recent SRF cavity R&D @ DESY about heat treatments and different furnaces

Lea Steder

on behalf of the complete SRF team TTC Meeting CERN 4th of February 2020

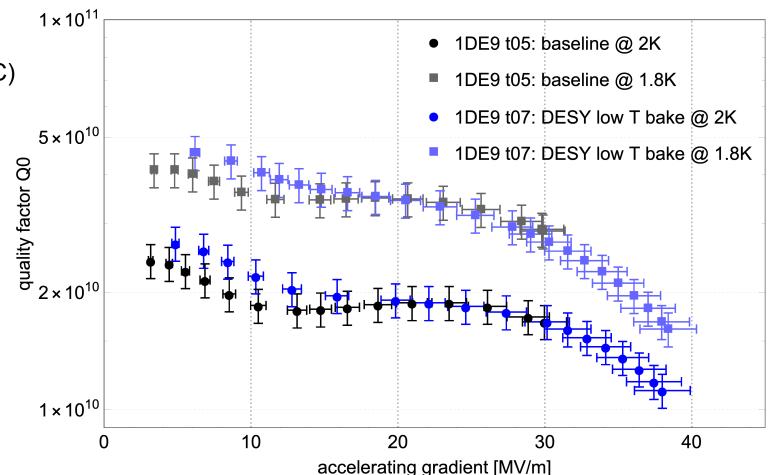
UΗ

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

DESY low T bake procedure

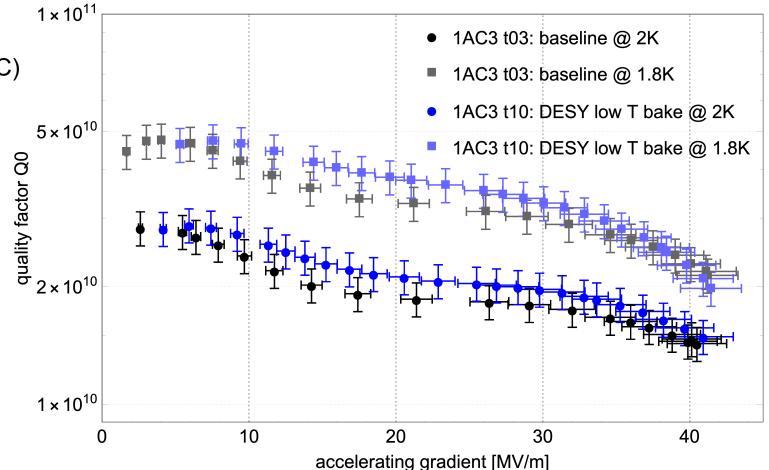
4h@75°C + 24h@130°C

- > result of statistical analysis \rightarrow new DESY recipe
 - 4h@75°C + 24h@130°C
 - applied since end 2018
- > standard low temperature "furnace"
 - heating bands
 - T-sensors
- > 4 single-cell cavities treated and tested
 - all got a cold EP
 - DESY low T bake
 - compared to earlier low T heat treatments (baselines typically 48h@120°C)
- > 3 nine-cells already presented at SRF '19


[Statistical Analysis of the 120°C Bake Procedure of Superconducting Radio Frequency Cavities, Lea Steder, Proceedings of SRF2019, Dresden]

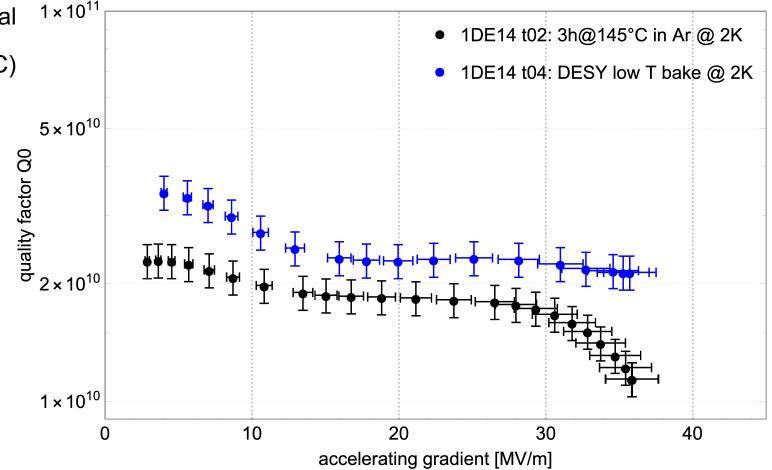
gradient improves

1DE9 DESY low T bake results


- > 1DE9: Heraeus FG material
- > last treatment: 40 µm EP (14V / 13°C)
- > DESY low T bake: 4h@75°C + 24h@130°C
- > significant better acc. gradient
 - 30 MV/m → 38 MV/m: 27% gain
- > (little) better low-field Q₀
 - 2 K: about 30% @ 8.5 MV/m
 - 1.8 K: completely contained in uncertainty bands

