

New insights on the SRF Nb cavities performance from spectroscopic data.

Arely Cano Postdoctoral research associate, Fermilab


TTC meeting 04 Feb 2020

Outline

- Modulation of the Nb atoms reactivity by their neighbors (Nb 3d core levels binding energy for Nb in Nb3Sn (XPS)
- Evidence on the role of N doping on the modulation of Nb atoms reactivity in Nb SRF cavity from the hydride formation (Raman spectra at low temperatures).
- XPS Depth profile spectra as source of information on the reactivity modulation of Nb in N-doped SRF cavity cutouts
- Morphologies observed in N-doped Nb SRF cavity (SEM)
- Summary

Analyzed samples

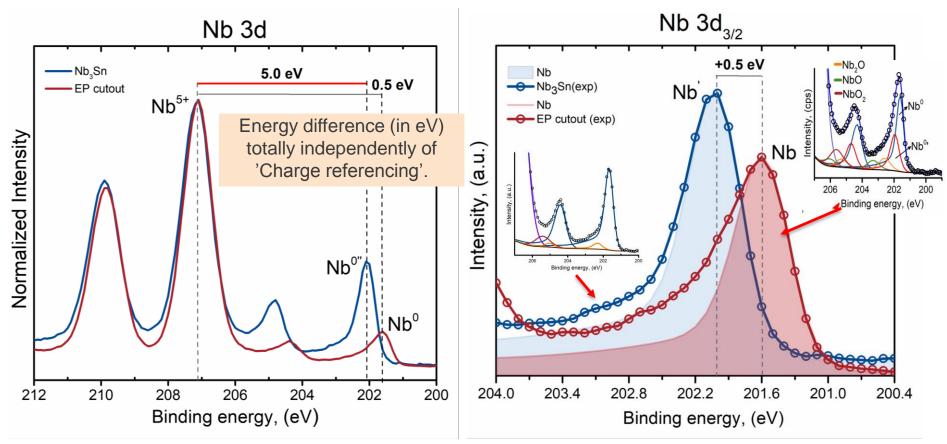
All the samples herein analyzed were cutouts:

-EP treated single cavity: random election

-2/0 N-doping 9-Cell structure: Cell 1 (identified quench spot) and cell 5

On the Nb reactivity and its impact on the near-surface physics and chemistry

1 H hydrogen	IUPAC Periodic Table of the Elements															18 2 He helium	
1.008	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 5.54 [6.938, 6.997]	4 Be beryllium 9.0122		Symbo	tomic number Symbol name meter and advice water							5 B boron 10.81 [10.805, 10.821]	6 C carbon 12.011	7 N nitrogen 14.007	8 O oxygen 15.999	9 F fluorine 18.998	10 Ne neon 20.180	
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 23.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 3206 p2.059, 32.076]	17 CI chiorine 35.45 [35.446, 35.457]	18 Ar argon 39.55 [39.762, 39.963
19 K potassium	20 Ca calcium 40.078(4)	21 Sc scandium 44.956	22 Ti Stanium 47,867	23 V vanadium	24 Cr chromium	25 Mn manganese	Fe iron	27 Co cobalt 58.933	28 Ni nickel	29 Cu copper 63,546(3)	30 Zn zinc 65.38(2)	31 Ga gallium 60.723	Ge germanium	33 As arsenic 74922	34 Se selenium	35 Br bromine 7354	36 Kr krypton
39.098 37 Rb nubidium	38 Sr strontium	39 Y yttrium	2r zirconium	41 Nb nioblum	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhođum	46 Pd paladium	47 Ag silver	48 Cd cadmium	49 In indium	50 50 50 50 50 50	51 Sb antimony	52 Te tellurium	[79.901, 79.907] 53 iodine	83.798(2) 54 Xe xenon
55 Cs caesium 132.91	87.62 56 Ba barium 137.33	88.906 57-71 Ianthanoids	91.224(2) 72 Hf hafnium 178.49(2)	92.906 73 Ta tantalum 180.95	95.95 74 W tungsten 183.84	75 Re menium 186.21	101.07(2) 76 OS osmium 190.23(3)	102.91 77 Ir iridium	106.42 78 Pt platinum 195.08	107.87 79 Au gold 196.97	112.41 80 Hg mercury 200.59	114.82 81 TI Bhallium 204.38 [204.38, 204.39]	118.71 82 Pb lead 207.2	121.76 83 Bi bismuth 208.96	127.60(3) 84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copermicium	113 Nh nihonium	114 FI flerovium	115 Mc mascavium	116 Lv Ilvermarium	117 Ts tennessine	118 Og oganesson
				58 Ce otrium 140.12	59 Pr praseodymium 140.91	60 Nd neodymium 144.24	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium 151.96	64 Gd gadolinium 157.25(3)	65 Tb terbium 158.93	66 Dy dysprosium 162.50	67 Ho holmium 164.93	68 Er ertsium 167.26	69 Tm thulium 168.93	70 Yb ytterbium 173.05	71 Lu lutetium 17497
	RNATIONAL UNION OF AND APPLIED CHEMISTRY			90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr Iawrencium
					this table, se C, the Internal					oer 2018.			2019	ANTER	1		


