}{4 \pi \mu^{2}}\right)^{-\epsilon}\left\{-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\mathcal{O}(\epsilon)\right\}
$$

phase space in D dimensions

1 to N particle phase space:

$$
\begin{aligned}
& Q \rightarrow p_{1}+\ldots+p_{N} \\
& \qquad \int d \Phi_{N}^{D}=(2 \pi)^{N-D(N-1)} \int \prod_{j=1}^{N} d^{D} p_{j} \delta^{+}\left(p_{j}^{2}-m_{j}^{2}\right) \delta^{(D)}\left(Q-\sum_{i=1}^{N} p_{i}\right)
\end{aligned}
$$

In the following consider massless case $p_{j}^{2}=0$. Use for $i=1, \ldots, N-1$

$$
\begin{aligned}
\int d^{D} p_{i} \delta^{+}\left(p_{i}^{2}\right) & \equiv \int d^{D} p_{i} \delta\left(p_{i}^{2}\right) \theta\left(E_{i}\right)=\int d^{D-1} \vec{p}_{i} d E_{i} \delta\left(E_{i}^{2}-\vec{p}_{i}^{2}\right) \theta\left(E_{i}\right) \\
& =\left.\frac{1}{2 E_{i}} \int d^{D-1} \vec{p}_{i}\right|_{E_{i}=\left|\vec{p}_{i}\right|}
\end{aligned}
$$

and eliminate p_{N} by momentum conservation

$$
\Rightarrow \quad \int d \Phi_{N}^{D}=\left.(2 \pi)^{N-D(N-1)} 2^{1-N} \int \prod_{j=1}^{N-1} d^{D-1} \vec{p}_{j} \frac{\Theta\left(E_{j}\right)}{E_{j}} \delta^{+}\left(\left[Q-\sum_{i=1}^{N-1} p_{i}\right]^{2}\right)\right|_{E_{j}=\left|\vec{p}_{j}\right|}
$$

for polar coordinates need phase space volume of unit sphere in D dimensions

$$
\int d \Omega_{D-1}=V(D)=\frac{2 \pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)} \quad V(D)=\int_{0}^{2 \pi} d \theta_{1} \int_{0}^{\pi} d \theta_{2} \sin \theta_{2} \ldots \int_{0}^{\pi} d \theta_{D-1}\left(\sin \theta_{D-1}\right)^{D-2}
$$

real radiation in D dimensions

polar coord. $\frac{\mathrm{d}^{D-1} \vec{p}}{|\vec{p}|} f(|\vec{p}|)=\mathrm{d} \Omega_{D-2} \mathrm{~d}|\vec{p}||\vec{p}|^{D-3} f(|\vec{p}|)$, use $\left|\vec{p}_{j}\right|=E_{j}$ (massless case)
1 to 3 particle phase space: $p^{\gamma}=\left(\sqrt{s}, \overrightarrow{0}^{(D-1)}\right)$
$p_{1}=E_{1}\left(1, \overrightarrow{0}^{(D-2)}, 1\right)$
$\begin{aligned} & p_{2}=E_{2}\left(1, \overrightarrow{0}^{(D-3)}, \sin \theta, \cos \theta\right) \\ & p_{3}=p^{\gamma}-p_{2}-p_{1}\end{aligned} \quad x_{i}=\frac{2 p_{i} \cdot p^{\gamma}}{s}$

$$
\begin{aligned}
d \Phi_{1 \rightarrow 3}= & \frac{1}{4}(2 \pi)^{3-2 D} d E_{1} d E_{2} d \theta\left[E_{1} E_{2} \sin \theta\right]^{D-3} d \Omega_{D-2} d \Omega_{D-3} \\
= & (2 \pi)^{3-2 D} \frac{2^{4-D}}{32} s^{D-3} d \Omega_{D-2} d \Omega_{D-3}\left[\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right) \frac{(D / 2-2}{-\epsilon}\right. \\
& d x_{1} d x_{2} d x_{2} \Theta\left(1-x_{1}\right) \Theta\left(1-x_{2}\right) \Theta\left(1-x_{3}\right) \delta\left(2-x_{1}-x_{2}-x_{3}\right)
\end{aligned}
$$