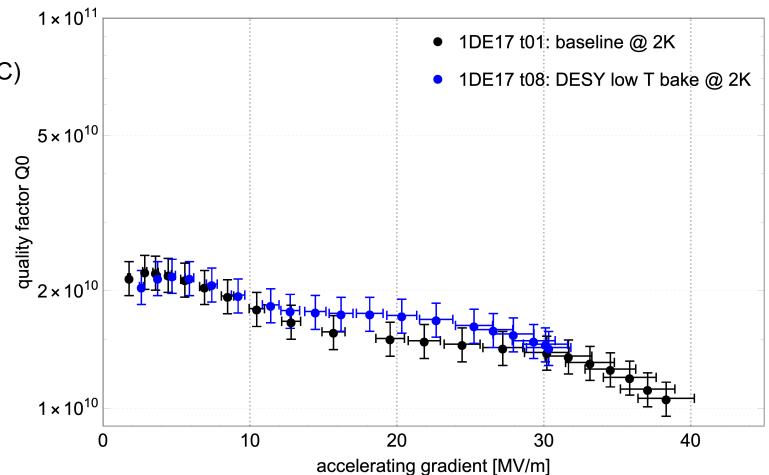
unchanged performance

1AC3 DESY low T bake results


- > 1AC3: Heraeus LG material
- > last treatment: 120 μ m EP (14V /17°C)
- > DESY low T bake: 4h@75°C + 24h@130°C
- > **same** accelerating gradient
- > slightly better mid-field Q₀
 - Q₀ gain below 20%
 - still within uncertainty level

quality factor improves significantly

1DE14 DESY low T bake results


- > 1DE14: Plansee/Heraeus FG material
- > last treatment: 40 μ m EP (14V / 13°C)
- > DESY low T bake: 4h@75°C + 24h@130°C
 - comparison to 3h@145°C in Argon atmosphere (Saclay 2007)
- > same acc. gradient & better Q₀
 - exceptional good performance
 - 3.3 x 10¹⁰ @ 5 MV/m
 - Q₀ gain @ low gradients: 40%
 - Q₀ gain @ mid-field: 25%
 - HFQS removed

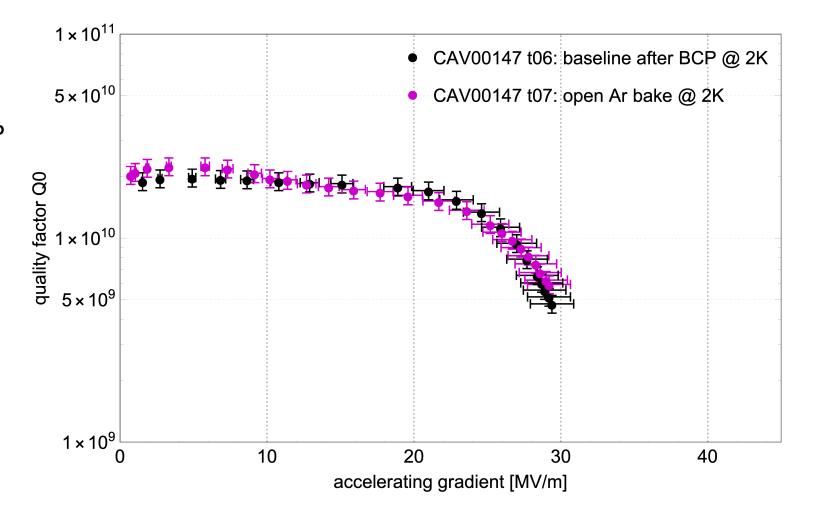
constant performance

1DE17 DESY low T bake results

- > 1DE17: Ningxia FG material
- > last treatment: 120 μ m EP (14V /17°C)
- > DESY low T bake: 4h@75°C + 24h@130°C
- > test 2007, storage, test 2016
 - gradient loss : 38 MV/m \rightarrow 31 MV/m
 - storage problem?
- > slightly larger mid-field Q₀
 - Q₀ gain below 15%
 - contained in uncertainty

different low T treatment approach

120°C in Argon atmosphere


- > bake open cavity in Argon atmosphere
- > revival of old idea
 - 2008 2010: promising results with 4 single-cells
 - 24h@120°C
 - drying cabinet in "gray" area
- > "new" bake cabinet for nine-cell cavities
 - enough space for nine-cells
 - attached to ISO 4 clean room
 - temperatures up to 120°C
 - twice pump and purge with Argon
 - process in 1 atm Argon

