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start with simple example:  e+e- annihilation

at leading order: 

Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have
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Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV
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(Z exchange not considered)

NLO basics

split off leptonic part and consider 

NLO: order corrections at cross section level

virtual

real
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NLO basics

split off leptonic part and consider 

NLO: order corrections at cross section level

+

Born

will be interfered with

itself

virtual

real
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NLO basics

Renormalisation group
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 real radiation virtual corrections 

• virtual corrections contain UV divergences, but they cancel here due to Ward Identity

is zero for massless quarks (scaleless integral)

(see later, dimensional regularisation)

in fact it is something like
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 real radiation virtual corrections 

pictorially: left of the cut, right of the cut

claim: sum over all cuts above is finite

individual diagrams contain infrared singularities
must be so due to KLN-Theorem
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KLN Theorem Kinoshita, Lee, Nauenberg, 1960’s 

Soft and collinear singularities cancel in the sum 
over degenerate states 

 what are degenerate states ?

cancellation of IR singularities

• virtual corrections are not directly observable

• a quark emitting a soft gluon, or a collinear quark-gluon system cannot be  
 distinguished from simply a quark Renormalisation group

QCD beta function
Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections

Andrea Banfi Lecture 2

in the considered inclusive cross section,  
singularities cancel between real and virtual corrections
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in the considered inclusive cross section,  
singularities cancel between real and virtual corrections

warning:
does not hold for  
initial state radiation 
in hadronic collisions 
reason: cannot sum over  

 degenerate states for 
 partons in the proton

(see later)
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Consider the emission of a gluon from a hard quark:

Renormalisation group
QCD beta function

Short-distance observables

Collinear and infrared divergences

R̂(αs(Q), 1), obtained with partons instead than hadrons, is in agreement with experi-
mental data ⇒ hadronic R dominated by the hard scale Q2 = s: why?

Besides UV divergences, any gauge theory with massless particles can have
divergences whenever a propagator goes on shell

p + k p

k

θ

Emission of a gluon ω off a hard quark E ∼ Q

(p + k)2 = 2Eω(1 − cos θ) ≃ Eωθ2

singular for soft (ω → 0) and/or collinear (θ → 0) gluons

Infrared (IR) and collinear (together IRC) singularities are present both in real
emission and virtual corrections

For soft and collinear radiation the characteristic emission time τ ∼ 1/(ωθ2) is
much larger than 1/Q, the characteristic time of the hard collision

Any observable that is sensitive to soft and collinear gluons will acquire a
dependence on the characteristic time of soft and collinear radiation

Andrea Banfi Lecture 2

∑

A

tAact
A
cb = CF δab

∑

C,D

fCDAfCDB = CA δAB , CA = Nc

(tA)ab(t
A)cd =

1

2
δadδbc −

1

2Nc

δabδcd

fABEfCDE + fBCEfADE + fCAEfBDE = 0

(tA)ab

i fABC

generators of SU(Nc):
N2

c − 1 hermitean traceless matrices (tA)ab

fABC = −2 iTr([tA, tB] tC)

Tr(tA1tA2 · · · tAn) + all non-cyclic permutations

qq̄gggg . . . ⇒ Tr(tA1tA2 · · · tAn)ab + permutations

Mtree
n ({pi, ai, hi}) = gn−2Tr(tA1tA2 · · · tAn)M tree

n (1h1, 2h2 . . . nhn) + all non-cyclic permutations

si,i+1 = (pi + pi+1)
2

αs =
g2

4π

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

∑

A

tAact
A
cb = CF δab
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c − 1 hermitean traceless matrices (tA)ab

fABC = −2 iTr([tA, tB] tC)

Tr(tA1tA2 · · · tAn) + all non-cyclic permutations

qq̄gggg . . . ⇒ Tr(tA1tA2 · · · tAn)ab + permutations

Mtree
n ({pi, ai, hi}) = gn−2Tr(tA1tA2 · · · tAn)M tree

n (1h1, 2h2 . . . nhn) + all non-cyclic permutations

si,i+1 = (pi + pi+1)
2

αs =
g2

4π

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

will go to zero if the gluon becomes  soft    
or if quark and gluon become collinear 

(! ! 0)

(✓ ! 0)

IR singularities
two types: (a) soft, (b) collinear 

note: collinear singularity will be absent for massive quarks

1/propagator ~

nonzero for , but soft singularity still present

therefore collinear singularities are sometimes called mass singularities
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Consider real emission diagrams in more detail:

−ieγµ

p1

p2

k, ϵ −ieγµ

p1

p2

k, ϵ+ =

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ϵ)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

If gluon becomes soft: neglect k except for linear terms in denominator:

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ϵ)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ϵ/p1
2p1k

−
/p2/ϵ

2p2k

)

v(p2)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ϵ)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ϵ/p1
2p1k

−
/p2/ϵ

2p2k

)

v(p2)

|Mqq̄g|
2 soft

→ |Mqq̄|
2 g2CF

p1p2
(p1k)(p2k)

Factorisation into Born matrix element and Eikonal factor

soft singularities
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+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

