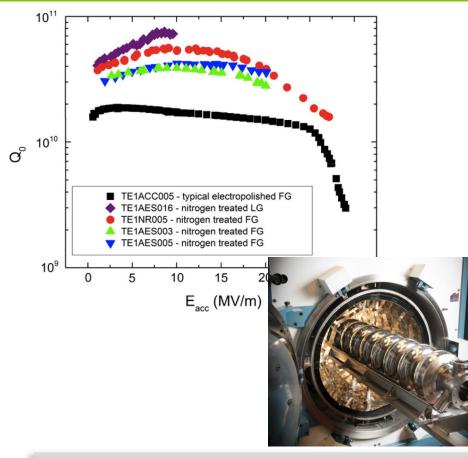


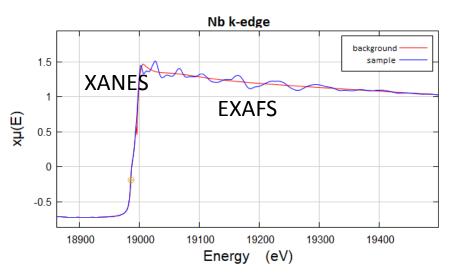
In-situ EXAFS investigation of N_2 - treatment of Nb

P. Rothweiler, J. Kläs, R. Wagner, **D. Lützenkirchen-Hecht**

dirklh@uni-wuppertal.de


BERGISCHE UNIVERSITÄT WUPPERTAL

- 1) Motivation
- 2) Methodology
 - EXAFS spectroscopy
 - Experimental details
- 3) Results and discussion
- 4) Conclusions and outlook



- Improvements of Nb-cavity quality factors by N₂-treatments at elevated temperatures ⇒ "nitrogen-doping"
- Structural details of N₂-doping still not understood in detail:
 - Position of nitrogen in the lattice?
 - Distortions of the lattice?
 - ...
 - Environment (N₂ atmosphere, high temperatures, ...
 - ⇒ difficult to investigate with standard techniques (XRD, XPS, SEM/TEM, ...)
 ⇒ alternative techniques!
 - Here: in situ investigations with EXAFS

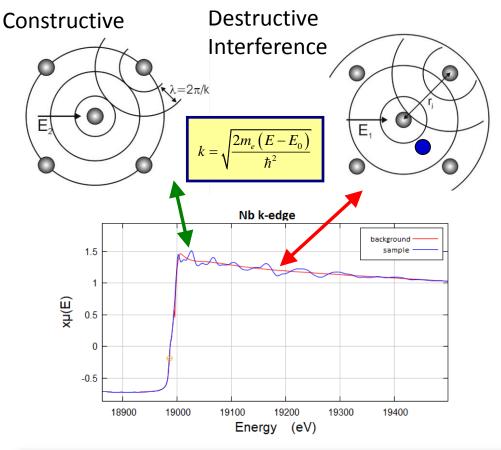
XANES = X-ray Absorption Near-Edge Spectroscopy EXAFS = Extended X-ray Absorption Fine-Structure **Element Specific:** Absorption edges are element-specific

Valence Probe: XANES gives chemical state and formal valence of selected element.

Local Structure Probe: EXAFS gives atomic species, distance, and number of near-neighbor atoms around a selected element..

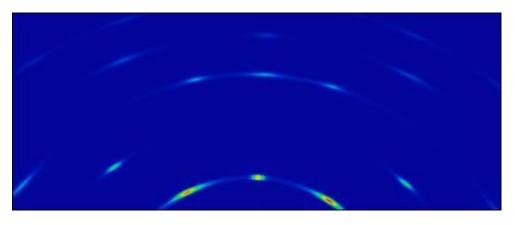
Low Concentration: concentrations down to 10 ppm for XANES, 100 ppm for EXAFS detectable!

Variability: samples can be solids, solutions, amorphous solids, soils, surfaces, etc.

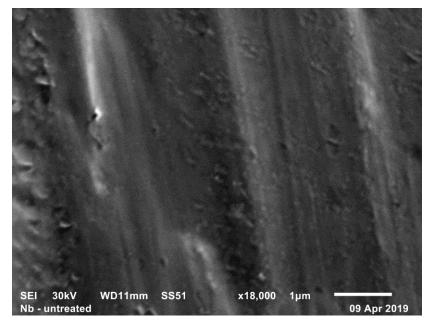

In-situ measurements: Suited for *real in-situ studies* with *time resolution*!