$$
\left|\overline{\mathcal{M}}_{1}\right|^{2}=\left|\overline{\mathcal{M}}_{0}^{(D)}\right|^{2} \frac{2 g^{2} C_{F}}{s}\left(\frac{\left(x_{1}^{2}+x_{2}^{2}\right)(1-\epsilon)+2 \epsilon\left(1-x_{3}\right)}{\left(1-x_{1}\right)\left(1-x_{2}\right)}-2 \epsilon\right)
$$

combine real and virtual

$$
\begin{array}{r}
R^{\text {real }}=R^{L O} \times \frac{\alpha_{s}}{2 \pi} C_{F} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-3 \epsilon)}\left(\frac{s}{4 \pi \mu^{2}}\right)^{-\epsilon}\left\{\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}+\mathcal{O}(\epsilon)\right\} \\
\text { gluon both soft and collinear }
\end{array}
$$

$$
R^{\mathrm{virt}}=R^{L O} \times \frac{\alpha_{s}}{2 \pi} C_{F} \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\left(\frac{-s}{4 \pi \mu^{2}}\right)^{-\epsilon}\left\{-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\mathcal{O}(\epsilon)\right\}
$$

KLN theorem at work!

$$
R=R^{L O} \times\left\{1+\frac{3}{4} C_{F} \frac{\alpha_{s}(\mu)}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\}
$$

hadrons in the initial state

deeply inelastic scattering (DIS) $e(k)+p(P) \rightarrow e\left(k^{\prime}\right)+X$

$$
\begin{aligned}
s & =(P+k)^{2}[\mathrm{cms} \text { energy }]^{2} \\
q^{\mu} & =k^{\mu}-k^{\prime \mu}[\text { momentum transfer }]
\end{aligned}
$$

$$
Q^{2}=-q^{2}=2 M E x y \quad\left(Q^{2} \gg 1 \mathrm{GeV}^{2}\right)
$$

$$
x=\frac{Q^{2}}{2 P \cdot q}[\text { scaling variable }]
$$

$$
y=\frac{P \cdot q}{P \cdot k}=1-\frac{E^{\prime}}{E} \text { [relative energy loss] }
$$

$$
\frac{d^{2} \sigma}{d x d y}=\frac{4 \pi \alpha^{2}}{y Q^{2}}\left[\left(1+(1-y)^{2}\right) F_{1}+\frac{1-y}{x}\left(F_{2}-2 x F_{1}\right)\right]
$$

F_{1}, F_{2} : structure functions

Deep-inelastic scattering

 in the scaling limit $Q^{2} \rightarrow \infty$ with x fixed:$2 x F_{1} \rightarrow F_{2}$ (Callan-Gross relation) and $F_{2}\left(x, Q^{2}\right) \rightarrow F_{2}(x)$ characteristic for elastic scattering at spin-1/2 particles
\rightarrow confirmation of the parton model, since it predicts

$$
F_{2}(x)=\sum_{i} \int_{0}^{1} d \xi f_{i}(\xi) x e_{q_{i}}^{2} \delta(x-\xi)=x \sum_{i} e_{q_{i}}^{2} f_{i}(x)
$$

$f_{i}(\xi)$ denotes the probability that a parton (q, \bar{q}, g) with flavour i carries a momentum fraction of the proton between ξ and $\xi+d \xi$
$f_{i}(\xi)$: parton distribution functions (PDFs)
are fitted from data, but their energy scale dependence is calculable in perturbation theory
（1）https：／／lhapdf．hepforge．org／pdfsets．html
国
－••园
Q

，
娄 IIII 四
Getting Started

LHAPDF

6．2．3

Main page PDF sets Class hierarchy Examples More．．．

PDF sets

Official LHAPDF 6．2 PDF sets：currently 884 available，of which 882 are validated．

See http：／／／hapdfsets．web．cern．ch／lhapdfsets／current／for data downloads．
All sets migrated from LHAPDF v5 behave very closely to the originals，usually within 1 part in 1000 across x, Q space．Sometimes larger，but very localised，deviations are found at the edges of the x, Q grid or on flavour thresholds：these should not be physically important．See http：／／lhapdf．hepforge．org／validationpdfs／for a full set of validation plots for each set＇s central member．

