
Steven Schramm
(Université de Genève)

Jet reconstruction:
hands-on sessions

PREFIT School

March 2-13, 2020

Overview

This tutorial consists of two exercises. You may not finish all of them during the hands-on sessions. In that case,
I would encourage you to finish it later at home! These two exercises cover very important jet reconstruction
scenarios both from an experimental and more general perspective:

1. Jets reconstruction from an experimental perspective: pileup, response, resolution, and similar

2. Jet reconstruction from a more general perspective: jet definitions, grooming, and substructure

The steps are independent, and can be done in any order. Only the second step requires the FastJet
software package. Throughout the exercises, you should be able to run the program after every step. The
code is configured such that you can specify which step you want to run up to, both for the core code and the
associated plotting scripts. Examples will be given in the following detailed descriptions.

Preparation

In this session, we will use ROOT to study jet properties (both exercises) and the FastJet software package to
reconstruct new types of jets (second exercise). The input data will also be in ROOT format. You will thus
need to have both ROOT and FastJet installed in order to complete this hands-on exercise.

1. ROOT can be downloaded from this page. The binary distribution is typically the most convenient.
Please do this before the session, as it can take a while to install ROOT.

– After you download ROOT and unpack the folder it comes in, you will find instructions for how to
install it in the file named INSTALL within the README subdirectory.

2. FastJet is split between “core” and “contrib(uted)” packages. We will need both. Please do this in
advance, as while it typically takes only a few minutes to install, there can be complications.

– The core package can be downloaded and installed as described here [direct download link here]

– The contrib package can be downloaded and installed as described here [direct download link here]

∗ Note: there is a new version as of March 7, you can use either the old version (1.043) or the
new version (1.044). Both work, just make sure to update the commands below as appropriate.

– Step-by-step instructions for installing fastjet and fastjet-contrib:

1. Download fastjet and fastjet-contrib to a directory of your choice. Let’s assume you decided to
store it in a folder named “FastJet” in your home directory: ∼/FastJet

2. Open a terminal and change to that directory: cd ∼/FastJet
3. Extract the fastjet files from the archive: tar -zxvf fastjet-3.3.3.tar.gz

4. Extract the fastjet-contrib files from the archive: tar -zxvf fjcontrib-1.044.tar.gz

5. Change to the extracted fastjet directory: cd fastjet-3.3.3/

6. Configure fastjet to install in a new folder: ./configure --prefix=$PWD/../fastjet-install
7. Compile fastjet: make

8. Check the fastjet compilation: make check

9. Install the fastjet compilation: make install

10. Change to the fastjet-contrib directory: cd ../fjcontrib-1.044/

11. Configure fastjet-config to compile using the same config as fastjet:
./configure --fastjet-config=$PWD/../fastjet-3.3.3/fastjet-config

12. Compile fastjet-contrib: make

13. Check the fastjet-contrib compilation: make check

14. Install the fastjet-contrib compilation: make install

15. You’re done! Now fastjet and fastjet-contrib are installed in ∼/FastJet/fastjet-install

1

https://root.cern.ch/content/release-61804
http://fastjet.fr/quickstart.html
http://fastjet.fr/repo/fastjet-3.3.3.tar.gz
https://fastjet.hepforge.org/contrib/
http://fastjet.hepforge.org/contrib/downloads/fjcontrib-1.044.tar.gz

The dataset

The dataset used for both exercises is the same. This dataset is a preliminary release of a new ATLAS open
dataset intended exclusively for educational uses. Detailes are below:

• ATLAS Pythia8 dijet MC samples, leading truth R = 0.6 jet pT in the range of [15 GeV, 2000 GeV]

• The sample has been biased to have reasonable statistics of events out to high pT. To recover the standard
model dijet spectrum, an EventWeight must be applied as described in the exercises.

• For now, you can find 100k events here, password = JetReco

– A full release with 1M events will follow soon on the CERN OpenData portal

Starting code and example solutions

In order to help you get started, code is provided which already has created all of the necessary histograms and
set the necessary branches to read data out of the input ROOT file. Your task is to complete the programs
such that they apply selections, build jets, or otherwise make choices before filling the specified histograms.
This is denoted in the starting code files with comments that start with “TODO”. If you want to learn more
about how to read from ROOT TTrees, or how to create histograms and plots, I would encourage you to look
instead at my ROOT tutorial available here (password = HASCO).