If gluon becomes soft: neglect k except for linear terms in denominator:

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
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the soft limit 

soft singularities
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convenient parametrisation of momenta: 
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√

1−
m2

E2

(p1 + k)2 = 2E1ω (1− v cos θ)

pµ nµ k ⊥ p = k ⊥ n = 0

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

2 IR divergences

p = E (1, 0, 0, 1)
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+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ
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⊥
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⊥
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|M1(p1, k, p2)|2
coll→ g2

1

p1 · k
Pqq(z) |M0(p1 + k, p2)|2

Cross sections for a scattering process qa + qb → p1 + . . . + pN can be
written as

dσ =
J

flux
× |M|2 × dΦN

flux = 4
√

(qa · qb)2 −m2
am

2
b

J = 1/j ! is a statistical factor to be included for each group of j identical
particles in the final state.

Schematically, a next-to-leading order (NLO) cross section is constructed
in the following way: (for simplicity we use NLO in the strong coupling
constant αs and ma, mb = 0 here, the analogous is valid for NLO in the
expansion of other couplings):

σ = σLO + σNLO

σLO =
1

2s

∫

dΦN |MLO|2

σNLO =
αs

2s

∫

dΦN

[

MLOM†
NLO,virt. +M†

LOMNLO,virt. +
∑

j

∫

dΦ1,jDj

]

+
αs

2s

∫

dΦN+1

[

|MNLO,real|2 −
∑

j

Dj

]

(1)

The objects Dj are subtraction terms for divergences caused by soft/collinear
real radiation (e.g. sum over dipole subtraction terms).

The modulus of the matrix element involves the average over colours in
the initial state and sum over colours in the final state. For unpolarized in-
coming particles and if the spins of the final state particles are not measured,
the same is done for the polarisations.

|M|2 →
∑

λ,c
|Mλ,c|2 =

1
∏

initialNpolNcol

∑

final pol,col

|Mλ,c|2

|M0|2 =
1

3
4e2Q2

qNc s

: splitting functions Pqq(z)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ϵ)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(
/ϵ/p1
2p1k

−
/p2/ϵ

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

collinear singularities

“Sudakov parametrisation”

collinear limit in this parametrisation:
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collinear singularities
factorisation property of amplitudes in the collinear limit:

note that the phase space also can be factorised in this limit

( )

this factorisation does not depend on the details of 
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 splitting functions

Branching probabilities
Z

dφ

2π
CF = P̂ba(z)

where P̂ba(z) is the appropriate splitting function

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) .

Including all the color factors we find the results for the unregulated branching
probabilities.

P̂qg(z) = TR

h

z2 + (1 − z)2
i

, TR =
1

2
,

P̂qq(z) = CF

»

1 + z2

(1 − z)

–

,

P̂gq(z) = CF

»

1 + (1 − z)2

z

–

,

P̂gg(z) = CA

»

z

(1 − z)
+

1 − z

z
+ z (1 − z)

–

QCD and Monte Carlo methodsLecture II: Proton structure and Parton Showers – p.16/37

Dokshitzer, Gribov, Lipatov, Altarerlli, Parisi 

it only depends on the types of splitting partons
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pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

p3 ≡ k = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

Cross sections for a scattering process qa + qb → p1 + . . . + pN can be
written as

dσ =
J

flux
× |M|2 × dΦN

flux = 4
√

(qa · qb)2 −m2
am

2
b

J = 1/j ! is a statistical factor to be included for each group of j identical
particles in the final state.

Schematically, a next-to-leading order (NLO) cross section is constructed
in the following way: (for simplicity we use NLO in the strong coupling
constant αs and ma, mb = 0 here, the analogous is valid for NLO in the
expansion of other couplings):

σ = σLO + σNLO

σLO =
1

2s

∫

dΦN |MLO|2

σNLO =
αs

2s

∫

dΦN

[

MLOM†
NLO,virt. +M†

LOMNLO,virt. +
∑

j

∫

dΦ1,jDj

]

+
αs

2s

∫

dΦN+1

[

|MNLO,real|2 −
∑

j

Dj

]

(1)

The objects Dj are subtraction terms for divergences caused by soft/collinear
real radiation (e.g. sum over dipole subtraction terms).

The modulus of the matrix element involves the average over colours in
the initial state and sum over colours in the final state. For unpolarized in-
coming particles and if the spins of the final state particles are not measured,
the same is done for the polarisations.

|M|2 →
∑

λ,c
|Mλ,c|2 =

1
∏

initialNpolNcol

∑

final pol,col

|Mλ,c|2

|M0|2 =
1

3
4e2Q2

qNc s
at LO: 

Cross sections for a scattering process qa + qb → p1 + . . . + pN can be
written as

dσ =
J

flux
× |M|2 × dΦN

flux = 4
√

(qa · qb)2 −m2
am

2
b

J = 1/j ! is a statistical factor to be included for each group of j identical
particles in the final state.

