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Reminder from last lecture

Experimentally, jet reconstruction is mostly about dealing with the detector

1. Devising robust input objects that exploit both trackers and calorimeters (PFlow)

2. Mitigating pileup effects, both before (CHS) and after (JVT/fJVT) jet reconstruction

3. Calibrating reconstructed jets back to the truth jet scale, thus reducing detector effects

4. Comparing jets between data and MC, to correct for detector simulation imperfections

On Tuesday, we went into these topics in detail for R = 0.4 anti-kt jets

You then looked at pileup and detector response plots in the exercise

Today, we will switch focus to large-R jets and identifying the origin of such jets
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Large-R jets overview

1. Boosted jets and jet definitions

Collimation, grooming, constituent modifiers, and more

2. Jet mass scale and resolution

Calibrating a more complex quantity than the energy

3. Hadronic decay tagging and efficiencies

Identifying jets containing the decay products of a parent particle
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Boosted jets and jet definitions

Boosted jets and jet definitions
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Boosted jets and jet definitions

Boosted objects and collimation

Particles always decay back-to-back in
their own reference frame

pA
T = pB

T ≈ mX/2

However, particles are typically moving
in the laboratory (detector) frame

pX
T 6= 0, thus there is a “boost”

Decay products A and B may be
collimated in the detector frame

∆RAB ≈ mX

pX
T

1√
fA(1−fA)

fA = fraction of pX
T carried by A

=⇒ ∆RAB & mX

pX
T

1√
(1/2)·(1/2)

=⇒ ∆RAB & 2mX

pX
T

X
A

B

XA B

Particle X reference frame

Detector reference frame

Large particle pT in the
detector reference frame
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Boosted jets and jet definitions

Collimation in practice

This is ∆R for W → qq

∆Rqq & 2mW

pW
T

is pretty accurate

Note that this is for a two-body decay

Complex decays like t →Wb → qqb

will not follow this as a whole

Individual steps (t →Wb, W → qq)

will follow this, although the W mass

complicates the process until ptT � mW
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Boosted jets and jet definitions

Boosted jets and collimation

What if A and B are quarks or gluons?

Same equations hold at parton level

However, the quarks/gluons hadronize

Result: overlapping showers if pX
T � mX

At some point, R = 0.4 jets no longer

represent a single quark

Instead, switch to a larger radius and

capture all particle decay products

ATLAS: R = 1.0, CMS: R = 0.8

Then “tag” the jet to determine

whether it is consistent with originating

from a massive particle decay [later]

X
A

B

Boosted decay

XA B

Resolved decay
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Boosted jets and jet definitions

Jet mass and hadronic decays

If the entire decay is inside the jet, then

we have an expectation for the jet mass

Mass is a boost-invariant quantity

Should correspond to parent particle

If we select a sample of hadronic decays

of W bosons, we should get the W mass

Indeed, we see the W peak!

Furthermore, data and MC agree

However, large-R jets are complex

It took work to get here, as we will see
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Boosted jets and jet definitions

Jet mass and grooming

The jet mass is a complex quantity

m2 = (
∑

Ei )
2 − (

∑
~pi )

2

Involves the energy and location of

every object the jet is built from

Jet mass is very sensitive to the

underlying event (UE) and pileup (NPV)

Jet mass before grooming:

UE: mW is wrong, and mQCD ≈ mW

Significant pileup dependence

Jet mass after grooming:

UE: mW is correct, and mQCD 6= mW

No pileup dependence
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Boosted jets and jet definitions

A reminder of a grooming algorithm: trimming

You already discussed grooming quite a bit with Gavin, so just a brief reminder

Trimming is currently the ATLAS default grooming algorithm

1. Reconstruct the R = 1.0 anti-kt jet as usual

2. Build R = 0.2 kt sub-jets out of the objects (the clusters) that went into a given R = 1.0 jet

3. For any subjet where pR=0.2
T /pR=1.0

T < 5%, remove that sub-jet and its clusters

4. Rebuild the R = 1.0 jet from the clusters that survived step 3
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Boosted jets and jet definitions