Plotting code is also provided alongside the starting code. The idea is that the primary code should run
over the above-described dataset, producing a set of histograms. The plotting script then makes plots out of
these histograms, including legends and overlaying results as appropriate to best display the results. If you are
following the exercises, you should never need to modify the plotting code, you should just run it to see the
results of your work.

Solutions are also provided, both in case you get really stuck or you want to work on this after the hands-on
sessions. However, I would strongly recommend that you try to follow the exercise instructions first and only
look at the solutions later in case of problems.

• Exercise 1: jet reconstruction and experimental considerations

– Code folder: here, password = JetReco

– Starting code: jetRecoExp.cpp (in the above link)

– Plotting code: jetRecoExp plots.cpp (in the above link)

– Solution code: in the solutions folder of the above link

∗ jetRecoExp solution.cpp: the complete source code

∗ jetRecoExp solution.root: the root file produced by the complete source code

∗ jetRecoExp solution.pdf: the pdf file made by the plotting code run on the solution root file

• Exercise 2: jet reconstruction, grooming, and substructure

– Code folder: here, password = JetReco

– Starting code: jetRecoGroom.cpp (in the above link)

– Plotting code: jetRecoGroom plots.cpp (in the above link)

– Solution code: in the solutions folder of the above link

∗ jetRecoGroom solution.cpp: the complete source code

∗ jetRecoGroom clusters.root: the root file produced by the complete code run on cluster jets

∗ jetRecoGroom clusters.pdf: the pdf file made by the plotting code run on the above file

∗ jetRecoGroom truth.root: the root file produced by the complete code run on truth jets

∗ jetRecoGroom truth.pdf: the pdf file made by the plotting code run on the above file

2

https://cernbox.cern.ch/index.php/s/W6l6ry8kW8qZLRf
https://cernbox.cern.ch/index.php/s/CaqoBUDLQ9ECLNh
https://cernbox.cern.ch/index.php/s/PH04g12XFnF5XzU
https://cernbox.cern.ch/index.php/s/PH04g12XFnF5XzU

Exercise 1: jet reconstruction and experimental considerations

In this exercise, we will be studying experiment-related aspects of jet reconstruction. In particular, we will be
comparing “reconstructed” jets (those which are built from objects observed in the detector) to “truth” jets
(those built from stable particles independent of the detector). This comparison will help us to understand
some of the experimental challenges faced by modern particle physics experiments when working with jets.

The code is already setup for you to handle reading from the input file and writing to the output file. All
you need to do is work with the jet variables and fill the histograms as described below.

• Step 0: getting started

– Install ROOT, if you have not done so already

– Download the dataset, as described in the dataset section

– Download the starting file jetRecoExp.cpp as described in the code section

– Compile the starting file to make sure everything is setup correctly

∗ Note that ‘ is a back-quote, which is different from the more commonly used apostrophe ’

∗ If you can’t find this key on your keyboard, you can also copy the command from the top of
the jetRecoExp.cpp file (line 7 of the code)

g++ jetRecoExp.cpp -o jetRecoExp ‘root -config --cflags --libs ‘

– Download the plotting script jetRecoExp plots.cpp as described in the code section

– Compile the plotting script to make sure everything is setup correctly

g++ jetRecoExp_plots.cpp -o jre_plots ‘root -config --cflags --libs ‘

– That’s it - you’re ready to get started

• Step 1: event-level information

– This is a simple first step just to get you familiar with the process

– On line 219 of jetRecoExp.cpp, you will find the first “TODO” statement. Here, we have to fill
three histograms using two key measures of pileup. One is the average number of interactions per
beam crossing, typically referred to as µ. The other is NPV, the Number of observed (reconstructed)
Primary Vertices in the event, as evaluated using the tracking detector.

– The variables for these two quantities are defined on lines 69 and 70 of the file. They are mu average

(a floating point number) and npv (an unsigned integer). Note that you could have found these lines
by searching for “Step 1” in the file, as a comment is directly before their definitions to help you
navigate the file.

– Now that we have the variables, the question is what histograms we need to fill. For the full
definition, you can see lines 147-149, which also are preceeded by a comment stating that this is for
“Step 1”. However, for convenience, the names of all relevant histograms are also written directly
beside the area that they need to be used. As such, going back to line 219 and looking just above
it lists the names of the three histograms: hist mu, hist npv, and hist mu npv.

