

Reminder from last lecture

- Experimentally, jet reconstruction is mostly about dealing with the detector
 - 1. Devising robust input objects that exploit both trackers and calorimeters (PFlow)
 - 2. Mitigating pileup effects, both before (CHS) and after (JVT/fJVT) jet reconstruction
 - 3. Calibrating reconstructed jets back to the truth jet scale, thus reducing detector effects
 - 4. Comparing jets between data and MC, to correct for detector simulation imperfections
- On Tuesday, we went into these topics in detail for R = 0.4 anti- k_t jets
 - You then looked at pileup and detector response plots in the exercise

• Today, we will switch focus to large-R jets and identifying the origin of such jets

Large-*R* jets overview

- 1. Boosted jets and jet definitions
 - Collimation, grooming, constituent modifiers, and more
- 2. Jet mass scale and resolution
 - Calibrating a more complex quantity than the energy
- 3. Hadronic decay tagging and efficiencies
 - Identifying jets containing the decay products of a parent particle

Boosted jets and jet definitions

Boosted objects and collimation

• Particles always decay back-to-back in their own reference frame

• $p_{\rm T}^{\rm A} = p_{\rm T}^{\rm B} \approx m^{\rm X}/2$

- However, particles are typically moving in the laboratory (detector) frame
 - $p_{\rm T}^{\rm X} \neq 0$, thus there is a "boost"
- Decay products A and B may be collimated in the detector frame

•
$$\Delta R_{AB} \approx \frac{m^{X}}{p_{T}^{X}} \frac{1}{\sqrt{f_{A}(1-f_{A})}}$$

• f_{A} = fraction of p_{T}^{X} carried by A
• $\implies \Delta R_{AB} \gtrsim \frac{m^{X}}{p_{T}^{X}} \frac{1}{\sqrt{(1/2) \cdot (1/2)}}$
• $\implies \Delta R_{AB} \gtrsim \frac{2m^{X}}{p_{T}^{X}}$

Particle X reference frame Large particle p_{T} in the detector reference frame Detector reference frame

Collimation in practice

- This is ΔR for W o qq
 - $\Delta R_{qq} \gtrsim rac{2m^W}{p_T^W}$ is pretty accurate
- Note that this is for a two-body decay
 - Complex decays like $t \rightarrow Wb \rightarrow qqb$ will not follow this as a whole
 - Individual steps $(t \rightarrow Wb, W \rightarrow qq)$ will follow this, although the W mass complicates the process until $p_T^t \gg m_W$

Boosted jets and collimation

- What if A and B are quarks or gluons?
 - Same equations hold at parton level
 - However, the quarks/gluons hadronize
- Result: overlapping showers if $p_{\rm T}^{\rm X} \gg m_{\rm X}$
 - At some point, R = 0.4 jets no longer represent a single quark
- Instead, switch to a larger radius and capture all particle decay products
 - ATLAS: *R* = 1.0, CMS: *R* = 0.8
 - Then "tag" the jet to determine whether it is consistent with originating from a massive particle decay [later]

Jet mass and hadronic decays

- If the entire decay is inside the jet, then we have an expectation for the jet mass
 - Mass is a boost-invariant quantity
 - Should correspond to parent particle
- If we select a sample of hadronic decays of W bosons, we should get the W mass
 - Indeed, we see the W peak!
 - Furthermore, data and MC agree
- However, large-*R* jets are complex
 - It took work to get here, as we will see

Jet mass and grooming

- $m^2 = (\sum E_i)^2 (\sum \vec{p_i})^2$
- Involves the energy and location of every object the jet is built from
- Jet mass is very sensitive to the underlying event (UE) and pileup (N_{PV})
- Jet mass before grooming:
 - UE: $m_{\rm W}$ is wrong, and $m_{\rm QCD} \approx m_{\rm W}$
 - Significant pileup dependence
- Jet mass after grooming:
 - UE: m_W is correct, and $m_{QCD} \neq m_W$
 - No pileup dependence

Number of Reconstructed Primary Vertices

A reminder of a grooming algorithm: trimming

- You already discussed grooming quite a bit with Gavin, so just a brief reminder
- Trimming is currently the ATLAS default grooming algorithm
 - 1. Reconstruct the R = 1.0 anti- k_t jet as usual
 - 2. Build $R = 0.2 k_t$ sub-jets out of the objects (the clusters) that went into a given R = 1.0 jet
 - 3. For any subjet where $p_{\rm T}^{R=0.2}/p_{\rm T}^{R=1.0}<5\%$, remove that sub-jet and its clusters
 - 4. Rebuild the R = 1.0 jet from the clusters that survived step 3