Schematically, a next-to-leading order (NLO) cross section is constructed
in the following way: (for simplicity we use NLO in the strong coupling
constant αs and ma, mb = 0 here, the analogous is valid for NLO in the
expansion of other couplings):

σ = σLO + σNLO

σLO =
1

2s

∫

dΦN |MLO|2

σNLO =
αs

2s

∫

dΦN

[

MLOM†
NLO,virt. +M†

LOMNLO,virt. +
∑

j

∫

dΦ1,jDj

]

+
αs

2s

∫

dΦN+1

[

|MNLO,real|2 −
∑

j

Dj

]

(1)

The objects Dj are subtraction terms for divergences caused by soft/collinear
real radiation (e.g. sum over dipole subtraction terms).

The modulus of the matrix element involves the average over colours in
the initial state and sum over colours in the final state. For unpolarized in-
coming particles and if the spins of the final state particles are not measured,
the same is done for the polarisations.

|M|2 →
∑

λ,c
|Mλ,c|2 =

1
∏

initialNpolNcol

∑

final pol,col

|Mλ,c|2

|M0|2 =
1

3
4e2Q2

qNc s

2

with extra gluon radiation: pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

define  

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

gluon energy:  

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections

Andrea Banfi Lecture 2

k

 real radiation matrix element
remember
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pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

p3 ≡ k = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

collinear singularity   

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3

:

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3
, collinear singularity   

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3:
soft gluon   

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3
:

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3

in these limits the matrix element is singular  

• we know that the singularities should cancel with the virtual corrections  

singularity structure

• however we first have to isolate them to make the cancellation manifest
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real and virtual corrections live on different phase spaces

Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections

Andrea Banfi Lecture 2

Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections

Andrea Banfi Lecture 2

3-particle phase space 

2-particle phase space 

cancellation of singularities
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cancellation of singularities
widely used procedure, for n-particle production:

with

J is called measurement function and defines the observable,

the property is called infrared safety 

+ finite

+ finite’

+ Finite
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cancellation of singularities
widely used procedure, for n-particle production:

with

J is called measurement function and defines the observable,

the property is called infrared safety 

but what is ?

+ finite

+ finite’

+ Finite
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A convenient way to isolate singularities: 

• regulates both UV and IR divergences

• does not violate gauge invariance

• poles can be isolated in terms of 

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3 D = 4− 2ϵ
1/ϵb

➡ need phase space integrals in D dimensions

➡ need integration over virtual loop momenta in D dimensions

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3 D = 4− 2ϵ
1/ϵb

g2
∫ ∞

−∞

d4k

(2π)4
−→ g2µ2ϵ

∫ ∞

−∞

dDk

(2π)D

dimensional regularisation

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3 D = 4− 2ϵcontinue space-time from 4 to dimensions

’t Hooft, Veltman ’72; Bollini, Gambiagi ‘72

formally UV:  , IR:

is introduced to keep coupling 
 (mass-)dimensionless in D dim.

,
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Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have

RPT

 

α,
Q2

Λ2
UV

!

= R0 = Nc

nf
X

q=1

e2
q

qe+

e− q

At 1-loop, both UV and IR divergences cancel, leaving a finite result

RPT

 

α,
Q2

Λ2
UV

!

= R0

“

1 +
α

π

”

+

2

+ + +

2

Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV

RPT

 

α,
Q2

Λ2
UV

!

= R0

 

1 +
α

π
+
“α

π

”2
 

c2 + πβ0 ln
Λ2

UV

Q2

!!

Andrea Banfi Lecture 2

we will not go through the calculation but only quote the result:

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3 D = 4− 2ϵ
1/ϵb

g2
∫ ∞

−∞

d4k

(2π)4
−→ g2µ2ϵ

∫ ∞

−∞

dDk

(2π)D

Rvirt = RLO ×
αs

2π
CF

Γ(1 + ϵ)Γ2(1− ϵ)

Γ(1− 2ϵ)

(

−s

4πµ2

)−ϵ{

−
2

ϵ2
−

3

ϵ
− 8 +O(ϵ)

}

Rreal = RLO ×
αs

2π
CF

Γ2(1− ϵ)

Γ(1− 3ϵ)

(

s

4πµ2

)−ϵ{ 2

ϵ2
+

3

ϵ
+

19

2
+O(ϵ)

}

R = RLO ×
{

1 +
αs(µ)

π
+O(α2

s)

}

virtual corrections
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1 to N particle phase space:

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

and eliminate pN by momentum conservation

⇒
∫

dΦD
N = (2π)N−D(N−1) 21−N

∫ N−1
∏

j=1

dD−1p⃗j
Θ(Ej)

Ej
δ+([Q−

N−1
∑

i=1

pi]
2)
∣

∣

∣

Ej=|p⃗j |

N = 2 :

Q = qa + qb → p1 + p2
∫

dΦD
qa+qb→p1+p2 =

(2π)2−D

4

∫

dD−1p⃗1
1

|p⃗1|2
δ
(

√

Q2 − 2|p⃗1|
)

=
(2π)2−D

8

∫

dΩD−2 d|p⃗1| |p⃗1|D−4 δ
(

√

Q2/2− |p⃗1|
)

(3)

∫

dΩD−2 = V (D − 2)