– We now have everything we need. We can fill the histograms directly by adding the following code
in the area of line 219:

if (! stepNum || stepNum >= 1) // already exists

{ // already exists

hist_mu.Fill(mu_average); // new code

hist_npv.Fill(NPV); // new code

hist_mu_npv.Fill(mu_average ,NPV); // new code

} // already exists

– With this done, we have completed the first step. First, re-compile the program as described in step
0, and then run the code saying that we want step 1. The program has the following arguments:

∗ The first argument is the output ROOT histogram file (we chose to call it jetRecoExp.root)

∗ The second argument is the step we want to run up to (1 in this case)

3

∗ The third argument is the name of the tree from the input file, which is JetRecoTree

∗ The fourth argument is the name of the file that we want to read from and that you downloaded
earlier, which by default is named JetRecoDataset.root

– Putting this all together, we get the following command:

./ jetRecoExp jetRecoExp.root 1 JetRecoTree JetRecoDataset.root

– After running this command, we have a new file named jetRecoExp.root which contains a couple
of histograms. You can open this file with ROOT to study the contents if you want, but you can
also run the provided plotting script to quickly see the results in a useful format. To do that, we
have to run the plotting script which has the following arguments:

∗ The first argument is the output pdf plot file (here we have chosen to call it jetRecoExp.pdf)

∗ The second argument is the step we want to run up to (1 in this case)

∗ The third argument is the input ROOT histogram file, which is jetRecoExp.root in this case

– Putting this all together, we get the following command:

./ jre_plots jetRecoExp.pdf 1 jetRecoExp.root

– You should now have a pdf file with the following three plots, each on a separate page:

0 10 20 30 40 50 60 70 80 90
Average number of interactions

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 e

ve
nt

s

average
µ

average
µ

0 10 20 30 40 50 60
Number of primary vertices

0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
 e

ve
nt

s

NPVNPV

0

50

100

150

200

250

300

350

 and NPV
average

µNumber of events vs

0 10 20 30 40 50 60 70 80 90
Average number of interactions

0

10

20

30

40

50

60

N
um

be
r

of
 p

rim
ar

y
ve

rt
ic

es

 and NPV
average

µNumber of events vs

– This shows the clear correlation between the two pileup measures, but that they are not identical.
There is a spread of values, as one is an average quantity over many events while the other is what
was observed in a given event. The values of mu average and NPV are typically used to represent
out-of-time and in-time pileup respectively.

∗ In-time pileup (NPV): the number of “simultaneous” proton-proton collisions in a beam crossing.
This is the primary metric for tracking detectors and similar where individual bunch crossings
can be resolved.

∗ Out-of-time pileup (mu average): the number of collisions expected on average over many beam
crossings. This is the primary metric for calorimeters and similar where the amount of time it
takes to read out the signal from a given bunch crossing may be longer than the gap between
bunch crossings, and thus signals from different subsequent beam crossings overlap.

∗ Ultimately, jets are sensitive to both of these pileup metrics and in different ways

– That’s the end of the first step. The following steps will provide less details, but the same principle
applies. You should:

∗ Look for the “Step N” comments in the code, where N is the current step you are working on

∗ The histograms you have to fill will be also listed by “Step N” and “TODO” comments

∗ The variables you need to use to do this have already been read in, and you can find them
between lines 68 and 138 next to the respective “Step N” comments

• Step 2: R=0.4 cluster and truth jets and the event weight

– Next, we want to look at the pT distribution of the leading (highest-pT) jet. We want to do this for
both calorimeter (reconstructed) jets and truth (detector-independent) jets.

– We want to do this both with and without a so-called EventWeight

∗ Without such a weight, you see the raw statistical power of the sample and the number of events
as a function of pT. This will not look like a physical distribution, but rather is related to how
the sample was produced such that we still have events at high pT.

4

∗ With such a weight, you should recover the expected physical spectrum of QCD multijet pro-
duction, which is a quickly falling distribution.

– To do this, we can again use the variables that have already been setup for our use:

∗ RecoJet pt: a vector<float> of the pT of all of the jets in the event, sorted such that the first
jet (index 0) is the highest pT jet. This is for reconstructed calorimeter jets.

∗ TruthJet pt: the same, but for truth jets.