Different grooming algorithms

- There are many grooming algorithms
 - Each algorithm also has parameters
- Need to study the different options
 - This is the pileup dependence of the W mass for many grooming options
 - ATLAS default trimming is in a box
 - Trimming is very strict against pileup
- However, there are also other columns
 - "Constituent-level pileup mitigation"
 - Significantly reduces pileup dependence

Constituent-level pileup mitigation

- Recall from the first lesson that pileup has a big impact on R = 0.4 jets
- The impact on large-R jets is much more significant for several reasons
 - Larger jet size = larger amount of pileup in the jet, $(R = 1.0/R = 0.4)^2 = 6.25$
 - ATLAS doesn't use PFlow yet for large-R jets, so no Charged Hadron Subtraction
 - Large-R jets use variables sensitive to both energy and location (such as the mass)
 - Pileup is low in $p_{\rm T}$, but can be at any angle, and thus can have a big impact
 - $\bullet\,$ In contrast, R=0.4 jets focus on $p_{\rm T}$ where the angle is $\sim \! {\rm irrelevant}$
- It is thus important to have more ways to remove individual objects from large-R jets
 - This includes neutral particles, not only charged particles!
- This is the domain of constituent-level pileup mitigation

Voronoi Subtraction (VS)

- 1. Calculate the pileup energy density, ρ
 - Same as for R = 0.4 jet calibration
- 2. Define an "area" for every object
 - Uses voronoi diagrams: split based on half-way points between objects
- 3. Subtract energy from each object based on its area, $p_T^{corr} = p_T^{obj} - \rho \mathcal{A}^{obj}$
- 4. Remove resulting negative objects

Steven Schramm (Université de Genève)

5. Run jet reconstruction on what survived

Constituent Subtraction (CS)

- 1. Calculate the pileup energy density, ρ
 - Same as for R = 0.4 jet calibration
- 2. Fill the detector with fake "ghosts"
 - Uniform distribution over η and φ
 p_T^{ghost} = ρA^{ghost}, A^{ghost} is the inverse of the number density of the ghosts
- 3. Build jets as usual, including the ghosts
- Subtract the ghosts from nearby (ΔR) clusters/etc in each resulting jet
 - If a given cluster has a p_T below the nearby ghost p_T density, it is removed
- 5. Remove any remaining ghosts

SoftKiller (SK)

- Another approach is to define a dynamic p_{T} cut using SoftKiller
 - 1. Group energy deposits in the calorimeter into blocks, such as 0.6 \times 0.6 in $\eta \times \phi$
 - 2. Determine the object p_{T} cut that will make half of the grid spaces empty
 - 3. Apply that cut, removing everything in any grid space which was below that threshold
- Benefits of SK alone are generally small, but pairs very well with CS and VS

The impact of constituent-level pileup mitigation

Original event

Steven Schramm (Université de Genève)

Jet reconstruction (experimental), part 2

Revisiting the mass pileup dependence

- Now you know the different columns
- CS+SK and VS+SK both help a lot
 - Recall that grooming suppresses both pileup and underlying event
 - By reducing pileup, grooming can focus on UE, the original intent for grooming
- Constituent mitigation techniques support the use of "loose" groomers
 - None of these algorithms is perfect
 - All choices will result in some loss of desired hard scatter energy
 - Looser combinations can mitigate this

Why would we want looser groomers?

- We will talk about taggers later
 - For now: the larger the number, the better we can identify W bosons
- Default ATLAS trimming is very strict
 - Result is pileup robust (last slide)
 - However, also reduces the W-boson identification potential
- Combining constituent mitigation with looser grooming can be beneficial

Another usage of tracks for jet reconstruction

- As we discussed, tracks have a bad energy scale at high $p_{\rm T}$ and are thus not typically used
 - Related to it being hard to measure the curvature of a nearly-straight line
 - $\bullet\,$ In contrast, the calorimeter works better at high $p_{\rm T},$ so we use it more
- However, there is one very important reason to use tracks at high $p_{\rm T}$
 - At very high $p_{\rm T}$, the entire boosted jet may be a single cluster!
 - Tracks have a very precise spatial resolution and can identify the number of charged particles
 - Tracks can thus be used to "split" calorimeter clusters; ATLAS calls this "TCC"

