Looking ahead

PREFIT school, DESY (2020)

Veronica Sanz (Valencia & Sussex)

Let's start with the LHC

The LHC is in a mature stage, already providing precision tests for the SM in most channels (excl the Higgs)

Precise tests of the full structure of the SM, based on QFT, symmetries (global/gauge) and consistent ways to break them non-trivial tests of perturb.->non-perturb.

QCD

Absence of excesses: interpreted as new physics exclusions

Let's start with the LHC

The LHC is in a mature stage, already providing precision tests for the SM in most channels (excl the Higgs)

Precise tests of the full structure of the SM, based on QFT, symmetries (global/gauge) and consistent ways to break them non-trivial tests of perturb.->non-perturb.

OCD

Absence of excesses: interpreted as new physics exclusions

exclusions: rather impressive, many at the TeV searches: outstanding coverage of possible topologies any hints: (like in flavor) extremely tempting

So here we are

What we would hope for

Universe's evolution

gravitational waves

black holes

So here we are again, post-LHC Run2

One way forward: Connecting ideas/experiments

A cosmological Higgs

The LHC provides the most precise, controlled way of studying the Higgs and direct access to TeV scales

Exploiting complementarity with cosmo/astro probes

Similar story for Axions and ALPs, scalars are versatile

Many faces of Dark Matter

COLLIDERS

CMB: relic, tilt

THEORY

Discrete symmetries
Dynamical stability
self-interactions
Link to Higgs...

DARK MATTER

SIMULATIONS

DIRECT DETECTION

INDIRECT DETECTION

Complementarity

example: propose a solution to an astrophysical excess with a PP model

Escudero, Hooper, Witte. 1612.06462

Astrophysics/others

example: propose a solution to an astrophysical excess with a PP model, explore whether it is related to a coupling with neutrinos

Arguelles, Keirandish, Vincent. 1703.00451

Escudero, Hooper, Witte. 1612.06462

Gravitational waves/others

another example:

CROON, VS, WHITE. 1806.02332

Dark sectors and GWs. Classify sectors with 1st order PT and compute their GW signatures.

Map onto DM models.

Regions: different dark sectors Arrow: ~ region LISA (1yr)

These days we think a lot more about complementarity

- 1. New experiments, ways they present results, access to data
- 2. Simple straw-man models
- 3. Development of public tools, or recasting, so we can tackle complex processes and focus on the fundamental ideas

Back to the LHC: Direct versus indirect searches

Direct searches for new phenomena

consistency of data vs SM predictions

Interpretation in models: exclusion regions

Coloured states to the very exotic

SUSY Benchmark

Jets+MET

some-SUSY

HSCPs

Indirect searches

Focus on SM particles' behaviour precise determination of couplings and kinematics comparison with SM, search for deviations

Indirect searches using the Higgs since 2012, relatively new Higgs as a window to NP expect deviations in its behaviour Run2 data and beyond precision Higgs Physics

e.g. Anomalous trilinear gauge couplings, aka **TGCs**

LEP, Tevatron, LHC

Casting a wide net: the new SM

Why EFT?

Why EFT?

The SM is a good description of Nature at the LHC

==> new resonances/phenomena may be heavy

==> Our hopes for simple/natural models are not realised

==> We should adopt a more model-independent strategy

when interpreting data

EFT approach

Well-defined theoretical approach Assumes New Physics states are heavy Write Effective Lagrangian with only light (SM) particles BSM effects can be incorporated as a momentum expansion

> dimension-6 dimension-8

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum_{i} \frac{c_i}{\Lambda^4} \mathcal{O}_i^{d=8} + \dots$$

BSM effects SM particles

example:

2HDM

$$\frac{ig}{2m_W^2} \bar{c}_W \Big[\Phi^{\dagger} T_{2k} \overleftrightarrow{D}_{\mu} \Phi \Big] D_{\nu} W^{k,\mu\nu}$$
where $\bar{c}_W = \frac{m_W^2 \left(2\tilde{\lambda}_3 + \tilde{\lambda}_4 \right)}{192 \, \pi^2 \, \tilde{\mu}_2^2}$