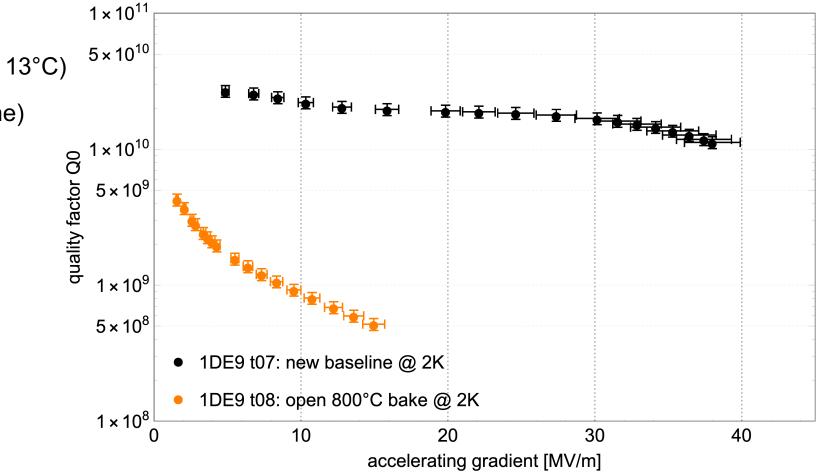
no effect visible

CAV00147 low T Argon treatment results

- > HiGrade CAV00147
- > last treatment: 20 µm BCP
- > reference test 6 unbaked after BCP
- > treatment in bake cabinet 4h@75°C + 24h@120°C
- > performance unchanged
 - treatment does not spoil cavity
 - BCP surface?
 - too short bake?
- > more cavities will be treated
 - EP surface
 - longer duration

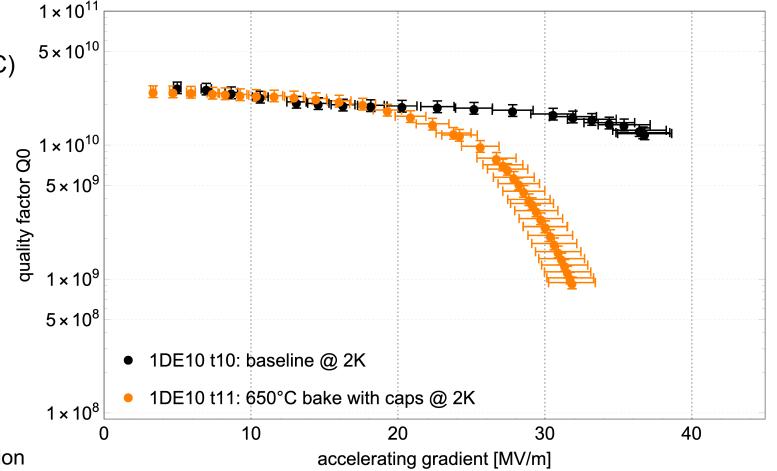
still infusion related studies

further tests with DESY furnace


- > 800°C open cavity, no Nitrogen: 1DE9
 - after many infusion attempts
 - check of furnace usability
- > 650°C with caps, no Nitrogen: 1DE10
 - one blind flange
 - one cap with center hole (Ø 7.8 mm)
 - suppress Nb-Carbides at lower temperature
 - better pressure @ T_{max}
- > refurbishment plan (3rd quarter 2020)
 - new oil-free pre-pumps
 - oil-sealed pumps then only as pre-pump for TMP
 - upgrade of controls