Tracks for high p_{T} large-R jets

- The ability to "split" high $p_{\rm T}$ calorimeter clusters using tracks is very important
 - Provides enormous improvements when trying to identify W bosons at very high $p_{\rm T}$
- Not used by most groups in ATLAS as it's only needed for the highest p_{T} regime

Large-R jet definitions

- Large-R jets are almost exclusively used for boosted hadronic decays
 - Allows for reconstructing all of the decay products in a single object
 - The resulting jet has a well-defined mass expectation
- Large-R jets are very sensitive to pileup due to their size and use of individual angles
 - Grooming does reduce dependence on pileup and also the underlying event
 - Constituent-level pileup mitigation is another powerful approach
 - A combination of the two approaches is usually the best strategy
- Tracks can be useful at very high p_{T} , but not for their energy measurement
 - Instead, the spatial resolution of tracks can help to "split" calorimeter energy deposits

Jet mass scale and resolution

Calibrating the jet mass

- Large-R jet calibrations generally follow what was done for R = 0.4 jets
 - The MC JES and in situ calibrations are derived in nearly the same way
- However, there are additional specific calibrations for the jet mass
 - They are derived and applied after the respective JES calibrations
 - \bullet MC JMS is MC only, forward folding and \mathcal{R}_{trk} are data/MC comparisons

Mass scale and resolution

- $\bullet\,$ Exactly the same as for the JES/JER
 - Calculate the mass response
 - $\bullet \ \mathsf{JMS} = \mathsf{the} \ \mathsf{mean} \ \mathsf{of} \ \mathsf{the} \ \mathsf{Gaussian}$
 - $\mathsf{JMR} = \mathsf{the} \mathsf{ width} \mathsf{ of} \mathsf{ the} \mathsf{ Gaussian}$
- Mass response can be less Gaussian
 - Treating it as a Gaussian is usually still a good approximation for the scale
 - However, the resolution is increasingly being handled as a non-Gaussian

MC JES and JMS

- The JES and JMS are linked: they both are related to the overall scale of the jet
- However, there are important differences related to detector geometry
 - JES is defined by the centroid of the jet and the surrounding detectors
 - JMS is defined by the width and angular profile of the shower
- Example: $\eta = 1.3$ results in a large JES
 - Quark jet: concentrated at $\eta\approx 1.3$
 - Two quarks from a W jet: likely on either side, at $\eta=1.0$ and $\eta=1.6$
 - QCD and W jets JMS can be different

MC JMS

- The same JES is applied to all jets, then the JMS differs based on jet angular properties
 - Shown for W-mass jets (left) and top-mass jets (right), clear difference in required JMS
- ATLAS actually uses QCD jets for all of this and checks that it applies to real W/top later
 - $\bullet\,$ Calorimeter responds the same to QCD and W/top, it just cares about the shower "width"

Forward folding

- 1. Obtain a pure sample of high-mass jets
 - Here, we have used semi-leptonic $t\bar{t}$
- 2. Fit the MC to the data using:
 - $m^{\text{fold}} = s \cdot m^{\text{reco}} + (m^{\text{reco}} m^{\text{truth}} \cdot \mathcal{R}_m)(r-s)$
 - s is the JMS, r is the JMR
 - \mathcal{R}_m is the MC JMS
- This specifies how to modify MC to match data, both JMS and JMR
 - No assumption of a Gaussian JMR!
 - Can also anti-smear MC if needed

$\mathcal{R}_{\mathsf{trk}}$

- Forward folding requires a peak to fit
 - What about masses other than W/top?
 - Not enough stats to fit Higgs yet, but we do look for $H \rightarrow bb$ in a single jet
 - Need another method for such masses
- $\bullet \ \mathcal{R}_{\mathsf{trk}}$ provides a rough fix
 - Use all tracks matched to the jet as an independent measurement of the scale
 - $r_{
 m trk} = m^{
 m calo}/m^{
 m track}$, ${\cal R}_{
 m trk} = r_{
 m trk}^{
 m MC}/r_{
 m trk}^{
 m data}$
 - Propagate track uncertainties to m^{calo}
- Only works if the jet mass is built using only the calorimeter
 - Otherwise not an independent measure

In situ JMS combination

- \bullet The forward folding and \mathcal{R}_{trk} JMS are combined similar to what is done for the JES
 - $\bullet\,$ Excellent control where forward folding is possible, larger uncertainties when only \mathcal{R}_{trk}
- Derived after the MC JMS and in situ JES: the in situ JMS is consistent with 1!