EFT approach

THEORY

Model-independent parametrization deformations respect to the SM

Well-defined theory
can be improved order by order in
momentum expansion
consistent addition of higherorder QCD and EW corrections

Connection to models is straightforward

EXPERIMENT

Beyond kappa-formalism: Allows for a richer and generic set of kinematic features

Higher-order precision in QCD/EW

Can treat EFT effects on backgrounds and signal consistently

The way to combine all Higgs channels and EW production

EFT and differential information

$$-\frac{1}{4}h\,g_{hVV}^{(1)}V_{\mu\nu}V^{\mu\nu} -h\,g_{hVV}^{(2)}V_{\nu}\partial_{\mu}V^{\mu\nu} -\frac{1}{4}h\,\tilde{g}_{hVV}V_{\mu\nu}\tilde{V}^{\mu\nu}$$

$$\begin{split} i\eta_{\mu\nu} \left(g_{hVV}^{(1)} \left(\frac{\hat{s}}{2} - m_V^2\right) + 2g_{hVV}^{(2)} m_V^2\right) \\ -ig_{hVV}^{(1)} p_3^\mu p_2^\nu & -i\tilde{g}_{hVV} \epsilon^{\mu\nu\alpha\beta} p_{2,\alpha} p_{3,\beta} \\ & + \textit{off-shell pieces} \end{split}$$

Matching to UV theories

Within the EFT, connection to models is straightforward

EFT

MODELS

 H_2

Advantages

- Combination: LHC Higgs and EW production, low energy, EWPTs
- Precision: higher-order EW and QCD, dimension-eight, chiral logs
- Consistency: Backgrounds and signal
- Reduces model biases: explore theories beyond known paradigms
- Matching: Direct connection to models

EFTs in PP are an old friend

Maybe you have been working on low-E flavour/CPV/BLV physics precision calculations or simply using bounds What's different for the EFT@EW scale?

We're testing it using a hadron collider
flavour physics: heavy means heavy
EW EFT: we are in this border between kinematic
reach and precision
& parameter space is very large

Disadvantages

- Assumptions: Only SM light states
- Complexity: Large number of parameters
- Validity: EFT cannot be used in regions of energies ~ scale of new resonances

Combination of data—SMEFT

Global analyses using EFTs

EFTs induce effects in many channels, ideal framework for combination

ALLOUL, FUKS, VS. 1310.5150, GORBAHN, NO, VS. 1502.07352

key use of differential information

SMEFT global analysis

In this work:

Use EWPT, Higgs and diboson data, incl use STXS
Assume linear EWSB, CP-conservation and MFV
Present results in Warsaw and SILH bases, 20 operators
Matching to simplified UV models

$$\begin{split} \mathcal{L}_{\mathrm{SMEFT}}^{\mathrm{Warsaw}} \supset & \frac{\bar{C}_{Hl}^{(3)}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l) + \frac{\bar{C}_{Hl}^{(1)}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) + \frac{\bar{C}_{ll}}{v^{2}}(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ & + \frac{\bar{C}_{HD}}{v^{2}} \left| H^{\dagger}D_{\mu}H \right|^{2} + \frac{\bar{C}_{HWB}}{v^{2}} H^{\dagger}\tau^{I}H W_{\mu\nu}^{I}B^{\mu\nu} \\ & + \frac{\bar{C}_{He}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) + \frac{\bar{C}_{Hu}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) + \frac{\bar{C}_{Hd}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ & + \frac{\bar{C}_{Hq}^{(3)}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q) + \frac{\bar{C}_{Hq}^{(1)}}{v^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) + \frac{\bar{C}_{W}}{v^{2}} \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