Different grooming algorithms

There are many grooming algorithms

Each algorithm also has parameters

Need to study the different options

This is the pileup dependence of the W

mass for many grooming options

ATLAS default trimming is in a box

Trimming is very strict against pileup

However, there are also other columns

“Constituent-level pileup mitigation”

Significantly reduces pileup dependence

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8 [G
eV

]
PVN

δ/ 〉
M

 
〈

δ
je

t m
as

s 
pi

le
-u

p 
de

pe
nd

en
ce

, 
W

0.14 -0.00 0.02

0.15 0.01 0.01

0.06 -0.01 0.07

0.08 0.02 0.06

0.26 0.08 0.08

0.63 0.09 0.08

0.38 0.03 0.07

0.22 0.03 0.04

0.63 0.07 0.07

0.41 0.04 0.07

0.27 0.03 0.03

0.72 0.08 0.08

0.45 0.07 0.05

0.31 0.04 0.07

0.86 0.06 0.09

0.73 0.04 0.08

0.66 0.05 0.06

Unmodified CS+SK VS+SK

Modifications to LCW clusters

Je
t G

ro
om

in
g 

M
et

ho
d

ATLAS Simulation Preliminary =1.0 jets, LCW, no JES or JMS calibration appliedRtkAnti-
jetsW= 13 TeV, s < 1.2 trueη< 500 GeV, true

Tp≤300 GeV 

Trimming

Pruning

Soft Drop
Bottom-up

Soft Drop
Recursive

Soft Drop

=0.2sub=9%, Rcutf

=0.2sub=5%, Rcutf

=0.1sub=9%, Rcutf

=0.1sub=5%, Rcutf

=0.25cut=0.15, ZcutR

= 1.0β= 0.1, cutz

= 0.5β= 0.1, cutz

= 0.0β= 0.1, cutz

= 1.0, N = 5β= 0.1, cutz

= 0.5, N = 5β= 0.1, cutz

= 0.0, N = 5β= 0.1, cutz

= 1.0, N = 3β= 0.1, cutz

= 0.5, N = 3β= 0.1, cutz

= 0.0, N = 3β= 0.1, cutz

= 1.0β= 0.1, cutz

= 0.5β= 0.1, cutz

= 0.0β= 0.1,cutz
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Boosted jets and jet definitions

Constituent-level pileup mitigation

Recall from the first lesson that pileup has a big impact on R = 0.4 jets

The impact on large-R jets is much more significant for several reasons

Larger jet size = larger amount of pileup in the jet, (R = 1.0/R = 0.4)2 = 6.25

ATLAS doesn’t use PFlow yet for large-R jets, so no Charged Hadron Subtraction

Large-R jets use variables sensitive to both energy and location (such as the mass)

Pileup is low in pT, but can be at any angle, and thus can have a big impact

In contrast, R = 0.4 jets focus on pT where the angle is ∼irrelevant

It is thus important to have more ways to remove individual objects from large-R jets

This includes neutral particles, not only charged particles!

This is the domain of constituent-level pileup mitigation
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Boosted jets and jet definitions

Voronoi Subtraction (VS)

1. Calculate the pileup energy density, ρ

Same as for R = 0.4 jet calibration

2. Define an “area” for every object

Uses voronoi diagrams: split based on

half-way points between objects

3. Subtract energy from each object based

on its area, pcorr
T = pobj

T − ρAobj

4. Remove resulting negative objects

5. Run jet reconstruction on what survived
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Steven Schramm (Université de Genève) Jet reconstruction (experimental), part 2 March 12, 2020 13 / 50



Boosted jets and jet definitions

Constituent Subtraction (CS)

1. Calculate the pileup energy density, ρ

Same as for R = 0.4 jet calibration

2. Fill the detector with fake “ghosts”

Uniform distribution over η and φ

pghost
T = ρAghost, Aghost is the inverse

of the number density of the ghosts

3. Build jets as usual, including the ghosts

4. Subtract the ghosts from nearby (∆R)

clusters/etc in each resulting jet

If a given cluster has a pT below the

nearby ghost pT density, it is removed

5. Remove any remaining ghosts
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Boosted jets and jet definitions

SoftKiller (SK)