Large-R JMS calibrations

- Large-R jets have similar JES calibrations as what we discussed for R = 0.4 jets
- They follow this up with dedicated mass calibrations
 - Important as the shower angular profile in the detector influences the calorimeter response
- \bullet Both MC-based and data/MC JMS calibrations are performed
 - Forward folding extracts the JMS and JMR, but is limited in range
 - $\bullet~\mathcal{R}_{trk}$ is used to extend coverage to other mass ranges, but with larger uncertainties

Hadronic decay tagging

Hadronic decay tagging

- Hadronic decays of massive particles can come from many sources
 - Main examples: $W \rightarrow qq', Z \rightarrow qq$, $H \rightarrow b\bar{b}, top \rightarrow bW \rightarrow bqq'$
- We already saw the jet mass
- There are other *jet substructure* variables which quantify the energy and angular correlations within the jet
 - Together with the mass, these can be used to identify jets of interest

Designing W/Z/top taggers

- To first order, designing a tagger is as straightforward as the previous slide
 - $\bullet\,$ Cut on the jet mass and other substructure variable(s) correlated to the number of decay axes
 - Common variables: $D_2^{(\beta=1)}$ for two-body decays (W/Z), τ_{32}^{WTA} for three-body decays (top)
 - You will use fastjet to calculate these variables in today's exercise
- Such a simple two-variable cut-based tagger provides a powerful starting reference

A brief aside: defining the tagger target

34 / 50

- Just like for jet calibration, we need to define our target when designing a tagger
 - W/Z jet: jet is matched to a truth W/Z boson and both quark decay products $(q_1 \& q_2)$
 - Top jet: jet is matched to a truth top quark and all three quark decay products $(b\&q_1\&q_2)$
- We typically optimize with respect to these "contained" truth labels, vs QCD background

Tagging terminology

- Jet tagging has a few key words that are important to know
- Tagging: identifying a jet as likely originating from a given type of particle
- \bullet Signal: the type of jet you want to keep, usually W/Z/H/top
- Background: the type of jet you want to get rid of, typically QCD
- Rejection of X: 1/X events survives the tagger (typically used for background)
- Efficiency of Y%: Y% of events pass the tagger (used for signal, sometimes background)

Simple two-variable taggers

36 / 50

- As mentioned earlier, two-variable taggers are already quite powerful
 - W-tagging: mass+ D_2 has \sim 60× background rejection (1/60 = 1.7%), 50% signal efficiency
 - Top-tagging: mass+ τ_{32} (among others) has $\sim 5 \times$ background rejection for 80% signal eff.
- However, we can definitely improve upon these simple taggers

Moving towards machine learning

37 / 50

- Jet tagging is a very active domain for machine learning, which you saw earlier from Kyle
- Trained BDTs and DNNs for W/top-tagging with $\mathcal{O}(10)$ jet substructure variables
 - Small gain for W-tagging: $60 \times \rightarrow 80 \times$ QCD rejection for 50% signal eff (~ 30% gain)
 - Large gain for top-tagging: 5 imes
 ightarrow 12 imes QCD rejection for 80% signal eff (\sim 240% gain)
- Performance limited by amount of unique info: substructure variables are highly correlated

Going deeper into machine learning

- Studied DNN with topocluster inputs, not substructure variables (TopoDNN)
 - Trained specifically for high $p_{\rm T}$
 - Better than **BDT**, **DNN** in this regime
- Still, could be improved
 - Tagging power depends on jet inputs
 - Use of more precise inputs to DNN should provide further gains
 - Note: no *b*-tagging used so far

Controlling tagger performance in data and MC

- Everything so far has been done based on MC optimization
 - No guarantee that it works the same in data, especially for complex ML taggers
 - We need a way to compare data and MC, like we had for in situ JES and JMS calibrations
- For taggers, this is done by considering tagging efficiency
 - Study the fraction of events that pass or fail a tagger, in both data and MC
 - This has to be done separately for both signal and background jets
- Studying background efficiency is pretty straightforward, as QCD events are numerous
- Studying signal efficiency is harder, as we only have a few relevant processes
 - We will often need to study one kinematic regime and extrapolate to another regime

Deriving tagging efficiency signal scale factors

- Semi-leptonic $t\bar{t}$ events are very pure in hadronic W and top jets
 - We can use these events to derive the tagging efficiency in data and compare to simulation