∗ EventWeight: a float representing the factor that re-creates the physical distribution

– We can then use these variables, making sure to only consider events where at least one jet exists:

if (RecoJet_pt ->size ())

{

hist_reco_pt_nw.Fill(RecoJet_pt ->at(0)); // No weights (nw)

hist_reco_pt.Fill(RecoJet_pt ->at(0), EventWeight); // Weighted

}

if (TruthJet_pt ->size ())

{

hist_truth_pt_nw.Fill(TruthJet_pt ->at (0)); // No weights (nw)

hist_truth_pt.Fill(TruthJet_pt ->at(0), EventWeight); // Weighted

}

– This completes the second step. If you re-compile the code, run it specifying step 2, and also run
the plotting script specifying step 2, you should now get an additional two plots:

200 400 600 800 1000 1200 1400 1600 1800 2000
 [GeV]

T
Jet p

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r

of
 e

ve
nt

s

, no weights
T

Leading R=0.4 jet p

Truth jet
Cluster jet

, no weights
T

Leading R=0.4 jet p

20 30 40 210 210×2 310
 [GeV]

T
Jet p

3−10

2−10

1−10

1

10

210

310

410

510

610

710

810

910

1010

W
ei

gh
te

d
nu

m
be

r
of

 e
ve

nt
s

T
Leading R=0.4 jet p

Truth jet
Cluster jet

T
Leading R=0.4 jet p

– These plots make it clear that the calorimeter (cluster) and truth jets agree reasonably well at high
pT, but a significant disagreement starts to appear for pT < 100 GeV. Note that the second plot is
on a logarithmic y axis, so the differences are very large!

• Step 3: Pileup dependence

– In the last step, we have seen our first evidence of pileup. The truth jets are only from the vertex of
interest, while calorimeter cluster jets can confuse signals from both out-of-time sources or additional
in-time collisions. In this step, we will study this pileup dependence in more detail.

– The code is now becoming more complex, as we want to make more advanced comparisons. First,
let’s count the number of jets there are above 20 GeV:

// Count the number of cluster jets

unsigned numJetReco = 0;

for (size_t iJet = 0; iJet < RecoJet_pt ->size (); ++iJet)

{

if (RecoJet_pt ->at(iJet) > 20.e3)

numJetReco ++;

}

– We now have the jet multiplicity for a 20 GeV pT threshold in a given event. Let’s study how
this value evolves as a function of mu average, one of our pileup-quantifying variables. Let’s only
consider events that contain at least a single jet, as those are more interesting to us. We can then
divide the events into three bins of mu average. I would recommend using bins of [0,30], [35,45],

5

and [50,∞] so that each bin has a similar statistical power (see the plots from Step 1 for an idea of
how these values were chosen).

// We only want to consider events that have at least one jet

if (numJetReco != 0)

{

if (mu_average < 30)

hist_reco_njets_lowmu.Fill(numJetReco ,EventWeight);

else if (mu_average > 35 && mu_average < 45)

hist_reco_njets_midmu.Fill(numJetReco ,EventWeight);

else if (mu_average > 50)

hist_reco_njets_highmu.Fill(numJetReco ,EventWeight);

}

– While we are plotting these slices, let’s also plot the full dependence on both mu average and NPV.
We can do this by adding one additional line to the above, within the check to ensure that there is
at least one jet:

hist_reco_njets_mu_npv.Fill(mu_average ,NPV ,numJetReco ,EventWeight);

– At this point, we have finished what we need to do for the reconstructed (calorimeter cluster) jets.
Now, repeat the same thing for truth jets, which can generally be done by replacing every instance
of “reco” or “Reco” in the above with “truth” or “Truth” respectively.

– With that done, with have finished the third step. If you re-compile the code, run it specifying step
3, and also run the plotting script specifying step 3, you should now get an additional four plots.
The first two are as follows:

0 5 10 15 20 25 30
Number of jets

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ei

gh
te

d
fr

ac
tio

n
of

 e
ve

nt
s

 > 20 GeV
T

Number of truth jets with p

 > 50µ
 < 45µ35 <

 < 30µ

 > 20 GeV
T

Number of truth jets with p

0 5 10 15 20 25 30
Number of jets

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ei

gh
te

d
fr

ac
tio

n
of

 e
ve

nt
s

 > 20 GeV
T

Number of cluster jets with p

 > 50µ
 < 45µ35 <

 < 30µ

 > 20 GeV
T

Number of cluster jets with p

– This makes it clear that the number of truth jets is quite stable as a function of pileup (left plot),
while the calorimeter jets are varying dramatically (right plot). This is actually showing us two
different effects:

∗ There are more jets in the detector due to both in-time and out-of-time pileup

∗ Jets from the collision of interest can also have their energy scale increased through the addition
of stochastic overlaps of energy from different collisions. In this case, there will be more jets as
they are more likely to have a pT above our chosen threshold of 20 GeV.