🚰 Fermilab

Nb shows a high reactivity for the sorption and reaction with **Hydrogen**, **Nitrogen** and **Oxygen**. These three elements can be found dissolved in the near surface region and, in the bulk and forming precipitates under certain conditions.

Nitrogen is known to have a positive effect on the cavity performance!!

On the Nb surface reactivity: Nb in Nb₃Sn as reference

Chemical shift found at the Nb 3d spectral low-BE region for Nb in Nb₃Sn

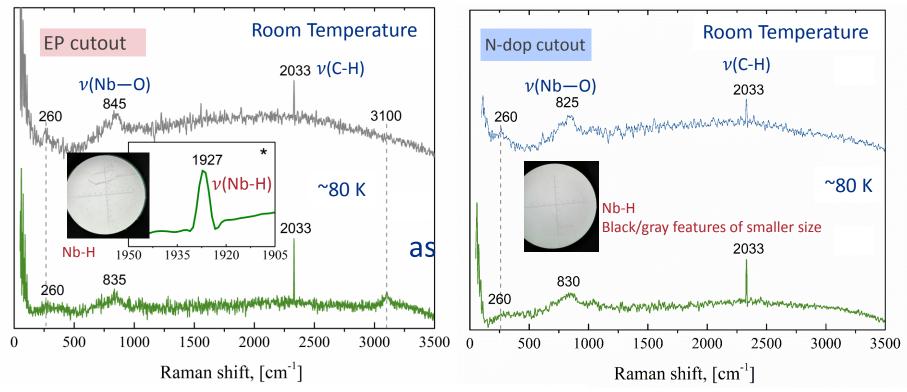
In Nb₃Sn, Nb atoms have a positive character (compared to metallic Nb); the Sn atoms are subtracting electron density from their Nb neighbors ∴ the interaction of Nb ↔ H, N and O is weaker

🛟 Fermilab

Motivation

It is well-known the positive effect that the N-doping has on the Nb SRF cavity performance.

We try to understand the nature of such effect, from an atomic point of view, considering a possible interaction between Nb and N atoms, and how that interaction could modulate the physical and functional properties of Nb metal in the SRF cavity.