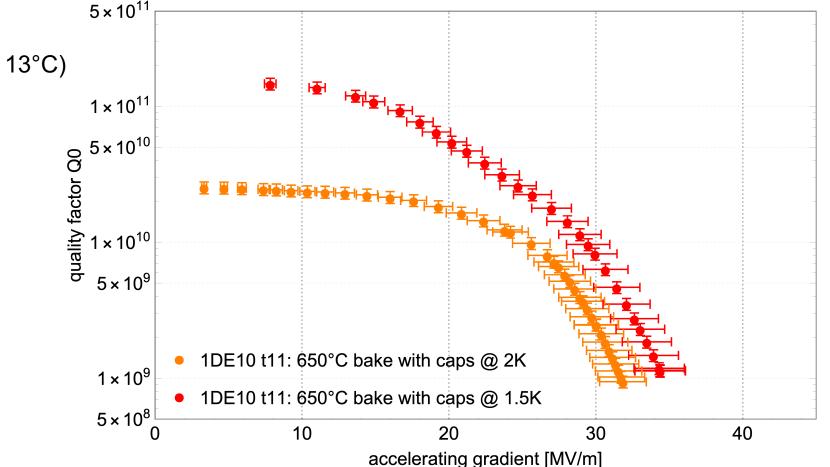
open bake yields strong degradation

1DE9 DESY furnace results


- > 1DE9: Heraeus FG material
- > last chemistry: 40 μ m EP (14V / 13°C)
- > DESY low T bake (black baseline)
- > 800°C heat treatment
 - no pre-heating @ 300°C
 - 3h@800°C
 - 1.1 x 10⁻⁵ mbar @ T_{max}
 - open cavity
- > complete **degradation** of cavity
 - very low Q₀
 - EP for reset necessary

caps and / or lower temperatures help

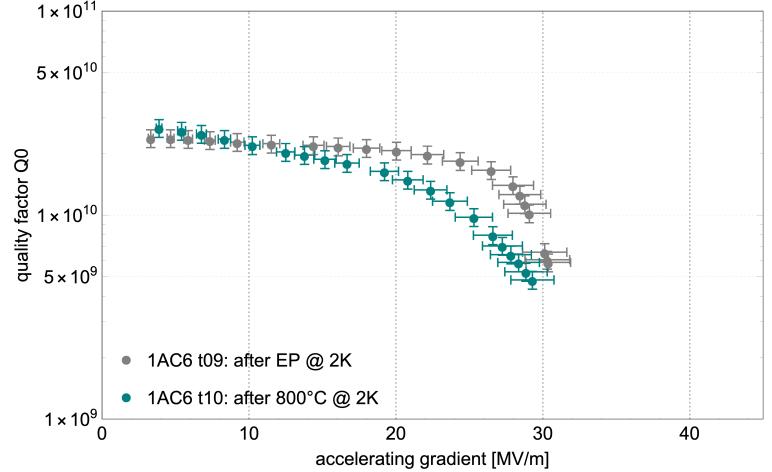
1DE10 DESY furnace results


- > 1DE10: Heraeus FG material
- > last chemistry: 40 μ m EP (14V / 13°C)
- > 650°C heat treatment
 - 72h@300°C + 6h@650°C
 - 2.1 x 10⁻⁶ mbar @ T_{max}
 - cap with small hole
- > strong HFQS
 - starting @ 20 MV/m
 - DESY low T bake in preparation
- > cap cutout reviewed by SEM
 - strong pollution due to manual extraction
 - few star-shaped Carbides on inner and outer surface

caps and / or lower temperatures help

1DE10 DESY furnace results

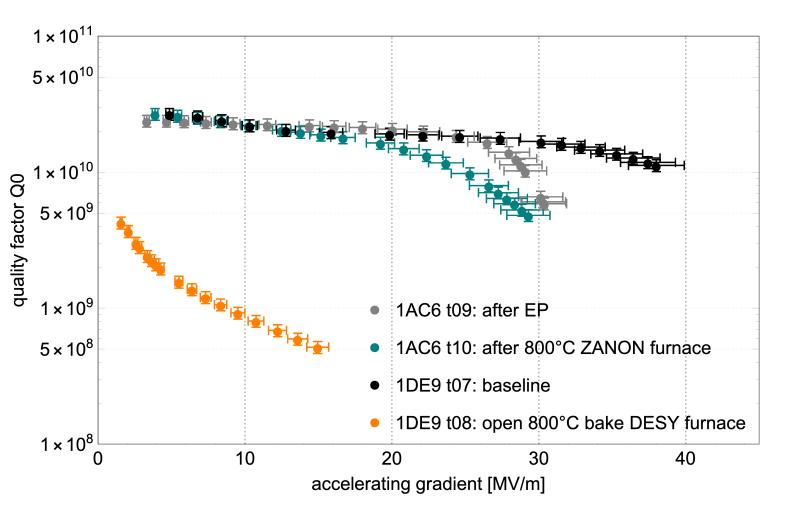
- > 1DE10: Heraeus FG material
- > last chemistry: 40 µm EP (14V / 13°C)
- > 650°C heat treatment
 - 72h@300°C + 6h@650°C
 - 1.1 x 10⁻⁵ mbar @ T_{max}
 - cap with small hole
- > strong HFQS
 - starting @ 20 MV/m
 - DESY low T bake in preparation
- > 1.5 K curve: additional unclear
 loss mechanism ~ 15 MV/m