e.g. WARSAW

$$\begin{split} \mathcal{L}_{\mathrm{SMEFT}}^{\mathrm{Warsaw}} \supset \frac{\bar{C}_{eH}}{v^2} (H^{\dagger}H) (\bar{l}eH) + \frac{\bar{C}_{dH}}{v^2} (H^{\dagger}H) (\bar{q}dH) + \frac{\bar{C}_{uH}}{v^2} (H^{\dagger}H) (\bar{q}u\tilde{H}) \\ + \frac{\bar{C}_G}{v^2} f^{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} + \frac{\bar{C}_{H\square}}{v^2} (H^{\dagger}H) \square (H^{\dagger}H) + \frac{\bar{C}_{uG}}{v^2} (\bar{q}\sigma^{\mu\nu} T^A u) \tilde{H} G_{\mu\nu}^A \\ + \frac{\bar{C}_{HW}}{v^2} H^{\dagger}H W_{\mu\nu}^I W^{I\mu\nu} + \frac{\bar{C}_{HB}}{v^2} H^{\dagger}H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{C}_{HG}}{v^2} H^{\dagger}H G_{\mu\nu}^A G^{A\mu\nu} \; . \end{split}$$

SMEFT global analysis

Theory	χ^2	$\chi^2/n_{ m d}$	<i>p</i> -value
SM	157	0.987	0.532
SMEFT	137	0.987	0.528
SMEFT*	143	0.977	0.564

SMEFT: 20 deformations

SMEFT*: 13 deformations

(weakly coupled and renormalizable)

SEE ALSO MORE RECENT
GONZALEZ-GARCIA ET AL
1812.01009
PLEHN ET AL.
1812.07587
SIMILAR RESULTS

SMEFT global analysis

Constraints on simple extensions of the SM

Model	χ^2	$\chi^2/n_{ m d}$	Coupling	Mass / TeV
SM	157	0.987	-	-
\mathcal{S}_1	156	0.986	$ y_{\mathcal{S}_1} ^2 = (6.3 \pm 5.9) \cdot 10^{-3}$	$M_{\mathcal{S}_1} = (9.0, 49)$
φ , Type I	156	0.986	$Z_6 \cdot \cos \beta = -0.64 \pm 0.59$	$M_{arphi} = (0.9, 4.3)$
Ξ	155	0.984	$\left \kappa_{\Xi}\right ^{2} = (4.2 \pm 3.4) \cdot 10^{-3}$	$M_{\Xi} = (12, 35)$
N	155	0.978	$ \lambda_N ^2 = (1.8 \pm 1.2) \cdot 10^{-2}$	$M_N = (5.8, 13)$
\mathcal{W}_1	155	0.984	$\left \hat{g}_{\mathcal{W}_1}^{\phi} ight ^2 = (3.3 \pm 2.7) \cdot 10^{-3}$	$M_{\mathcal{W}_1} = (4.1,\ 13)$
E	156.9	0.993	$ \lambda_E ^2 = (2.0 \pm 9.7) \cdot 10^{-3}$	$M_E=(9.2,\infty)$
Δ_3	156	0.990	$ \lambda_{\Delta_3} ^2 = (0.8 \pm 1.1) \cdot 10^{-2}$	$M_{\Delta_3}=(7.3,\infty)$
Σ	156.7	0.992	$\left \lambda_{\Sigma}\right ^{2} = (0.9 \pm 2.0) \cdot 10^{-2}$	$M_{\Sigma}=(5.9,\infty)$
Q_5	156	0.990	$ \lambda_{Q_5} ^2 = 0.08 \pm 0.10$	$M_{Q_5}=(2.4,\infty)$
T_2	156.8	0.992	$ \lambda_{T_2} ^2 = (2.0 \pm 5.1) \cdot 10^{-2}$	$M_{T_2}=(3.8,\infty)$
\mathcal{S}	157	0.993	$ y_{\mathcal{S}} ^2 < 0.32$	$M_{S} > 1.8$
Δ_1	157	0.993	$ \lambda_{\Delta_1} ^2 < 5.7 \cdot 10^{-3}$	$M_{\Delta_1} > 13$
Σ_1	157	0.993	$ \lambda_{\Sigma_1} ^2 < 7.3 \cdot 10^{-3}$	$M_{\Sigma_1}>12$
U	157	0.993	$\left \lambda_U ight ^2 < 2.8\cdot 10^{-2}$	$M_U > 6.0$
D	157	0.993	$ \lambda_D ^2 < 1.4 \cdot 10^{-2}$	$M_D > 8.4$
Q_7	157	0.993	$ \lambda_{Q_7} ^2 < 7.7 \cdot 10^{-2}$	$M_{Q_7}>3.6$
T_1	157	0.993	$ \lambda_{T_1} ^2 < 0.13$	$M_{T_1}>3.0$
\mathcal{B}_1	157	0.993	$\left \hat{g}_{\mathcal{B}_1}^{\phi}\right ^2 < 2.4\cdot 10^{-3}$	$M_{\mathcal{B}_1} > 21$