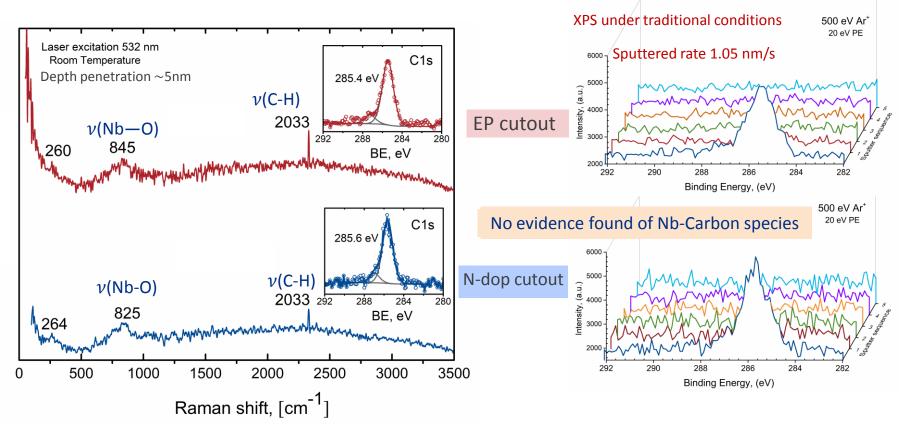

Nitrogen occupies an intermediate position, within C, N and O for their reactivity with Nb.

Could the presence of N in the Nb metal network be modifying its reactivity and related physical properties?

In this study, we support such hypothesis from experimental evidence and propose new experiments to shed light on that possible mechanism to explain the nature of the N positive effect on the Nb SRF cavity performance.

Formation of Nb-hydrides

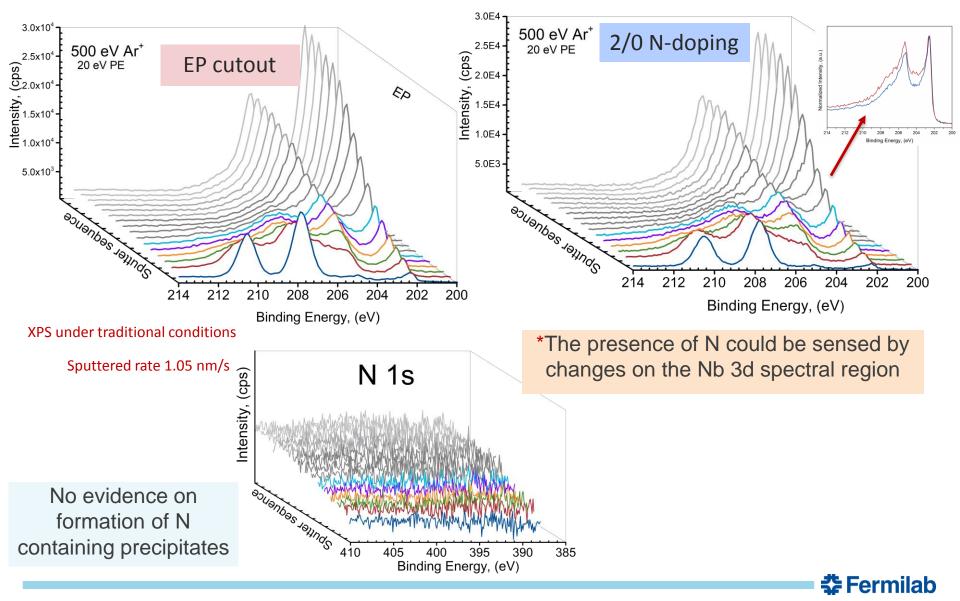
Raman spectra recorded under RT and cryogenic conditions (~77K)

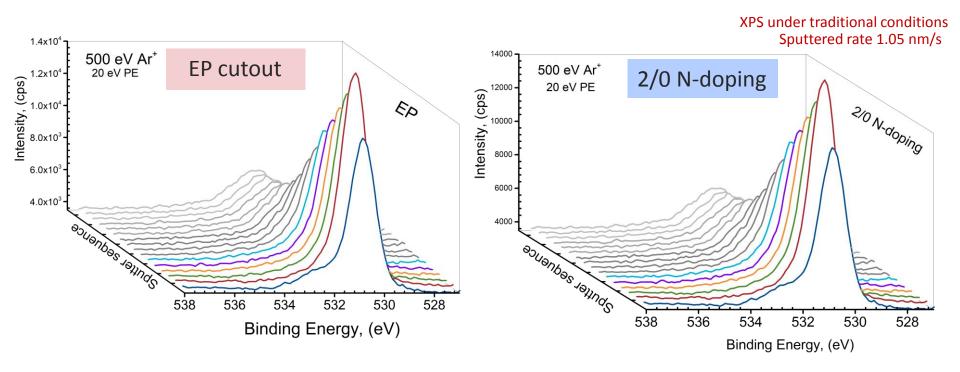

The optical images and Raman spectra under low T, shown a evidence that the cavity treatment with N reduces the material ability to form hydrides and the formed ones are of small size.