– We can see this as well from the second set of new plots produced, where mu average and NPV are
separated, showing the increase of calorimeter cluster jet multiplicity vs both variables:

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 n
um

be
r

of
 je

ts

 and NPV
average

µAverage number of truth jets above 20 GeV, vs

0 10 20 30 40 50 60 70 80 90
Average number of interactions

0

10

20

30

40

50

60

N
um

be
r

of
 p

rim
ar

y
ve

rt
ic

es

 and NPV
average

µAverage number of truth jets above 20 GeV, vs

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 n
um

be
r

of
 je

ts

 and NPV
average

µAverage number of cluster jets above 20 GeV, vs

0 10 20 30 40 50 60 70 80 90
Average number of interactions

0

10

20

30

40

50

60

N
um

be
r

of
 p

rim
ar

y
ve

rt
ic

es

 and NPV
average

µAverage number of cluster jets above 20 GeV, vs

6

• Step 4: Tracks and R=0.4 track jets

– I mentioned earlier that the calorimeter is sensitive to out-of-time pileup, while the tracker is not as
the read-out time is shorter than the time between subsequent beam crossings. Trackers are even
more powerful than that, as they can also identify the origin of a particle as coming from one specific
collision vertex instead of another simultaneous collision vertex. Trackers are thus enormous useful
in suppressing pileup contributions.

– One way to use tracking information to help the calorimeter is to match tracks to calorimeter jets
and then calculate the Jet Vertex Fraction (JVF). The JVF calculation is defined as follows:

JVF =

∑
i∈{HS}

piT∑
t∈{PV}

ptT

HS = all tracks matched to the jet from the hard scatter primary vertex
PV = all tracks matched to the jet from any primary vertex

– This variable has already been calculated, and can be accessed with RecoJet jvf, a vector<float>

– Before using this variable to suppress pileup, let’s take a look at it by filling histograms of this
variable with calorimeter jet pT cuts of 20 GeV, 60 GeV, and 100 GeV. An example for filling the
20 GeV histogram is below, you then have to modify this for the 60 GeV and 100 GeV histograms:

if (RecoJet_jvf ->size() && RecoJet_pt ->at(0) > 20.e3)

hist_reco_jvf_pt20.Fill(RecoJet_jvf ->at(0), EventWeight);

– The resulting plot shows how the JVF distribution shifts from values of 0 (pileup-like) to 1 (hard-
scatter-like) as the pT increases. Note that there is also a population of jets with a JVF value of -1,
which corresponds to calorimeter jets that have zero tracks pointing at them. This could be either
from jets in the forward region beyond the tracker acceptance, purely from out-of-time pileup (where
there are no tracks since the tracker is only for the beam crossing of interest), or from real physical
processes that leave no charged energy contributions (π0 dominated showers, neutrons, etc).

1− 0.5− 0 0.5 1
Number of jets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

W
ei

gh
te

d
nu

m
be

r
of

 e
ve

nt
s

Leading jet JVF distribution

 > 20 GeV
T

p

 > 60 GeV
T

p

 > 100 GeV
T

p

Leading jet JVF distribution

– A reasonable first value to consider as a JVF cut is 0.5, which means that at least half of the track
momentum pointing at a jet comes from the hard-scatter vertex. Note that it is usually better to
apply the cut on the absolute value of JVF, or |JVF| > 0.5, in order to not remove jets with zero
tracks, for the reasons mentioned earlier. To do this, we will apply a JVF cut as follows and fill a
new leading jet pT histogram:

if (RecoJet_jvf ->size() && fabs(RecoJet_jvf ->at(0)) > 0.5)

hist_reco_pt_jvf.Fill(RecoJet_pt ->at(0), EventWeight);

– With this done, we will get the following plot. This shows that JVF is doing a good job of resolving
the challenges that we have using calorimeter jets at low pT. Again, note that the plot has a
logarithmic y-axis, and thus this is really an enormous improvement even if this first simple cut isn’t
sufficient to completely fix the problem.