Classification by DE BLAS, CRIADO, PEREZ-VICTORIA, SANTIAGO 1711.10391

EFT precision—next steps

- incorporate higher-order QCD and EW effects
- quantify higher-order EFT effects (dimension-8)

Lots of progress on this front, some projects involved in

NLO QCD MC

DIMENSION-EIGHT

POWHEG-BOX

MIMASU, VS, WILLIAMS. 1512.02572

aMC@NLO

DEGRANDE, FUKS, MAWATARI, MIMASU, VS. 1609.04833

NEW: CP-VIOLATING TERMS— REQUEST

Feynrules—> UFO—> aMC@NLO

HAYS, MARTIN, VS, SETFORD. 1808.00442

Warsaw—>Other using Rosetta

MIMASU ET AL. 1508.05895

incorporate these tools to the experimental analyses

Putting it all together

WHAT'S NEXT?

Capture *subtle* details, can be expressed as images machine learning techniques supervised or anomaly detection lots of activity in the last months

e.g. CPV vs CPC EFT effects in VBF

FREITAS, FUKS, MIMASU, VS. IN PREP

Experiments keep coming in: There is a lot to explore ahead of us

For the LHC, this is just the beginning

HL-LHC (High-Luminosity) LHC approved, to deliver 3000 inverse fb of data. Funding ensured until 2035.

LHC hopefuls

gains from more data and better understanding of the environment

Testing non-standard kinematic features
Reaching high-precision in Higgs physics
Searches for invisible particles (monoX)
Blind spots (DV, disap. tracks, quirks)

and, of course, FLAVOUR with Belle-II, NA62 complementing LHCb

Smaller experiments may be key

Narrower focus BUT

cheaper, shorter time-scale develop creative experimental techniques often enlarge the initial physics focus

And what about the cool/crazy stuff?

Dark Energy and its interaction with us

Alternatives to space-time symmetries (e.g. emergent gravity)

Very light dark matter (new exp techniques)

Dark moments in the Universe's history, pre-BBN

Connections between IR and UV physics, e.g. BHs

We need to *challenge* the well-stablished paradigms, may be quickly ruled out but one **always** learn something new from these explorations

Conclusions

- Here we are, looking for a way to advance our understanding of nature, to reach discovery
- Scaling back from an ambitious program to find the theory of everything.
 Facing the challenges/opportunities that more data brings
- Use of simplified models to organize/interpret searches, less model biased, and suitable to complementarity studies. Yet theoretical advances require more than simplified models, asking difficult questions from model building
- Keeping at the edge of the interpretation of data: bringing many towards precision (akin to SM) and to Artificial Intelligence techniques (NNs and the likes), but we should not lose track of our core mission:

Conclusions

- Here we are, looking for a way to advance our understanding of nature, to reach discovery
- Scaling back from an ambitious program to find the theory of everything.
 Facing the challenges / opportunities that more data brings
- Use of simplified models to organize/interpret searches, less model biased, and suitable to complementarity studies. Yet theoretical advances require more than simplified models, asking difficult questions from model building
- Keeping at the edge of the interpretation of data: bringing many towards precision (akin to SM) and to Artificial Intelligence techniques (NNs and the likes), but we should not lose track of our core mission:

Understanding Nature (and having fun on the way!)