This contributes to support the hypothesis regarding to a lower material (Nb) reactivity in the presence of N.

🛟 Fermilab

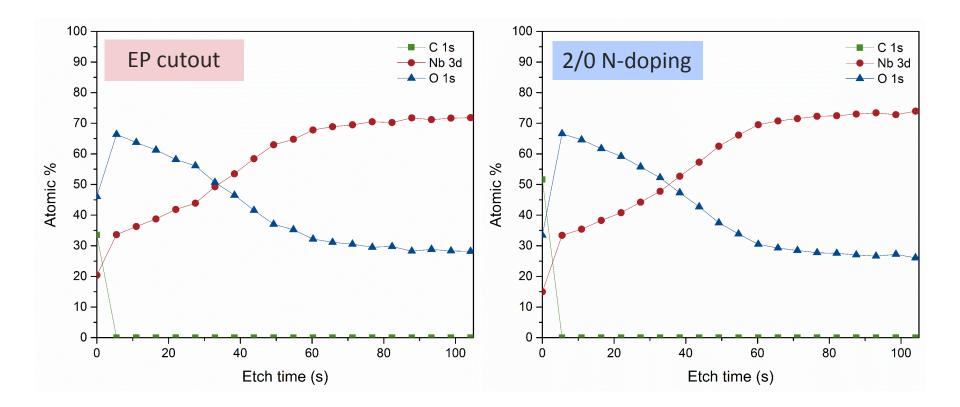
Sorption of species at the Nb surface


Nb, at its surface, is able to absorb species from the environment, e.g. carbon containing compounds, etc.


The sorption of the carbon species varies with the chemical composition at the surface layers (Raman spectra) and its presence is limited to the top surface layer (XPS).

🚰 Fermilab

Sputtering profile of Nb 3d


Sputtering profile of O 1s

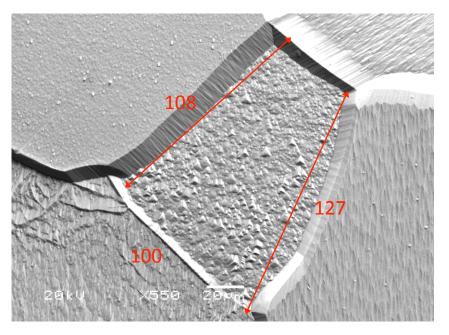
On the removal of surface layers, the concentration of oxygen atoms in the near-surface region decreases, with slight changes in the O 1s spectral profile in the first two sputtering circle. From sputtering circle 3, the O 1s spectral profile for both samples not shown differences.

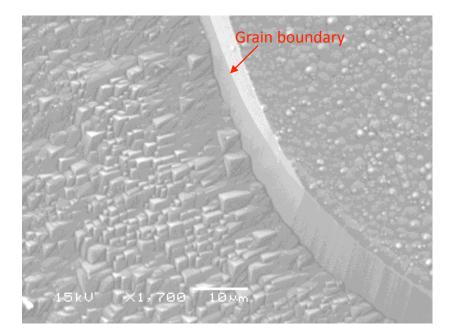
🚰 Fermilab

XPS Depth profile

The presence of N atoms could be sensed by the preferential etching in Nb 3d spectral profile favoring the reduction of Nb in Electropolish compared to N-doping cutout cavity.