7

20 30 40 210 210×2 310
 [GeV]

T
Jet p

3−10

2−10

1−10

1

10

210

310

410

510

610

710

810

910

1010

W
ei

gh
te

d
nu

m
be

r
of

 e
ve

nt
s

T
Leading R=0.4 jet p

Truth jet
Cluster jet
Cluster jet, |JVF|>0.5

T
Leading R=0.4 jet p

– We have seen how tracks can improve the pileup-robustness of our calorimeter jets. However, what
do track jets themselves look like? After all, we can build jets out of any set of four-vectors, so we
can build them using tracks only from the hard-scatter vertex that we are actually interested in.

– Let’s do this, using the TrackJet pt variable, which is also a vector<float>. This variable is the
pT of a set of jets that were built using only tracks, and those tracks were only used if they came
from the hard-scatter vertex. Repeat the exact same code as you did for Step 3, but now switch to
using track jets for the pT cuts and multiplicity. Once done, you will get plots like the following,
which make it clear that track jets are very stable against pileup effects.

0 5 10 15 20 25 30
Number of jets

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ei

gh
te

d
fr

ac
tio

n
of

 e
ve

nt
s

 > 20 GeV
T

Number of track jets with p

 > 50µ
 < 45µ35 <

 < 30µ

 > 20 GeV
T

Number of track jets with p

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 n
um

be
r

of
 je

ts

 and NPV
average

µAverage number of track jets above 20 GeV, vs

0 10 20 30 40 50 60 70 80 90
Average number of interactions

0

10

20

30

40

50

60
N

um
be

r
of

 p
rim

ar
y

ve
rt

ic
es

 and NPV
average

µAverage number of track jets above 20 GeV, vs

– The question then naturally arises: if track jets are so pileup-robust, why don’t we use them instead
of calorimeter jets? To start to answer that question, let’s simply plot the track jet pT distribution

if (TrackJet_pt ->size ())

hist_track_pt.Fill(TrackJet_pt ->at(0), EventWeight);

– Comparing the track jet pT to the truth or calorimeter jet pT shows much more fluctuations, which
starts to hint at why we don’t use track jets.

20 30 40 210 210×2 310
 [GeV]

T
Jet p

3−10

2−10

1−10

1

10

210

310

410

510

610

710

810

910

1010

W
ei

gh
te

d
nu

m
be

r
of

 e
ve

nt
s

T
Leading R=0.4 jet p

Truth jet
Cluster jet, |JVF|>0.5
Track jet

T
Leading R=0.4 jet p

– We have now seen that we can use tracks together with calorimeter jets to help suppress pileup,
and that using tracks alone is very pileup-robust. However, we have also seen some indications that
using tracks by themselves is not necessarily a good choice. To understand why, we need to proceed
to the last step.

8

• Step 5: Jet response studies

– In order to better understand what is going on, we need to directly compare truth jets to recon-
structed jets (either track jets or calorimeter jets). To do this, we can “match” truth and recon-
structed jets, using ∆R (Delta R), the angular distance between the truth jet axis and reconstructed
jet axis. We will always use the truth jet as our reference point since we will match to multiple
types of reconstructed jets and we want to compare them fairly. As such, we can define the Delta
R between the leading truth and reconstructed calorimeter jet as follows (then you can do the same
for the leading track jet, but without the extra jvf-cut histogram):

if (TruthJet_pt ->size() && TruthJet_pt ->at(0) > 20.e3)

{

TLorentzVector truthJet;

truthJet.SetPtEtaPhiM(TruthJet_pt ->at(0), TruthJet_eta ->at(0),

TruthJet_phi ->at(0), TruthJet_m ->at (0));

if (RecoJet_pt ->size ())

{

TLorentzVector recoJet;

recoJet.SetPtEtaPhiM(RecoJet_pt ->at(0), RecoJet_eta ->at(0),

RecoJet_phi ->at(0),RecoJet_m ->at (0));

hist_DRtruth_reco.Fill(truthJet.DeltaR(recoJet),EventWeight);

if (fabs(RecoJet_jvf ->at(0)) > 0.5)

hist_DRtruth_reco_jvf.Fill(truthJet.DeltaR(recoJet),

EventWeight);

}

}

– With this done for both calorimeter and track jets, the following plot is obtained:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Delta R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ei

gh
te

d
fr

ac
tio

n
of

 e
ve

nt
s

 > 20 GeVtruth

T
Delta R from the leading truth jet, p

Cluster jets

Cluster jets, |JVF|>0.5

Track jets

 > 20 GeVtruth

T
Delta R from the leading truth jet, p

– Here, it is clear that track jets slightly better match to the truth jet. This isn’t too surprising given
that we are only applying a 20 GeV cut here, where we saw that calorimeter jets have limitations
due to pileup. Additional random energy overlapping with the jet can easily change the jet axis,
leading to a larger value of Delta R.