Another approach is to define a dynamic pT cut using SoftKiller

1. Group energy deposits in the calorimeter into blocks, such as 0.6× 0.6 in η × φ
2. Determine the object pT cut that will make half of the grid spaces empty

3. Apply that cut, removing everything in any grid space which was below that threshold

Benefits of SK alone are generally small, but pairs very well with CS and VS

Steven Schramm (Université de Genève) Jet reconstruction (experimental), part 2 March 12, 2020 15 / 50



Boosted jets and jet definitions

The impact of constituent-level pileup mitigation
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η
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

φ

3−

2−

1−

0

1

2

3

ATLAS Simulation Preliminary
 = 200µ= 14 TeV, sPythia Dijet 

No Subtraction Truth jets, R=0.4

Topoclusters

After VS

η
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

φ

3−

2−

1−

0

1

2

3

ATLAS Simulation Preliminary
 = 200µ= 14 TeV, sPythia Dijet 

Voronoi Truth jets, R=0.4

Topoclusters

After VS+SK

η
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

φ

3−

2−

1−

0

1

2

3

ATLAS Simulation Preliminary
 = 200µ= 14 TeV, sPythia Dijet 

Voronoi + SoftKiller 0.6 Truth jets, R=0.4

Topoclusters
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Boosted jets and jet definitions

Revisiting the mass pileup dependence

Now you know the different columns

CS+SK and VS+SK both help a lot

Recall that grooming suppresses both

pileup and underlying event

By reducing pileup, grooming can focus

on UE, the original intent for grooming

Constituent mitigation techniques

support the use of “loose” groomers

None of these algorithms is perfect

All choices will result in some loss of

desired hard scatter energy

Looser combinations can mitigate this

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8 [G
eV

]
PVN

δ/ 〉
M

 
〈

δ
je

t m
as

s 
pi

le
-u

p 
de

pe
nd

en
ce

, 
W

0.14 -0.00 0.02

0.15 0.01 0.01

0.06 -0.01 0.07

0.08 0.02 0.06

0.26 0.08 0.08

0.63 0.09 0.08

0.38 0.03 0.07

0.22 0.03 0.04

0.63 0.07 0.07

0.41 0.04 0.07

0.27 0.03 0.03

0.72 0.08 0.08

0.45 0.07 0.05

0.31 0.04 0.07

0.86 0.06 0.09

0.73 0.04 0.08

0.66 0.05 0.06

Unmodified CS+SK VS+SK

Modifications to LCW clusters

Je
t G

ro
om

in
g 

M
et

ho
d

ATLAS Simulation Preliminary =1.0 jets, LCW, no JES or JMS calibration appliedRtkAnti-
jetsW= 13 TeV, s < 1.2 trueη< 500 GeV, true

Tp≤300 GeV 

Trimming

Pruning

Soft Drop
Bottom-up

Soft Drop
Recursive

Soft Drop

=0.2sub=9%, Rcutf

=0.2sub=5%, Rcutf

=0.1sub=9%, Rcutf

=0.1sub=5%, Rcutf

=0.25cut=0.15, ZcutR

= 1.0β= 0.1, cutz

= 0.5β= 0.1, cutz

= 0.0β= 0.1, cutz

= 1.0, N = 5β= 0.1, cutz

= 0.5, N = 5β= 0.1, cutz

= 0.0, N = 5β= 0.1, cutz

= 1.0, N = 3β= 0.1, cutz

= 0.5, N = 3β= 0.1, cutz

= 0.0, N = 3β= 0.1, cutz

= 1.0β= 0.1, cutz

= 0.5β= 0.1, cutz

= 0.0β= 0.1,cutz
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Boosted jets and jet definitions

Why would we want looser groomers?

We will talk about taggers later

For now: the larger the number, the

better we can identify W bosons

Default ATLAS trimming is very strict

Result is pileup robust (last slide)

However, also reduces the W-boson

identification potential

Combining constituent mitigation with

looser grooming can be beneficial
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Boosted jets and jet definitions

Another usage of tracks for jet reconstruction

As we discussed, tracks have a bad energy scale at high pT and are thus not typically used

Related to it being hard to measure the curvature of a nearly-straight line

In contrast, the calorimeter works better at high pT, so we use it more

However, there is one very important reason to use tracks at high pT

At very high pT, the entire boosted jet may be a single cluster!