🚰 Fermilab


Morphologies observed for some Nb SRF cutous

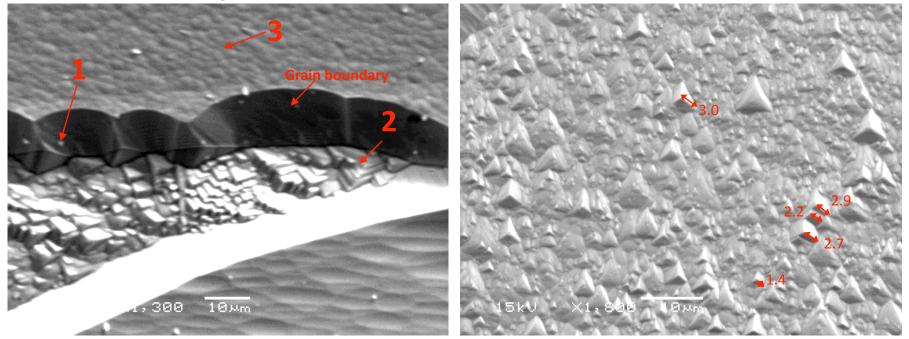

At this point, it is convenient examine the morphology on Nb cutouts. The solid morphology could have relevant information on the crystal nucleation and growth habits and on their control during the recrystallization process. When these processes are controlled, a more homogeneous and compact structure could be formed, with a low density of structural defects.

A decreased reactivity for Nb atom could result in a material with such features. The presence of N dissolved in the structure could favor such positive effect.

Microscopy inspection of spot causing quench

🛠 Fermilab

Electron images recorded from identified spot to cause quench in a 2/0 N-doping 9 cell

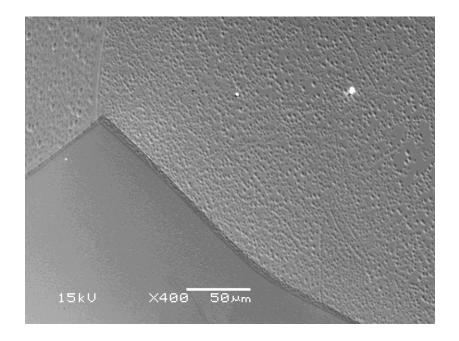

A cutout from cell 1 from the 2/0 N-doping structure shown grains with prominent roughness.

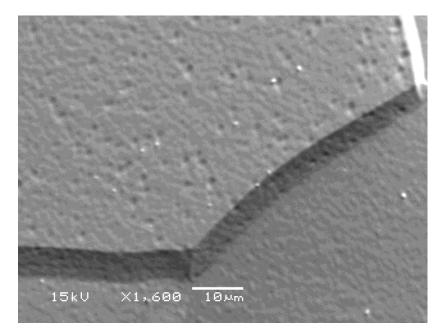
The impurities, in this case N atom, could be conditioning the growth and morphology of the crystals.

XPS do not show presence of N or any other N-containing compounds.

Microscopy inspection of spot causing quench

The three morphologies are compatible with the cubic (bcc) structure of metallic Nb


Electron images recorded from (2/0 N-doping) cell 1, which was affected by premature quench


Three types of micro morphologies were observed in specific grains:

- 1) Cubes with well-defined faces and edges
- 2) Stacked layer with characteristic relief forming cavities of ellipsoidal shape along their transversal section
- Crystallites of irregular shape, probably related to a chemical attack of the edges of small cubes during the EP process.

🛟 Fermilab

Electron images from 2/0 N-doping 9Cell

The presence of a large amount of small pores at surface of this cutouts from cell1 suggests that the near-surface region was initially occupied by aggregates of particles of a different nature from the matrix. Such surface porosity, could also be related to a differential attack during the cavity's EP treatment.

In Summary

The high reactivity of Nb can be modulated by its interaction, at atomic level, with atoms capable of subtract electron density from Nb atoms; also with N?

On the sample cooling, at ~80 K, the precipitation of hydrides were detected from microscopic inspection and from Raman spectra. The hydrides population shows certain dependence on the sample previous treatment, including with N.

From depth profile XPS spectra, N was not detected; but its presence could be revealed by slight changes on Nb 3d spectral region (as chemical shift or preferential etching)

Within a same cavity, a wide variety of morphologies and defects concentration were observed, with regions free of structural defects and a compact structure. The presence of such regions suggests that the crystal nucleation and habits growth occurred under controlled conditions.

New studies are required to support or discard the hypothesis herein considered regarding a mechanism based on the controlled reactivity to explain the positive role of N on the Nb SRF cavity performance.

‡ Fermilab

Collaboration

Thanks for your attention!!