∫ π

0

dθ(sin θ)D−3

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1p⃗i dEi δ(E
2
i − p⃗ 2

i )θ(Ei)

=
1

2Ei

∫

dD−1p⃗i
∣

∣

∣

Ei=|p⃗i|

and eliminate pN by momentum conservation

⇒
∫

dΦD
N = (2π)N−D(N−1) 21−N

∫ N−1
∏

j=1

dD−1p⃗j
Θ(Ej)

Ej
δ+([Q−

N−1
∑

i=1

pi]
2)
∣

∣

∣

Ej=|p⃗j |

N = 2 :

Q = qa + qb → p1 + p2
∫

dΦD
qa+qb→p1+p2 =

(2π)2−D

4

∫

dD−1p⃗1
1

|p⃗1|2
δ
(

√

Q2 − 2|p⃗1|
)

=
(2π)2−D

8

∫

dΩD−2 d|p⃗1| |p⃗1|D−4 δ
(

√

Q2/2− |p⃗1|
)

(3)

∫

dΩD−2 = V (D − 2)

∫ π

0

dθ(sin θ)D−3

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

for polar coordinates need phase space volume of unit sphere in D dimensions

as in the analysis of so-called Landau singularities, which are singularities where detS or a
sub-determinant of S is vanishing (see below for more details).

Remember that we are in Minkowski space, where l2 = l20 − l⃗2, so temporal and spatial com-
ponents are not on equal footing. Note that the poles of the denominator are located at

l20 = R2 + l⃗2 − iδ ⇒ l±0 ≃ ±
√

R2 + l⃗2 ∓ i δ. Thus the iδ term shifts the poles away from the
real axis.
For the integration over the loop momentum, we better work in Euclidean space where l2E =
∑4

i=1 l2i . Hence we make the transformation l0 → i l4, such that l2 → −l2E = l24 + l⃗2, which
implies that the integration contour in the complex l0-plane is rotated by 90◦ such that the
contour in the complex l4-plane looks as shown below. The is called Wick rotation. We see
that the iδ prescription is exactly such that the contour does not enclose any poles. Therefore
the integral over the closed contour is zero, and we an use the identity

∞∫

−∞

dl0f(l0) = −
−i∞∫

i∞

dl0f(l0) = i

∞∫

−∞

dl4f(l4) (6)

Re l4

Im l4
Our integral now reads

ID
N = (−1)NΓ(N)

∫ ∞

0

N
∏

i=1

dzi δ(1 −
N

∑

l=1

zl)

∫ ∞

−∞

dDlE

π
D
2

[

l2E + R2 − iδ
]−N

(7)

Now we can introduce polar coordinates in D dimensions to evaluate the integral: Using

∫ ∞

−∞

dDl =

∫ ∞

0

dr rD−1

∫

dΩD−1 , r =
√

l2E =

(
4∑

i=1

l2i

)1
2

(8)

∫

dΩD−1 = V (D) =
2π

D
2

Γ(D
2 )

(9)

where V (D) is the volume of a unit sphere in D dimensions:

V (D) =

∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2 . . .

∫ π

0

dθD−1(sin θD−1)
D−2

Thus we have

ID
N = 2(−1)N Γ(N)

Γ(D
2 )

∫ ∞

0

N
∏

i=1

dzi δ(1 −
N

∑

l=1

zl)

∫ ∞

0

dr rD−1 1

[r2 + R2 − iδ]N

4

as in the analysis of so-called Landau singularities, which are singularities where detS or a
sub-determinant of S is vanishing (see below for more details).

Remember that we are in Minkowski space, where l2 = l20 − l⃗2, so temporal and spatial com-
ponents are not on equal footing. Note that the poles of the denominator are located at

l20 = R2 + l⃗2 − iδ ⇒ l±0 ≃ ±
√

R2 + l⃗2 ∓ i δ. Thus the iδ term shifts the poles away from the
real axis.
For the integration over the loop momentum, we better work in Euclidean space where l2E =
∑4

i=1 l2i . Hence we make the transformation l0 → i l4, such that l2 → −l2E = l24 + l⃗2, which
implies that the integration contour in the complex l0-plane is rotated by 90◦ such that the
contour in the complex l4-plane looks as shown below. The is called Wick rotation. We see
that the iδ prescription is exactly such that the contour does not enclose any poles. Therefore
the integral over the closed contour is zero, and we an use the identity

∞∫

−∞

dl0f(l0) = −
−i∞∫

i∞

dl0f(l0) = i

∞∫

−∞

dl4f(l4) (6)

Re l4

Im l4
Our integral now reads

ID
N = (−1)NΓ(N)

∫ ∞

0

N
∏

i=1

dzi δ(1 −
N

∑

l=1

zl)

∫ ∞

−∞

dDlE

π
D
2

[

l2E + R2 − iδ
]−N

(7)

Now we can introduce polar coordinates in D dimensions to evaluate the integral: Using

∫ ∞

−∞

dDl =

∫ ∞

0

dr rD−1

∫

dΩD−1 , r =
√

l2E =

(
4∑

i=1

l2i

)1
2

(8)

∫

dΩD−1 = V (D) =
2π

D
2

Γ(D
2 )

(9)

where V (D) is the volume of a unit sphere in D dimensions:

V (D) =

∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2 . . .