Tracks have a very precise spatial resolution and can identify the number of charged particles

Tracks can thus be used to “split” calorimeter clusters; ATLAS calls this “TCC”

Topo-clusters (EM or LC)
[Most ATLAS results]

TC1TC2

TC3

seed cells

growth cells

boundary cells

final topoclusters

Particle Flow Objects (PFOs)
[Not yet used for R=1.0 jets]

Low pT:
Use track 4-vector
Subtract track from cluster
Remove if consistent with 0

High pT:
Use cluster 4-vector
Ignore tracks

Track-CaloClusters (TCCs)
[Used in some  high pT R=1.0 results]

Low pT:
Use cluster 4-vector
Ignore track

High pT:
Split cluster using tracks
Use track angles
Use cluster energy
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Boosted jets and jet definitions

Tracks for high pT large-R jets

The ability to “split” high pT calorimeter clusters using tracks is very important
Provides enormous improvements when trying to identify W bosons at very high pT

Not used by most groups in ATLAS as it’s only needed for the highest pT regime
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Boosted jets and jet definitions

Large-R jet definitions

Large-R jets are almost exclusively used for boosted hadronic decays

Allows for reconstructing all of the decay products in a single object

The resulting jet has a well-defined mass expectation

Large-R jets are very sensitive to pileup due to their size and use of individual angles

Grooming does reduce dependence on pileup and also the underlying event

Constituent-level pileup mitigation is another powerful approach

A combination of the two approaches is usually the best strategy

Tracks can be useful at very high pT, but not for their energy measurement

Instead, the spatial resolution of tracks can help to “split” calorimeter energy deposits
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Jet mass scale and resolution

Jet mass scale and resolution
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Jet mass scale and resolution

Calibrating the jet mass

MC JES
calibrated
R=1.0 jet

MC JMS
calibration

Forward
folding

In situ mass
combination

Rtrack

Fully
calibrated
R=1.0 jet

In situ p T

calibration
(two inputs)

Large-R jet calibrations generally follow what was done for R = 0.4 jets

The MC JES and in situ calibrations are derived in nearly the same way

However, there are additional specific calibrations for the jet mass

They are derived and applied after the respective JES calibrations

MC JMS is MC only, forward folding and Rtrk are data/MC comparisons
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Jet mass scale and resolution

Mass scale and resolution

Exactly the same as for the JES/JER

Calculate the mass response

JMS = the mean of the Gaussian

JMR = the width of the Gaussian

Mass response can be less Gaussian

Treating it as a Gaussian is usually still

a good approximation for the scale

However, the resolution is increasingly

being handled as a non-Gaussian
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Jet mass scale and resolution

MC JES and JMS

The JES and JMS are linked: they both

are related to the overall scale of the jet

However, there are important differences
related to detector geometry

JES is defined by the centroid of the

jet and the surrounding detectors

JMS is defined by the width and

angular profile of the shower

Example: η = 1.3 results in a large JES

Quark jet: concentrated at η ≈ 1.3

Two quarks from a W jet: likely on

either side, at η = 1.0 and η = 1.6

QCD and W jets JMS can be different
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Jet mass scale and resolution

MC JMS

The same JES is applied to all jets, then the JMS differs based on jet angular properties

Shown for W-mass jets (left) and top-mass jets (right), clear difference in required JMS

ATLAS actually uses QCD jets for all of this and checks that it applies to real W/top later

Calorimeter responds the same to QCD and W/top, it just cares about the shower “width”
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Jet mass scale and resolution

Forward folding

1. Obtain a pure sample of high-mass jets

Here, we have used semi-leptonic tt̄

2. Fit the MC to the data using:

mfold =s ·mreco+
(
mreco −mtruth · Rm

)
(r−s)

s is the JMS, r is the JMR

Rm is the MC JMS

This specifies how to modify MC to

match data, both JMS and JMR

No assumption of a Gaussian JMR!

Can also anti-smear MC if needed
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Jet mass scale and resolution

Rtrk

Forward folding requires a peak to fit

What about masses other than W/top?