In the table，green rows indicate sets which have been officially approved for LHAPDF6 by their authors．Red rows indicate those which have not yet been so approved．Unvalidated sets may still be used，but please take care．

LHAPDF ID	Set name	Number of set members	Latest data version	Notes

hadronic initial states

in general:

- factorisation allows to separate short-distance from long-distance effects
- hadronic cross section is written as a convolution of the partonic cross section $\hat{\sigma}_{i}$ with the corresponding PDF $f_{i / H}$

$$
\sigma_{H}(P)=\sum_{i} \int_{0}^{1} d x f_{i / H}(x) \hat{\sigma}_{i}(x P)
$$

in principle the same for two hadrons in the initial state

hadron-hadron collisions

$d \sigma_{p p \rightarrow B+X}=\sum_{i, j} \int_{0}^{1} d x_{1} f_{i / p_{a}}\left(x_{1}, \alpha_{s}, \mu_{f}\right) \int_{0}^{1} d x_{2} f_{j / p_{b}}\left(x_{2}, \alpha_{s}, \mu_{f}\right)$

$$
\times d \hat{\sigma}_{i j \rightarrow B+X}\left(\{p\}, x_{1}, x_{2}, \alpha_{s}\left(\mu_{r}\right), \mu_{r}, \mu_{f}\right) J(\{p\})+\mathcal{O}\left(\frac{\Lambda}{Q}\right)^{p}
$$

partonic momenta
renormalisation scale $\mu_{r}, \alpha_{s}\left(\mu_{r}\right)$

back to DIS

$$
F_{2}(x)=x \sum_{i=u, d, s, \ldots} e_{i}^{2}\left[q_{i}(x)+\bar{q}_{i}(x)\right]
$$

corresponds to the naive parton model
There are perturbative corrections from the "splitting" of partons as well as non-perturbative effects

For example $\sum_{i} \int_{0}^{1} d x x\left[q_{i}(x)+\bar{q}_{i}(x)\right] \simeq 0.5$
So quarks carry only about half of the proton momentum, the rest is carried by gluons

PDFs

sea quarks and gluons play a larger role than valence quarks at

- low x
- large Q^{2}

Proton Structure

(almost) Scaling

- scaling is violated for small x
- can be understood from higher order perturbative corrections in α_{s}

x

beyond the parton model

$$
\hat{F}_{2, g}(x)=\sum_{q} e_{q}^{2} x\left[0+\frac{\alpha_{s}}{4 \pi}\left(-\left(\frac{Q^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{1}{\epsilon} P_{g \rightarrow q \bar{q}}(x)+C_{2}^{g}(x)\right)\right]
$$

PDFs and DGLAP evolution

consider the emission of one gluon in the initial state
(we have encountered this already for final state emission) phase space factor for one gluon emission: $d \Phi \sim \frac{d^{D-1} k}{2 k_{0}} \sim d z(1-z)^{-1-\epsilon} d k_{\perp}^{2}\left(k_{\perp}^{2}\right)^{-\epsilon}$

In the collinear limit $k_{\perp}^{2} \rightarrow 0$

$$
\begin{aligned}
& d \Phi\left|\bar{M}_{1}^{\text {real }}(p, k)\right|^{2} \sim \frac{\alpha_{s}}{2 \pi} \frac{d k_{\perp}^{2}}{\left(k_{\perp}^{2}\right)^{1+\epsilon}} d z(1-z)^{-\epsilon} P_{q q}(z, \epsilon)\left|\bar{M}_{0}(z p)\right|^{2} \\
& P_{q q}(z, \epsilon)=C_{F} \frac{1+z^{2}}{1-z}-\epsilon(1-z)
\end{aligned}
$$

virtual corrections in IR limit: $\sim\left|\bar{M}_{0}(p)\right|^{2}$
note that soft limit is $z \rightarrow 1 \Rightarrow$ cancellation in soft limit but not in collinear limit

PDFs and DGLAP evolution

Recap:

gluon emission in final state:

both soft and collinear singularities cancel between real and virtual corrections
gluon emission in initial state:

PDFs and DGLAP evolution

Absorb initial state singularities at factorisation scale μ into "bare PDFs" to obtain the measured PDFs

$$
f_{i}\left(x, \mu_{f}^{2}\right)=f_{i}^{(0)}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi}\left\{f_{i}^{(0)}(\xi)\left[-\frac{1}{\epsilon}\left(\frac{\mu_{f}^{2}}{\mu^{2}}\right)^{-\epsilon} P_{q \rightarrow q g}\left(\frac{x}{\xi}\right)+K_{q q}\right]\right\}
$$

evolution with μ^{2} can be predicted within perturbative QCD

$$
\mu^{2} \frac{\partial f_{i / H}(x, \mu)}{\partial \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \sum_{j} \int_{x}^{1} \frac{d z}{z}\left[P_{i j}(z)\right]_{+} f_{j / H}\left(\frac{x}{z}, \mu\right)
$$

DGLAP evolution equation

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)
can be extended to higher orders in α_{s}

$$
\begin{gathered}
\mu^{2} \frac{\partial f_{i / H}(x, \mu)}{\partial \mu^{2}}=\sum_{j} \int_{x}^{1} \frac{d z}{z}\left[\mathcal{P}_{i j}\left(\alpha_{s}(\mu), z\right)\right]_{+} f_{j / H}\left(\frac{x}{z}, \mu\right) \\
\mathcal{P}_{i j}\left(\alpha_{s}(\mu), z\right)=P_{i j}^{(0)}(z)+\frac{\alpha_{s}(\mu)}{2 \pi} P_{i j}^{(1)}(z)+\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{2} P_{i j}^{(2)}(z)+\ldots \\
\operatorname{LO}(1974) \quad \text { NLO (1980) } \quad \text { NNLO (2004, Moch, Vermaseren Vogt) }
\end{gathered}
$$

DGLAP evolution

(flavour) singlet evolution equations: $\Sigma\left(x, Q^{2}\right) \equiv \sum_{i=1}^{n_{f}}\left(q_{i}\left(x, Q^{2}\right)+\bar{q}_{i}\left(x, Q^{2}\right)\right)$

$$
\frac{\partial}{\partial \ln Q^{2}}\binom{\Sigma\left(x, Q^{2}\right)}{g\left(x, Q^{2}\right)}=\int_{x}^{1} \frac{\mathrm{~d} y}{y}\left(\begin{array}{c}
P_{q q}^{S}\left(\frac{x}{y}, \alpha_{S}\left(Q^{2}\right)\right) \\
P_{g q}^{S}\left(\frac{x}{y}, \alpha_{S}\left(Q^{2}\right)\right) \\
2 n_{f} P_{q g}^{S}\left(\frac{x}{y}, \alpha_{S}\left(Q^{2}\right)\right) \\
P_{g g}^{S}\left(\frac{x}{y}, \alpha_{S}\left(Q^{2}\right)\right)
\end{array}\right)\binom{\Sigma\left(y, Q^{2}\right)}{g\left(y, Q^{2}\right)}
$$

non-singlet: $q_{i j}^{\mathrm{NS}}\left(x, Q^{2}\right)=q_{i}\left(x, Q^{2}\right)-q_{j}\left(x, Q^{2}\right)$

$$
\frac{\partial}{\partial \ln Q^{2}} q_{i j}^{\mathrm{NS}}\left(x, Q^{2}\right)=\int_{x}^{1} \frac{\mathrm{~d} y}{y} P_{i j}^{\mathrm{NS}}\left(\frac{x}{y}, \alpha_{S}\left(Q^{2}\right)\right) q_{i j}^{\mathrm{NS}}\left(y, Q^{2}\right)
$$

constraints: $\quad \int_{0}^{1} \mathrm{~d} x x\left[\sum_{i=1}^{n_{f}}\left(q_{i}\left(x, Q^{2}\right)+\bar{q}_{i}\left(x, Q^{2}\right)\right)+g\left(x, Q^{2}\right)\right]=1 . \quad \begin{aligned} & \quad \text { (total momentum of the proton } \\ & \text { is carried by its constituents) }\end{aligned}$

$$
\int_{0}^{1} \mathrm{~d} x\left(q_{i}\left(x, Q^{2}\right)-\bar{q}_{i}\left(x, Q^{2}\right)\right)=n_{i} \quad\left(n_{u}=2, n_{d}=1, n_{s, c, b, t}=0\right) \quad \text { (baryon number conservation) }
$$ number of valence quarks

recent developments

from PDF determination "wishlist" 2013 [S.Forte, G.Watt, 1301.6754]