∫ π

0

dθD−1(sin θD−1)
D−2

Thus we have

ID
N = 2(−1)N Γ(N)

Γ(D
2 )

∫ ∞

0

N
∏

i=1

dzi δ(1 −
N

∑

l=1

zl)

∫ ∞

0

dr rD−1 1

[r2 + R2 − iδ]N

4

 phase space in D dimensions
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1 to 3 particle phase space:

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s, 0⃗(D−1))

p1 = E1 (1, 0⃗
(D−2), 1)

p2 = E2 (1, 0⃗
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3 Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ϵ) + 2ϵ(1− x3)

(1− x1)(1− x2)− 2ϵ

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s, 0⃗(D−1))

p1 = E1 (1, 0⃗
(D−2), 1)

p2 = E2 (1, 0⃗
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3 Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ϵ) + 2ϵ(1− x3)

(1− x1)(1− x2)− 2ϵ

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s, 0⃗(D−1))

p1 = E1 (1, 0⃗
(D−2), 1)

p2 = E2 (1, 0⃗
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3 Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ϵ) + 2ϵ(1− x3)

(1− x1)(1− x2)− 2ϵ

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s, 0⃗(D−1))

p1 = E1 (1, 0⃗
(D−2), 1)

p2 = E2 (1, 0⃗
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3 Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ϵ) + 2ϵ(1− x3)

(1− x1)(1− x2)− 2ϵ

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1, 0⃗(D−2), 1) , qb =

√

Q2

2
(1, 0⃗(D−2),−1)

p1 = E1 (1, 0⃗
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s, 0⃗(D−1))

p1 = E1 (1, 0⃗
(D−2), 1)

p2 = E2 (1, 0⃗
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3 Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M(D)
0 |2

2g2CF

s

(

(x2
1 + x2

2)(1− ϵ) + 2ϵ(1− x3)

(1− x1)(1− x2)
− 2ϵ

)

 real radiation in D dimensions
, use polar coord.

(massless case)
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KLN theorem at work! 

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3 D = 4− 2ϵ
1/ϵb

g2
∫ ∞

−∞

d4k

(2π)4
−→ g2µ2ϵ

∫ ∞

−∞

dDk

(2π)D

Rvirt = RLO ×
αs

2π
CF

Γ(1 + ϵ)Γ2(1− ϵ)

Γ(1− 2ϵ)

(

−s

4πµ2

)−ϵ{

−
2

ϵ2
−

3

ϵ
− 8 +O(ϵ)

}

Rreal = RLO ×
αs

2π
CF

Γ2(1− ϵ)

Γ(1− 3ϵ)

(

s

4πµ2

)−ϵ{ 2

ϵ2
+

3

ϵ
+
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2
+O(ϵ)

}

R = RLO ×
{

1 +
αs(µ)

π
+O(α2

s)

}

gluon both soft and collinear 
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2
+O(ϵ)

}

R = RLO ×
{

1 +
3
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s)
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 combine real and virtual
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hadrons in the initial state
deeply inelastic scattering (DIS)

Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 

lepton on a (anti)-proton

Kinematics: 

Q2 = �q2 s = (k + p)2 xBj =
Q2

2p · q
y =

p · q

k · p

Partonic cross section: (just QED Feynman rules)

Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q

k · p̂
= y (p̂ + q)2 = 2p̂ · q �Q2 = 0

d⇤̂

dŷ
= q2

l
ŝ

Q4
2 ⇥ �em

�
1 + (1� ŷ)2

⇥

QCD       Hadron Collider Summer School ’08      G.Zanderighi 

e+

qk

k�

xp
p

proton

structure functions
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in the scaling limit with x fixed:

(Callan-Gross relation) and

characteristic for elastic scattering at spin-1/2 particles

confirmation of the parton model, since it predicts

carries a momentum fraction of the proton between

denotes the probability that a parton ( ) with flavour i 

and

parton distribution functions (PDFs)

are fitted from data, but their energy scale dependence is calculable  
 in perturbation theory

Deep-inelastic scattering



PDF sets
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 hadronic initial states

5 DGLAP evolution

The phase space integral needed for the virtual diagrams, where only one
physical gluon line is cut, is given by

PSvirt = 2π z

∫
dmk

(2π)m
δ(x− z) δ((p− k)2) where (4)

(p− k)2 = −
k2
⊥

x
−

(1− x)

x
k2 =⇒ δ((p− k)2) = x δ(k2

⊥ + (1− x)k2)

Since the integrand has no angular dependence, the angular integral is trivial
here, so
∫

dmk = Km−2

∫

dk2 dx

2x
d|⃗k⊥| |⃗k⊥|m−3 = Km−2

∫

dk2 dx

2x

1

2
dk2

⊥

(

k2
⊥

)m−4

2

Km−2 = 2 π
m−2

2 /Γ(m−2
2 ) is the surface of a (m − 2) dimensional hyper-

sphere. Thus in m = 4 − 2ϵ dimensions, the phase space for the virtual
diagrams is given by

PSvirt = 2π z

∫
dmk

(2π)m
δ(x− z) δ((p− k)2)

=
2π

(2π)4−2ϵ

1

4
K2−2ϵ

∫

dk2 dk2
⊥

(

k2
⊥

)−ϵ
x δ(k2

⊥ + (1− x)k2)

=
1

16π2

(4π)ϵ

Γ(1− ϵ)

∫ Q2

0

d|k2| |k2|−ϵ x (1− x)−ϵ

The upper limit of the d|k2| integral (k2 < 0) is denoted by a large momentum
scale Q2 whose actual value is irrelevant since only the pole part of the
k2−integration is needed.