Scale factor extraction regions

- The selected W- and top-candidate pre-tag mass distributions show high signal purity
 - Fit three templates: $t\bar{t}$ signal process, $t\bar{t}$ background processes, and non- $t\bar{t}$ backgrounds

Extracting the efficiency

- Define templates from the shapes in MC, but allow their normalizations to float
- Fit them to the pass and fail distributions to extract the number of signal events in data

Steven Schramm (Université de Genève)

Jet reconstruction (experimental), part 2

March 12, 2020 42 / 50

Resulting signal scale factors (p_T sliced)

- Data and simulation agree within data statistical uncertainties, even for complex taggers
 - $\bullet\,$ Shown for the W-tagging DNN and the top-tagging topocluster-based DNN
 - Agreement also stable against large range of pileup (not shown here, but important to check)

A different way to extract W/Z signal efficiency

- $\bullet~V{+}jets$ events can also be used to evaluate the tagger efficiency
- Extends measurement to higher p_{T} , but much harder as background dominates signal
 - Need to be careful: breaks down if signal and background peak at the same mass

A challenge of ML taggers

- Machine learning is great, but it can learn the expected jet mass shape
 - Improves tagging performance
 - However, this results in QCD and signal have the same mass spectrum
- This breaks the V+jet signal efficiency extraction approach
 - QCD is much more common and has the same shape, so can't fit W/Z peak
 - $t\bar{t}$ approach still works (signal-pure)
- It is possible to get around this by telling ML not to learn the mass shape
 - Mass decorrelated taggers, not covered

Jet reconstruction (experimental), part 2

Extracting background scale factors

- $\,$ $\,$ Much simpler than for the signal efficiency, as the sample is \sim 99% pure in background
 - $\epsilon_{data}^{background} = \frac{N_{background}^{tagged}}{N_{background}^{total}}, \quad \epsilon_{MC}^{signal} = \frac{N_{background}^{tagged}}{N_{background}^{total}}, \quad scale \ factor = \epsilon_{data}^{background} / \epsilon_{MC}^{background}$
- \bullet Study performance of taggers in background samples: QCD multijets and $\gamma+{\rm jet}$
 - Allows for studying modelling differences between gluons (QCD) and light quarks (γ +jet)

Steven Schramm (Université de Genève)

Jet reconstruction (experimental), part 2

March 12, 2020 46 / 50

Resulting background scale factors

- As before, these are for the W-tagging DNN and the top-tagging topocluster-based DNN
 - Multijet (below): W- and top-tagging both agree with Pythia8, disagree with Herwig++
 - γ +jet (backup): W-tagging agrees with Sherpa not Pythia8, top-tagging agrees with both
- The observed differences between generators are taken as an uncertainty

Designing taggers and extracting scale factors

- Jet substructure is a powerful tool for identifying hadronically decaying massive particles
- Jet taggers continue to improve dramatically
 - Started out as simple but powerful two-variable taggers (mass and another variable)
 - Increasingly the playground of advanced machine learning techniques
- Tagging efficiency can be compared between data and MC in well-identified scenarios
 - ${\scriptstyle \bullet}$ Works well for some kinematic regimes for W, top, and Z
 - Other particles and kinematic regimes require extrapolations and larger uncertainties
- Jet taggers can be very sensitive to the jet definition
 - Grooming strategy, constituent-level pileup mitigation, and jet inputs all matter
 - Important to keep the full picture in mind when deciding on a jet definition and tagger

Summary

Summary

- Large-R jets are an increasingly important topic and use case
 - At the LHC, W/Z/H bosons and top quarks often have enough $p_{\rm T}$ to end up in a single jet
- There are three main experimental aspects to working with large-R jets
 - 1. Identifying an optimal jet definition: grooming, constituent-modifiers, and jet inputs
 - 2. Calibrating the mass scale and resolution of the large-R jet
 - 3. Designing advanced taggers to identify W/Z/H/top decays, and then evaluating the tagger efficiency for both signal and background in data and MC
- Today's exercise will look at large-R jets in more detail
 - You will be building, grooming, and calculating substructure variables for large-R jets
 - This will allow you to understand how jet definitions impact key large-R jet observables
- Large-R jet reconstruction and tagging is rapidly evolving, and is increasingly using ML
 - This is only the start there are lots of open opportunities to develop new ideas!