– Additionally, we are only plotting the range very close to the truth jet (Delta R < 1). If you edit
the code to plot larger values of Delta R, you will see that many jets (both calorimeter and track)
have Delta R values of 2 or larger. This is expected when the leading and subleading jets switch,
and we could avoid it by looping over all of the reconstructed jets to find the closest in Delta R, but
we are not doing so here for simplicity.

– Despite the above disclaimers, we can see that there is a pretty good match in many cases. There
are many events where the Delta R value is below 0.3. Let us use this as a matching cut, meaning
that we say that a truth jet matches a reco jet if DeltaR(truth,reco) < 0.3.

– Now, use matched truth-to-reco jets to study the response, which is the ratio the reconstructed to
truth jet pT for a matched pair of jets, R = precoT /ptruthT

9

if (truthJet.DeltaR(recoJet) < 0.3)

{

hist_response_reco_pt20.Fill(recoJet.Pt()/ truthJet.Pt(),

EventWeight);

}

– The above is for a 20 GeV truth jet pT threshold, as we previously required a 20 GeV truth jet.
Now, do the same thing also for truth jet pT thresholds of 100 GeV and 1000 GeV to fill the other
two histograms. Then, do this same thing for track jets instead of calorimeter jets.

– Congratulations, you have finished step 5 and thus the exercise! The final results are as follows:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Jet response

0

0.05

0.1

0.15

0.2

0.25

W
ei

gh
te

d
fr

ac
tio

n
of

 e
ve

nt
s

truth

T
/pcluster

T
 response, p

T
Cluster jet p

 = 0.24µ/σ > 20 GeV, truth

T
p

 = 0.10µ/σ > 100 GeV, truth

T
p

 = 0.04µ/σ > 1000 GeV, truth

T
p

truth

T
/pcluster

T
 response, p

T
Cluster jet p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Jet response

0

0.05

0.1

0.15

0.2

0.25

W
ei

gh
te

d
fr

ac
tio

n
of

 e
ve

nt
s

truth

T
/ptrack

T
 response, p

T
Track jet p

 = 0.23µ/σ > 20 GeV, truth

T
p

 = 0.26µ/σ > 100 GeV, truth

T
p

 = 0.27µ/σ > 1000 GeV, truth

T
p

truth

T
/ptrack

T
 response, p

T
Track jet p

– Here, you can see the response for calorimeter jets (left) and truth jets (right). You can notice a
few important points:

∗ These reconstructed jets we are using are uncalibrated, so they have different central values.
This central value difference could be fixed so it is not inherently a problem. Note that track
jets peak around a value of 2/3, which makes sense as jets are dominated by pion production
and 2/3 of pions are charged (π+ and π− vs π0).

∗ Also note that the calorimeter jets typically have a response larger than 1 at low pT. This is
because they have an underlying amount of energy added to them, mostly from pileup contri-
butions. This disappears at higher energy where pileup contributions become small compared
to the scale of the hard-scatter jet under study.

∗ Finally, and most important, note the difference in the width of the distributions. This is
typically called the resolution. Normalizing the resolution by the different scales allows for
removing effects related to being at different energies, and thus rough resolution values of σ/µ
are shown for each line as a part of the legend.

∗ For calorimeter jets, the resolution dramatically improves as the pT is increased. This is because
the low pT resolution is dominated by noise (mostly from pileup), which reduces at high pT.
The calorimeter also does a better job of measuring larger amounts of energy, further improving
the resolution at high pT.

∗ In contrast, track jet resolution is roughly stable and eventually degrades as the pT is increased.
This is because the tracker pT resolution requires observing curvature of the tracks, which
degrades at high pT and thus so does the track jet resolution. Additionally, track jets lack
the neutral contributions which is roughly 1/3 of the typical jet energy, and thus there is an
inherently large resolution coming from this missing energy contribution.

• That’s it! You have finished the first exercise.

10