Not enough stats to fit Higgs yet, but

we do look for H → bb in a single jet

Need another method for such masses

Rtrk provides a rough fix

Use all tracks matched to the jet as an

independent measurement of the scale

rtrk = mcalo/mtrack, Rtrk = rMC
trk /r

data
trk

Propagate track uncertainties to mcalo

Only works if the jet mass is built using
only the calorimeter

Otherwise not an independent measure
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Jet mass scale and resolution

In situ JMS combination

The forward folding and Rtrk JMS are combined similar to what is done for the JES

Excellent control where forward folding is possible, larger uncertainties when only Rtrk

Derived after the MC JMS and in situ JES: the in situ JMS is consistent with 1!
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Jet mass scale and resolution

Large-R JMS calibrations

Large-R jets have similar JES calibrations as what we discussed for R = 0.4 jets

They follow this up with dedicated mass calibrations

Important as the shower angular profile in the detector influences the calorimeter response

Both MC-based and data/MC JMS calibrations are performed

Forward folding extracts the JMS and JMR, but is limited in range

Rtrk is used to extend coverage to other mass ranges, but with larger uncertainties
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Hadronic decay tagging

Hadronic decay tagging
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Hadronic decay tagging

Hadronic decay tagging

Hadronic decays of massive particles can

come from many sources

Main examples: W → qq′, Z → qq,

H → bb̄, top → bW → bqq′

We already saw the jet mass

There are other jet substructure

variables which quantify the energy and

angular correlations within the jet

Together with the mass, these can be

used to identify jets of interest
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Hadronic decay tagging

Designing W/Z/top taggers

To first order, designing a tagger is as straightforward as the previous slide

Cut on the jet mass and other substructure variable(s) correlated to the number of decay axes

Common variables: D
(β=1)
2 for two-body decays (W/Z), τWTA

32 for three-body decays (top)

You will use fastjet to calculate these variables in today’s exercise

Such a simple two-variable cut-based tagger provides a powerful starting reference
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Hadronic decay tagging

A brief aside: defining the tagger target

Just like for jet calibration, we need to define our target when designing a tagger
W/Z jet: jet is matched to a truth W/Z boson and both quark decay products (q1&q2)

Top jet: jet is matched to a truth top quark and all three quark decay products (b&q1&q2)

We typically optimize with respect to these “contained” truth labels, vs QCD background
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Hadronic decay tagging

Tagging terminology

Jet tagging has a few key words that are important to know

Tagging: identifying a jet as likely originating from a given type of particle

Signal: the type of jet you want to keep, usually W/Z/H/top

Background: the type of jet you want to get rid of, typically QCD

Rejection of X: 1/X events survives the tagger (typically used for background)

Efficiency of Y%: Y% of events pass the tagger (used for signal, sometimes background)
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Hadronic decay tagging

Simple two-variable taggers

As mentioned earlier, two-variable taggers are already quite powerful
W-tagging: mass+D2 has ∼ 60× background rejection (1/60 = 1.7%), 50% signal efficiency

Top-tagging: mass+τ32 (among others) has ∼ 5× background rejection for 80% signal eff.

However, we can definitely improve upon these simple taggers
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Hadronic decay tagging

Moving towards machine learning

Jet tagging is a very active domain for machine learning, which you saw earlier from Kyle
Trained BDTs and DNNs for W/top-tagging with O(10) jet substructure variables

Small gain for W-tagging: 60× → 80× QCD rejection for 50% signal eff (∼ 30% gain)
Large gain for top-tagging: 5× → 12× QCD rejection for 80% signal eff (∼ 240% gain)

Performance limited by amount of unique info: substructure variables are highly correlated
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Hadronic decay tagging

Going deeper into machine learning

Studied DNN with topocluster inputs,

not substructure variables (TopoDNN)

Trained specifically for high pT

Better than BDT,DNN in this regime

Still, could be improved

Tagging power depends on jet inputs

Use of more precise inputs to DNN

should provide further gains

Note: no b-tagging used so far
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Hadronic decay tagging

Controlling tagger performance in data and MC

Everything so far has been done based on MC optimization

No guarantee that it works the same in data, especially for complex ML taggers

We need a way to compare data and MC, like we had for in situ JES and JMS calibrations