5.1 Gluon emission

At high scattering energies, the partons inside a hadron H can be considered
as pointlike particles, each carrying a fraction x of the hadron’s longitudinal
momentum P .

σH(P ) =
∑

i

∫ 1

0

dx fi/H(x) σ̂i(xP )

The parton model
DGLAP equation

Inclusive hadron cross section in the parton model

Consider the hard scattering of a hadron H off a high momentum probe

We wish to study the fully inclusive cross section σH(P ), i.e. we include in the
measurement all possible final states

In the parton model, we compute first the inclusive partonic cross section σ̂i(xP )

Problem: the partonic cross section σ̂i(xP ) is not stable under radiative corrections

p = xP

p

P

Andrea Banfi Lecture 3

in general: 

• factorisation allows to separate short-distance from  
 long-distance effects

• hadronic cross section is written as a convolution of  
 the partonic cross section with the corresponding
PDF

in principle the same for two hadrons in the initial state
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factorisation scale
partonic momenta

renormalisation scale Standard Model Theory for Collider Physics                Daniel de Florian

perturbative partonic cross-section

non-perturbative parton distributions

d� =
X

ab

Z
dxa

Z
dxb fa(xa, µ

2
F )fb(xb, µ

2
F ) ⇥ d⇥̂ab(xa, xb, Q

2,�s(µ
2
R)) +O

✓✓
�

Q

◆m◆

d⇥̂ = �n
s d⇥̂(0) + �n+1

s d⇥̂(1) + ...Partonic cross-section: expansion in �s(µ
2
R) ⌧ 1

‣ In the LHC era, QCD is everywhere!

a

b

H, �, Z,W

jet

‣ Require precision for perturbative and non-perturbative contribution

3

B

measurement function
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back to DIS
F2(x) = x

X

i=u,d,s,...

e2i [qi(x) + q̄i(x)]

corresponds to the naive parton model

There are perturbative corrections from the “splitting” of partons  
as well as non-perturbative effects

For example
X

i

Z 1

0
dx x [qi(x) + q̄i(x)] ' 0.5

So quarks carry only about half of the proton momentum,

the rest is carried by gluons



PDFs
sea quarks and gluons 
play a larger role than  
valence quarks at

• low x

• large Q2

image source: Utrecht University

source: Particle Data Group
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• scaling is violated for small x

0

1

2

3

4

5

1 10 10
2

10
3

10
4

10
5

F 2 em
-lo

g 10
(x

)

Q2(GeV2)

ZEUS NLO QCD fit

tot. error

H1 94-00

H1 96/97

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5 x=0.000102
x=0.000161

x=0.000253
x=0.0004

x=0.0005
x=0.000632

x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

• can be understood from  
higher order perturbative  
corrections in ↵s
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F̂2,q(x) = e2qx


�(1� x) +

↵s

4⇡

 
�
✓
Q2

µ2

◆�✏
1

✏
Pq!qg(x) + Cq

2(x)

!�

parton model gluon emission
decreases parton momentum

F̂2,g(x) =
X

q

e2qx


0 +

↵s

4⇡

 
�
✓
Q2

µ2

◆�✏
1

✏
Pg!qq̄(x) + Cg

2 (x)

!�

splitting of a gluon into a  
quark-antiquark pair
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consider the emission of one gluon in the initial state

phase space factor for one gluon emission:

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−ϵdk2

⊥

In the collinear limit k2
⊥ → 0:

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ϵ
dz (1− z)−ϵ Pqq(z, ϵ)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ϵ) = CF
1 + z2

1− z
− ϵ (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ϵ
dz (1− z)−ϵ

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ϵ)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ϵ) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ϵ/p1
2p1k

−
/p2/ϵ

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

In the collinear limit 
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(

f(z)− f(1)
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)

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
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2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−ϵdk2

⊥(k
2
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∣
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⊥
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− ϵ (1− z)

soft: z → 1 collinear: k2
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∣
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f(z) =
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(
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)

PDFs and DGLAP evolution
(we have encountered  
this already for  
final state emission)

note that soft limit is z 1

virtual corrections in IR limit:

cancellation in soft limit but not in collinear limit
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The parton model
DGLAP equation