Continuous X-ray source: Synchrotron needed! Here: PETRA III / DESY, SLS / PSI (Ch), DELTA (Dortmund)

2. X-Ray Absorption Spectroscopy

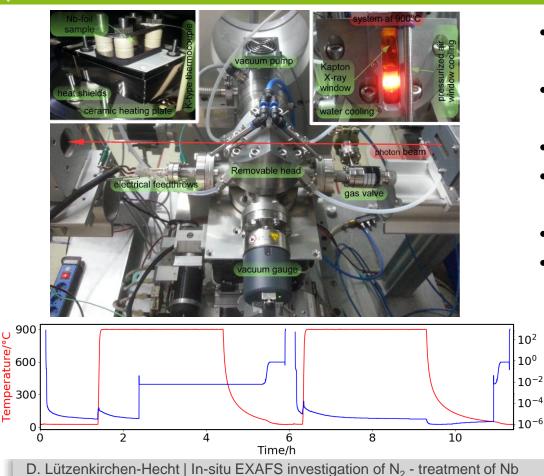


- Measurement of the energydependent X-ray absorption coefficient μ(E) of a core-level of a selected element (here: Nb K-edge)
- Good example of wave-particle dualism: Photoelectron acts like a wave ⇒ energy-dependent interference of outgoing and scattered waves ⇒ modulation of μ(E)
- Fourier-Transform of the oscillations gives bond length in R-space
- <u>Main Idea</u>: Inserted N-atoms will slightly modify interference pattern of Nb



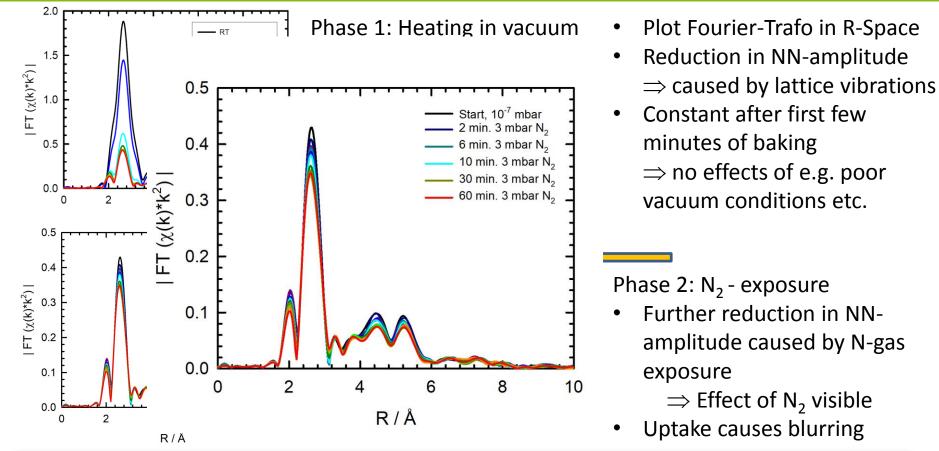
High purity Nb-materials: 99.99% Nb foils of 6 – 25 μ m thickness

X-ray diffraction, E = 16 keV: \Rightarrow Polycrystalline, textured foils

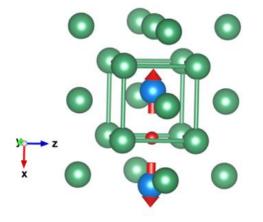

 \Rightarrow Smooth, wavy surfaces (rolling of the foils)

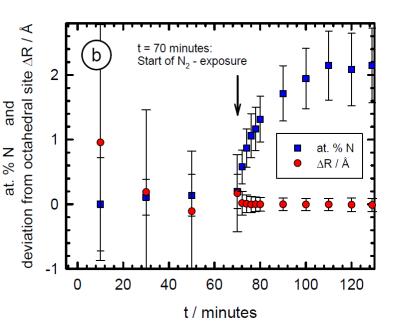
SEM:

2. Experimental setup

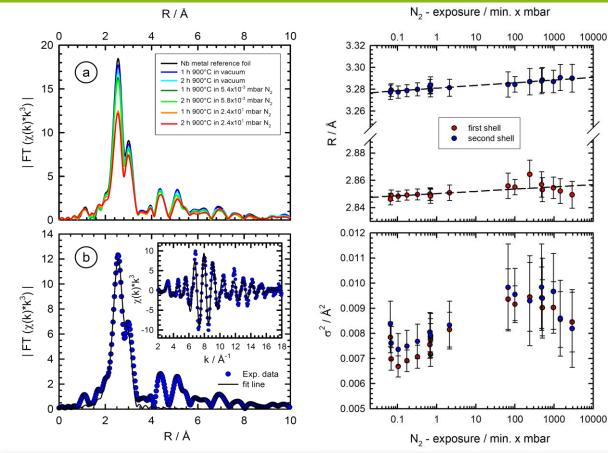


- In-situ heating chamber, fully remote controlled
- Kapton windows for X-ray measurements
- RT < T < 1200°C
- p < 10⁻⁶ mbar (at 900°C ca. 2x10⁻⁶ mbar)
- Transmission X-ray measurements
- Treatment with up to 30 mbar N_2 (Kr, Ar, ...) for minutes ... to ... several hours