Zanon furnace qualified

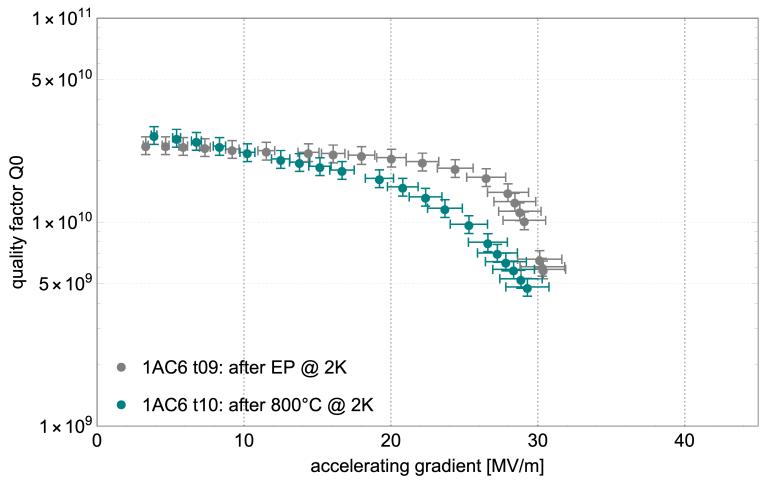
1AC6 Zanon furnace results

- > 1AC6: CBMM single crystal material
- > 20 µm EP @ Zanon (14 V / 14°C)
- > 800°C heat treatment
 - 1h@600°C
 - 2h@800°C
 - 3.1 x 10⁻⁶ mbar @ T_{max}
 - open cavity
- vertical test
 - radiation onset ~ 22 MV/m



Zanon furnace qualified

1AC6 Zanon furnace results


- > 1AC6: CBMM single crystal material
- > 20 µm EP @ Zanon (14 V / 14°C)
- > 800°C heat treatment
 - 1h@600°C
 - 2h@800°C
 - 3.1 x 10⁻⁶ mbar @ T_{max}
 - open cavity
- > comparison to DESY furnace
 - much better performance

Zanon furnace qualified

1AC6 Zanon furnace results

- > 1AC6: CBMM single crystal material
- > 20 µm EP @ Zanon (14 V / 14°C)
- > 800°C heat treatment
 - 1h@600°C
 - 2h@800°C
 - 3.1 x 10⁻⁶ mbar @ T_{max}
 - open cavity
- > 1DE19: Ningxia FG material
 - 140 μm EP @ Zanon (14 V / 14°C)
 - first test ever performed @ DESY
 - heat treatment done → VT @ DESY

- > DESY low T bake
 - no significant stable gain in E_{acc} and Q₀ observed
 - (slight) enhancement of performance
 - once gradient, once Q₀, twice unchanged
 - removes HFQS if existent
 - still more statistics to be collected
 - 4 cavities treated & waiting for test

- > DESY low T bake
 - no significant stable gain in E_{acc} and Q₀ observed
 - (slight) enhancement of performance
 - once gradient, once Q₀, twice unchanged
 - removes HFQS if existent
 - still more statistics to be collected
 - 4 cavities treated & waiting for test
- > open bake in Argon
 - treatment does no harm
 - bake cabinet applicable
 - more studies will follow

- > DESY low T bake
 - no significant stable gain in E_{acc} and Q₀ observed
 - (slight) enhancement of performance
 - once gradient, once Q₀, twice unchanged
 - removes HFQS if existent
 - still more statistics to be collected
 - 4 cavities treated & waiting for test
- > open bake in Argon
 - treatment does no harm
 - bake cabinet applicable
 - more studies will follow

- > Zanon furnace
 - better than large DESY furnace
 - **qualified** for further cavity treatments
 - one cavity to be tested

- > DESY low T bake
 - no significant stable gain in E_{acc} and Q₀ observed
 - (slight) enhancement of performance
 - once gradient, once Q₀, twice unchanged
 - removes HFQS if existent
 - still more statistics to be collected
 - 4 cavities treated & waiting for test
- > open bake in Argon
 - treatment does no harm
 - bake cabinet applicable
 - more studies will follow

- > Zanon furnace
 - better than large DESY furnace
 - **qualified** for further cavity treatments
 - one cavity to be tested

- > DESY furnace
 - open bake does spoil cavities
 - infusion experiments stopped
 - additional test @ 650°C with open cavity
 - furnace refurbishment in preparation