For taggers, this is done by considering tagging efficiency

Study the fraction of events that pass or fail a tagger, in both data and MC

This has to be done separately for both signal and background jets

Studying background efficiency is pretty straightforward, as QCD events are numerous

Studying signal efficiency is harder, as we only have a few relevant processes

We will often need to study one kinematic regime and extrapolate to another regime
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Hadronic decay tagging

Deriving tagging efficiency signal scale factors

Semi-leptonic tt̄ events are very pure in hadronic W and top jets

We can use these events to derive the tagging efficiency in data and compare to simulation
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Hadronic decay tagging

Scale factor extraction regions

The selected W- and top-candidate pre-tag mass distributions show high signal purity

Fit three templates: tt̄ signal process, tt̄ background processes, and non-tt̄ backgrounds
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Hadronic decay tagging

Extracting the efficiency

Define templates from the shapes in MC, but allow their normalizations to float

Fit them to the pass and fail distributions to extract the number of signal events in data
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Hadronic decay tagging

Resulting signal scale factors (pT sliced)

Data and simulation agree within data statistical uncertainties, even for complex taggers

Shown for the W-tagging DNN and the top-tagging topocluster-based DNN

Agreement also stable against large range of pileup (not shown here, but important to check)
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Hadronic decay tagging

A different way to extract W/Z signal efficiency

V+jets events can also be used to evaluate the tagger efficiency

Extends measurement to higher pT, but much harder as background dominates signal

Need to be careful: breaks down if signal and background peak at the same mass
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Hadronic decay tagging

A challenge of ML taggers

Machine learning is great, but it can
learn the expected jet mass shape

Improves tagging performance

However, this results in QCD and

signal have the same mass spectrum

This breaks the V+jet signal efficiency
extraction approach

QCD is much more common and has

the same shape, so can’t fit W/Z peak

tt̄ approach still works (signal-pure)

It is possible to get around this by
telling ML not to learn the mass shape
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Hadronic decay tagging

Extracting background scale factors
Much simpler than for the signal efficiency, as the sample is ∼ 99% pure in background
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Ntotal
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, εsignal
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Ntotal
background

, scale factor = εbackground
data /εbackground

MC

Study performance of taggers in background samples: QCD multijets and γ+jet
Allows for studying modelling differences between gluons (QCD) and light quarks (γ+jet)
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Hadronic decay tagging

Resulting background scale factors

As before, these are for the W-tagging DNN and the top-tagging topocluster-based DNN
Multijet (below): W- and top-tagging both agree with Pythia8, disagree with Herwig++

γ+jet (backup): W-tagging agrees with Sherpa not Pythia8, top-tagging agrees with both

The observed differences between generators are taken as an uncertainty
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Hadronic decay tagging

Designing taggers and extracting scale factors

Jet substructure is a powerful tool for identifying hadronically decaying massive particles

Jet taggers continue to improve dramatically

Started out as simple but powerful two-variable taggers (mass and another variable)

Increasingly the playground of advanced machine learning techniques

Tagging efficiency can be compared between data and MC in well-identified scenarios

Works well for some kinematic regimes for W, top, and Z

Other particles and kinematic regimes require extrapolations and larger uncertainties

Jet taggers can be very sensitive to the jet definition

Grooming strategy, constituent-level pileup mitigation, and jet inputs all matter

Important to keep the full picture in mind when deciding on a jet definition and tagger
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Summary

Large-R jets are an increasingly important topic and use case

At the LHC, W/Z/H bosons and top quarks often have enough pT to end up in a single jet

There are three main experimental aspects to working with large-R jets

1. Identifying an optimal jet definition: grooming, constituent-modifiers, and jet inputs

2. Calibrating the mass scale and resolution of the large-R jet

3. Designing advanced taggers to identify W/Z/H/top decays, and then evaluating the tagger

efficiency for both signal and background in data and MC

Today’s exercise will look at large-R jets in more detail

You will be building, grooming, and calculating substructure variables for large-R jets

This will allow you to understand how jet definitions impact key large-R jet observables

Large-R jet reconstruction and tagging is rapidly evolving, and is increasingly using ML

This is only the start - there are lots of open opportunities to develop new ideas!
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