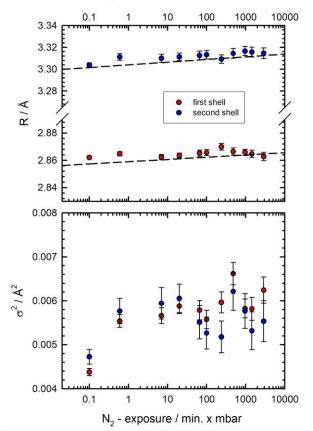



3. In-situ X-ray measurements: Time dependence

- Nb: bcc-crystal
- N₂-uptake (●) at octahedral interstitial sites
- Neighboring atoms (●) are (slightly) displaced



- Model of hard spheres
- Octahedral site
 competitive with
 ionic N-size of 70 pm
- Linear combination fits of unit cells with & without N-atoms
- bcc lattice: 2 Nb atoms/unit- cell)
- up to ca. % of unit cells with N₂


3. Ex-situ measurements at 300 K: Exposure dependence

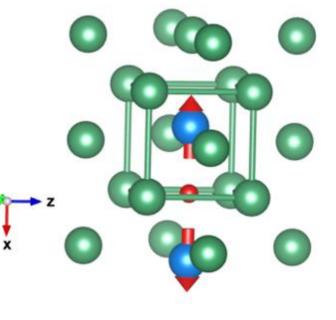
- Verification of in-situ measurements
- Fit of the first two coordination shells
 - Investigation on effect of different exposure intensities on Nb-Nb bond distances (R_1 , R_2) and mean squared displacement (σ_1^2 , σ_2^2)
- Observed increase of R_1 , R_2 , σ_1 , σ_2 agree qualitatively with model
- <u>But:</u> large uncertainties

N₂ - exposure / min. x mbar

- Measurements at LN2-temperature:
 - \Rightarrow Reduction of thermal lattice vibrations \Rightarrow larger EXAFS amplitudes, increased accuracy
 - Smaller uncertainties in R
 - Smaller σ^2
 - **<u>But</u>:** static disorder increases with N₂- exposure!

& is larger than bulk Nb reference

Main results: Trends from RT measurements are fostered



- N₂-uptake in Nb on interstitial octahedral sites, increasing with time and pressure
- In- and ex-situ measurements agree with each other
- precision measurements foster trends (slightly increased average Nb-Nb-distance & disorder)
- Kr- and Ar-uptake: do not show any detectable effects!

Next steps:

- Improvement of cell: T-measurement, MS, ...
- Measurements at 4 K even more precise ...
- Improvement of the fit model:
 - More shells / paths
- Measurements with samples from real cavities using surface sensitive EXAFS
 - \Rightarrow samples from the community are welcome!

- Department in Wuppertal: R. Frahm, B. Bornmann,
 P. Pagel, R. Wabnitz, ...
- DELTA (TU Dortmund, Germany)

PSI – Villingen, Swiss Light Source

DESY photon science Hamburg

PAUL SCHERRER INSTITUT

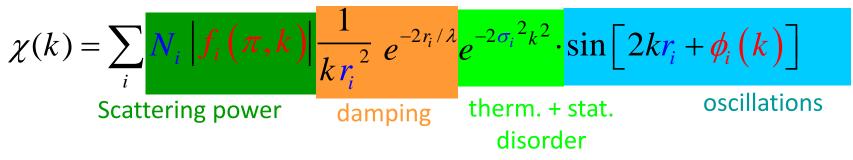
٠

• BMBF: financial support (05H15PXRB1, 05H18PXRB1, 05K16PX1)

MWF NRW

• MWF NRW: financial support

... and you for you attention!!!



EXAFS - Function χ(k):

K-edges, Gaussian pair-distribution function between neighboring atoms:

k	wave-number of the photo-electron: distance to neighboring atom $k = \sqrt{\frac{2m_e (E-E)}{\hbar^2}}$	$\overline{(0)}$
r	distance to neighboring atom $\kappa = \sqrt{\frac{\hbar^2}{\hbar^2}}$	
φ (k)	phase-shift: absorber $\phi_A(k)$, scattering atom $\phi_B(k)$	
	(sensitive for the type of neighboring atom)	
N	coordination number of neighboring atom	
f(π,k)	scattering amplitude of neighboring atom (element - sensitive)	
λ	mean free path of the photo-electron	
σ²	mean squared displacement (stat. & therm.!) of the neighbor	
		TESLA TECHNOLOGY