Non-cancellation of collinear singularities

Consider a fully inclusive partonic cross section
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Cancellation of soft singularities only
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Recap:

gluon emission in final state:

both soft and collinear singularities 
cancel between real and virtual 

corrections
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The parton model
DGLAP equation
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Consider a fully inclusive partonic cross section
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Andrea Banfi Lecture 3

gluon emission in initial state:

only soft singularities 
cancel between real and 

virtual corrections

PDFs and DGLAP evolution
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evolution with  µ2 can be predicted within perturbative QCD 

DGLAP evolution equation  

can be extended to higher orders in
(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ϵ
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fi/H(x, µ)

∂µ2
=

∑

j

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fj/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

f(z) smooth test function

Pqq(z)+ =

[
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(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
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2π

∫

dk2
⊥

(k2
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ton distribution function

fq/H(x, µ) =
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dz
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µ2
0

dk2
⊥
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⊥

[Pqq(z)]+

}
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z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)
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=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fi/H(x, µ)

∂µ2
=

∑

j

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fj/H(

x

z
, µ)
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∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

LO (1974) NLO (1980) NNLO (2004, Moch, Vermaseren Vogt)

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ϵ
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fq/H(x, µ)

∂µ2
=

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fq/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

PDFs and DGLAP evolution
Absorb initial state singularities at factorisation scale 

into “bare PDFs” to obtain the measured PDFs  
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mass, s is the center-of-mass energy of the lepton–proton collision. Similar expressions

hold for charged-current scattering.

The factorized expression for the structure functions is

Fi(x,Q
2) = x

∑

a

∫ 1

x

dz

z
Ci,a

(x

z
,αS(Q

2)
)

fa(z,Q
2). (2.13)

Here, in the argument of the structure function x = Q2

2p·q is the standard Bjorken variable,

the hard coefficient function Ci,a is the structure function computed with an incoming

parton, and fa(z,Q2) is the distribution of the parton a in the only incoming hadron. Also

in this case at lowest O(α0
S), the coefficient function Ci,a is either zero (for incoming gluons)

or a constant (an electroweak charge) times a Dirac delta.

2.1.3 Perturbative Computations

The factorized expressions in Equations 2.1 and 2.13 express the hadronic cross section in

terms of PDFs at the same scale, M2
X orQ2, at which the hadronic cross section is evaluated.

However, PDFs at different scales are related by perturbative evolution equations, namely

the integro-differential equations

∂

∂ lnQ2

(

Σ(x,Q2)

g(x,Q2)

)

=

∫ 1

x

dy

y

⎛

⎝

PS
qq

(

x
y ,αS(Q2)

)

2nfPS
qg

(

x
y ,αS(Q2)

)

PS
gq

(

x
y ,αS(Q2)

)

PS
gg

(

x
y ,αS(Q2)

)

⎞

⎠

(

Σ(y,Q2)

g(y,Q2)

)

,

∂

∂ lnQ2
qNS
ij

(

x,Q2
)

=

∫ 1

x

dy

y
PNS
ij

(

x

y
,αS(Q

2)

)

qNS
ij (y,Q2), (2.14)

where g is the gluon distribution, Σ denotes the singlet quark distribution defined as

Σ(x,Q2) ≡
nf
∑

i=1

(

qi(x,Q
2) + q̄i(x,Q

2)
)

, (2.15)

and the nonsinglet quark distributions are defined as any linearly independent set of 2nf−1

differences of quark and antiquark distributions, qNS
ij (x,Q2) = qi(x,Q2) − qj(x,Q2). The

splitting functions Pab are perturbative series in αS , that start at order αS at LO.

There are some constraints on perturbative evolution due to conservation laws, which

hold at all scales: specifically the conservation of baryon number

∫ 1

0

dx
(

qi(x,Q
2)− q̄i(x,Q

2)
)

= ni (nu = 2, nd = 1, ns,c,b,t = 0), (2.16)

and the conservation of total energy-momentum

∫ 1

0

dxx

[ nf
∑

i=1

(

qi(x,Q
2) + q̄i(x,Q

2)
)

+ g(x,Q2)

]

= 1. (2.17)

Combining the factorized expressions in Equations 2.1 and 2.13 with the solution to the

evolution equations, physical observables can be written as the convolution of a prefactor,
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where g is the gluon distribution, Σ denotes the singlet quark distribution defined as
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∑
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(

qi(x,Q
2) + q̄i(x,Q
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evolution equations, physical observables can be written as the convolution of a prefactor,
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parton, and fa(z,Q2) is the distribution of the parton a in the only incoming hadron. Also

in this case at lowest O(α0
S), the coefficient function Ci,a is either zero (for incoming gluons)

or a constant (an electroweak charge) times a Dirac delta.

2.1.3 Perturbative Computations

The factorized expressions in Equations 2.1 and 2.13 express the hadronic cross section in

terms of PDFs at the same scale, M2
X orQ2, at which the hadronic cross section is evaluated.

However, PDFs at different scales are related by perturbative evolution equations, namely

the integro-differential equations
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where g is the gluon distribution, Σ denotes the singlet quark distribution defined as

Σ(x,Q2) ≡
nf
∑
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(

qi(x,Q
2) + q̄i(x,Q

2)
)

, (2.15)

and the nonsinglet quark distributions are defined as any linearly independent set of 2nf−1

differences of quark and antiquark distributions, qNS
ij (x,Q2) = qi(x,Q2) − qj(x,Q2). The

splitting functions Pab are perturbative series in αS , that start at order αS at LO.