- The parametrisation should be sufficiently general and unbiased e.g. new approach based on deep learning [S.Carrazza et al. '19]
- The experimental uncertainties should be understood and carefully propagated

LHAPDF6: metadata ErrorType, ErrorConfLevel [A.Buckley et al. '14]

- PDFs including electroweak corrections will have to be constructed

QED corrections done (see next slide)

- The treatment of heavy quarks will have to include mass-suppressed terms in progress, see e.g. Blümlein, Moch et al.
- The strong coupling, in addition to being determined simultaneously with PDFs, should also be decoupled from the PDF determination, available, see e.g. PDF4LHC15 J. Butterworth et al. '15
- An estimate of theoretical uncertainties should be performed together with PDF sets depends ...

PDFs with QED corrections

S.Carrazza, E.Villa et al, 1909.10547

One-loop integrals

simple example:

figure: Stephan Jahn

$$
I_{2}=\int_{-\infty}^{\infty} \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left[k^{2}-m^{2}+i \delta\right]\left[(k+p)^{2}-m^{2}+i \delta\right]}
$$

for $|k| \rightarrow 0$ denominator cannot vanish if $m \neq 0$
for $|k| \rightarrow \infty$: spherical coordinates:
$I_{2} \sim \int \mathrm{~d} \Omega_{3} \int_{|k|_{\text {min }}}^{\infty} \mathrm{d}|k| \frac{|k|^{3}}{|k|^{4}} \sim \lim _{\Lambda \rightarrow \infty} \int_{|k|_{\text {min }}}^{\Lambda} \frac{\mathrm{d}|k|}{|k|}$
divergent for $|k| \rightarrow \infty$ (UV)

one-loop integrals

we can isolate the divergence in terms of $\log \Lambda$
however a regulator that preserves Lorentz covariance is much more convenient (gauge invariance, renormalisation, ...)
dimensional regularisation: (see previous lecture)
work in $D=4-2 \epsilon$ dimensions
$g^{2} \int_{-\infty}^{\infty} \frac{d^{4} k}{(2 \pi)^{4}} \longrightarrow g^{2} \mu^{2 \epsilon} \int_{-\infty}^{\infty} \frac{d^{D} k}{(2 \pi)^{D}}$
decreasing the dimension will help the UV problem
(less powers of $|k|$ in the numerator)
so to regulate UV divergences, formally $\epsilon>0$
(however it is an analytic continuation of the integral where the sign does not need to be specified)

dimensional regularisation

to cure IR divergences, it helps to increase the dimension $(\epsilon<0)$
how can we use both signs at the same time?
formally:

- first calculate amplitude assuming IR divergences are regulated (off-shell, mass)
- then all 1/eps poles will be of UV nature \rightarrow perform UV renormalisation
- for UV finite amplitude, analytically continue to $\operatorname{Re}(D)>4$
- remove auxiliary IR regulator \rightarrow IR poles will manifest as 1/eps poles
in practice, we just use D, both $U V$ and IR poles appear as powers of $1 / \epsilon$
note: other methods than dim. reg. exist and are appealing, making pole cancellations manifest at integrand level; however this is not straightforward

regularisation schemes

Clifford algebra needs to be extended to D dimensions:

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \text { with } g_{\mu}^{\mu}=D
$$

leads for example to $\gamma_{\mu} \not p \gamma^{\mu}=(2-D) \not p$
problem: $\gamma_{5} \equiv i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}=\frac{i}{4!} \varepsilon^{\mu \nu \rho \sigma} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \begin{aligned} & \varepsilon^{\mu \nu \rho \sigma} \\ & \begin{array}{l}\text { totally antisymmetric } \\ \text { tensor }\end{array}\end{aligned}$
is an intrinsically 4-dim. quantity
in 4-dim:
$\gamma_{5}^{2}=\mathbf{1},\left\{\gamma_{\mu}, \gamma_{5}\right\}=0, \operatorname{Tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right)=4 i \varepsilon_{\mu \nu \rho \sigma}$
in D-dim. these conditions cannot hold simultaneously!

regularisation schemes

proof: consider the expression $\quad \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(\gamma_{\tau} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma^{\tau} \gamma_{5}\right)$
and use $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0$ and the cyclicity of the trace or $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ to contract $\gamma_{\tau} \gamma^{\tau}=D$
leads to $(D-4) \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right)=0$
different prescriptions are available in the literature to remedy this, e.g.
['tHooft, Veltman '72; Breitenlohner, Maison '77; Larin '93]

$$
\begin{aligned}
& \gamma_{\mu}=\bar{\gamma}_{\mu}+\tilde{\gamma}_{\mu} \\
& \tilde{\gamma}_{\mu}:(D-4)-\operatorname{dim} .
\end{aligned}
$$

$$
\left\{\gamma^{\mu}, \gamma_{5}\right\}= \begin{cases}0 & \mu \in\{0,1,2,3\} \\ 2 \tilde{\gamma}^{\mu} \gamma_{5} & \text { otherwise }\end{cases}
$$

breaks axial Ward Identities, fix by "finite renormalisation" or give up cyclicity of the trace, but keep $\left\{\gamma_{\mu}^{(D)}, \gamma_{5}\right\}=0$ [Kreimer, Körner, Schilcher '92] see also recent paper by N.Zerf https://arxiv.org/abs/1911.06345

regularisation schemes

even without γ_{5} the extension to D dimensions is not unique
in principle only the unobserved momenta need to be D-dim.
some possibilities: (see also Signer, Stöckinger 0807.4424)
-CDR: "conventional dim. reg." internal and external gluons (and other vector fields) are treated as D-dim.

- HV: "'t Hooft-Veltman" internal: D-dim., external: 4-dim.
- DR: "dimensional reduction" only loop momenta D-dim., otherwise (quasi-) 4-dim.
- FDH: "four-dimensional helicity scheme" as DR, but external states strictly 4-dim.
- at one loop, CDR and HV are equivalent, similarly DR and FDH are equivalent, as terms of order epsilon in external momenta do not play a role
- different beyond one loop!
more about schemes when we discuss UV renormalisation ...

addendum to regularisation schemes

distinguish
$g^{\mu \nu} \quad$ quasi-4-dim.

	CDR	HV	DR	FDH
internal gluon	$\hat{g}^{\mu \nu}$	$\hat{g}^{\mu \nu}$	$g^{\mu \nu}$	$g^{\mu \nu}$
external gluon	$\hat{g}^{\mu \nu}$	$\bar{g}^{\mu \nu}$	$g^{\mu \nu}$	$\bar{g}^{\mu \nu}$

$\hat{g}^{\mu \nu} \quad$ D-dim. (subspace of above)
$\bar{g}^{\mu \nu} \quad$ strictly 4-dim.

$$
g^{\mu \nu} g_{\mu \nu}=4, \hat{g}^{\mu \nu} \hat{g}_{\mu \nu}=D=4-2 \epsilon, \bar{g}^{\mu \nu} \bar{g}_{\mu \nu}=4
$$

in projections dimensionality matters!

$$
g^{\mu \nu} \hat{g}_{\nu}^{\rho}=\hat{g}^{\mu \rho}, g^{\mu \nu} \bar{g}_{\nu}^{\rho}=\bar{g}^{\mu \rho}, \hat{g}^{\mu \nu} \bar{g}_{\nu}^{\rho}=\bar{g}^{\mu \rho}
$$

Summary

- We know the building blocks of NLO cross sections
- We have seen how IR singularities arise
- We have seen how they cancel in inclusive quantities
- We know the origin and evolution of parton distribution functions to deal with hadronic initial states
- Dimensional regularisation: we know about different regularisation schemes