There are some constraints on perturbative evolution due to conservation laws, which

hold at all scales: specifically the conservation of baryon number
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(
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= ni (nu = 2, nd = 1, ns,c,b,t = 0), (2.16)

and the conservation of total energy-momentum
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Combining the factorized expressions in Equations 2.1 and 2.13 with the solution to the

evolution equations, physical observables can be written as the convolution of a prefactor,
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(baryon number conservation)

DGLAP evolution

number of valence quarks

(total momentum of the proton  
is carried by its constituents) 
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from PDF determination “wishlist” 2013    [S.Forte, G.Watt, 1301.6754]

• The parametrisation should be sufficiently general and unbiased  

• The experimental uncertainties should be understood and carefully propagated

• The treatment of heavy quarks will have to include mass-suppressed terms

• The strong coupling, in addition to being determined simultaneously with PDFs, 
should also be decoupled from the PDF determination,

• An estimate of theoretical uncertainties should be performed together with PDF sets 

•  PDFs including electroweak corrections will have to be constructed

recent developments

e.g. new approach based on deep learning [S.Carrazza et al. ’19]

LHAPDF6:  metadata ErrorType, ErrorConfLevel [A.Buckley et al. ’14]

QED corrections done (see next slide)

in progress, see e.g. Blümlein, Moch et al.

available, see e.g. PDF4LHC15 J. Butterworth et al. ‘15

depends …



PDFs with QED corrections
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S.Carrazza, E.Villa et al, 1909.10547 
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One-loop integrals

figure: Stephan Jahnsimple example:

divergent for (UV)

for denominator cannot vanish if 

for : spherical coordinates:
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one-loop integrals

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ∥ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ∥ p3 D = 4− 2ϵ
1/ϵb

g2
∫ ∞

−∞

d4k

(2π)4
−→ g2µ2ϵ

∫ ∞

−∞

dDk

(2π)D

dimensional regularisation:

we can isolate the divergence in terms of

 however a regulator that preserves Lorentz covariance is 
 much more convenient (gauge invariance, renormalisation, …)

(see previous lecture)

work in dimensions

decreasing the dimension will help the UV problem  
 (less powers of      in the numerator) 

so to regulate UV divergences, formally  
(however it is an analytic continuation of the integral where the sign  

  does not need to be specified) 



dimensional regularisation
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to cure IR divergences, it helps to increase the dimension 

formally:
• first calculate amplitude assuming IR divergences are regulated  

(off-shell, mass)

how can we use both signs at the same time?

• then all 1/eps poles will be of UV nature perform UV renormalisation

• for UV finite amplitude, analytically continue to  

• remove auxiliary IR regulator IR poles will manifest as 1/eps poles

note: other methods than dim. reg. exist and are appealing, making pole 
cancellations manifest at integrand level; however this is not straightforward

in practice, we just use D, both UV and IR poles appear as powers of  



regularisation schemes
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Clifford algebra needs to be extended to D dimensions:

leads for example to 

problem: 

is an intrinsically 4-dim. quantity

in 4-dim:

in D-dim. these conditions cannot hold simultaneously!

,,

totally antisymmetric  
 tensor
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regularisation schemes
proof: consider the expression

and use and the cyclicity of the trace or 

to contract

leads to

different prescriptions are available in the literature to remedy this, e.g. 

see also recent paper by N.Zerf  https://arxiv.org/abs/1911.06345

[ ‘tHooft,Veltman ’72; Breitenlohner, Maison ’77; Larin ’93 ]

breaks axial Ward Identities, fix by “finite renormalisation”

[ Kreimer, Körner, Schilcher ’92 ]or give up cyclicity of the trace, but keep
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regularisation schemes
even without the extension to D dimensions is not unique

in principle only the unobserved momenta need to be D-dim.

more about schemes when we discuss UV renormalisation …

• CDR:

• HV:
• DR:
• FDH:

some possibilities:  Signer, Stöckinger 0807.4424 )(see also

• at one loop, CDR and HV are equivalent,  
  similarly DR and FDH are equivalent, 
  as terms of order epsilon in external momenta do not play a role

• different beyond one loop!

“conventional dim. reg.”
internal and external gluons (and other vector fields) are treated as D-dim.

“’t Hooft-Veltman” internal: D-dim.,  external: 4-dim.

“dimensional reduction” only loop momenta D-dim., otherwise (quasi-) 4-dim.

“four-dimensional helicity scheme” as DR, but external states strictly 4-dim.
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addendum to regularisation schemes

distinguish

quasi-4-dim.

D-dim.

strictly 4-dim.

(subspace of above) 

in projections dimensionality matters!
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Summary 

• We have seen how IR singularities arise

• We have seen how they cancel in inclusive quantities

• We know the building blocks of NLO cross sections

• We know the origin and evolution of parton distribution  
   functions to deal with hadronic initial states

• Dimensional regularisation: we know about different  
regularisation schemes


