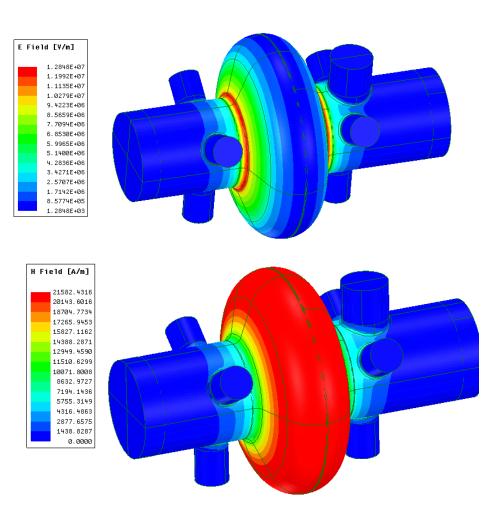

Test results of re-built LHC spare cavities

TTC 2020 – CERN

5th of Feb. 2020

F. Peauger on behalf of the LHC team

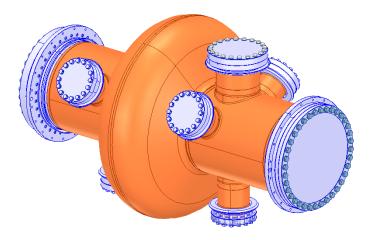
Accelerating cavities in LHC

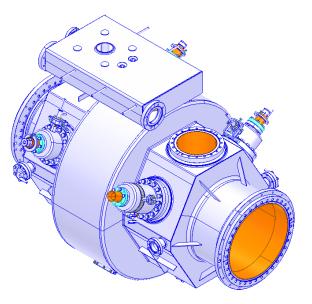


- Acceleration of high energy (β = 1) high intensity (0.5 A) proton beams
- 8 RF cavities per beam working at 400 MHz
- 2 beams: 16 cavities in total delivering a total voltage of 8 to 16 MV
- 4 cavities per cryomodule operating at 4.5 K in CW
- Nb thin film on Cu technology
- Fabrication : end of 90's, beginning of 2000's
- In operation since 2008

LHC accelerating cavity RF design parameters

Parameters	Value
Frequency [MHz]	400.79
Operating temperature [K]	4.5
Nominal Accelerating Voltage V _{acc} = (E _{acc} x L _{acc}) [MV]	2
Accelerating length L_{acc} = (n _{cell} . β . λ /2) [m] with β = 1	0.374
Accelerating gradient E _{acc} [MV/m]	5.33
Linac r/Q [Ω] at β =1	85.3
Circuit r/Q [Ω] at β =1	42.7
G [Ω]	256.9
\textbf{Q}_{0} at operating temperature for $\textbf{R}_{\text{BCS}}\text{=}36.4$ $n\Omega^{*}$	7.10 ⁹
Q_0 at nominal gradient	> 2.10 ⁹
Cavity dynamic RF heat load [W]	23.4
E_{pk}/E_{acc} at $\beta=1$	2.4
B_{pk}/E_{acc} [mT/(MV/m)] at β =1	5.08
Max. surface field E _{pk} [MV/m]	12.85
Max. surface magnetic field B _{pk} [mT]	27.11
Stored energy [J] at nominal ${\sf E}_{\sf acc}$ and $\beta{=}1$	18.5
Qext	2 to 6.10 ⁴
RF power [kW]	300

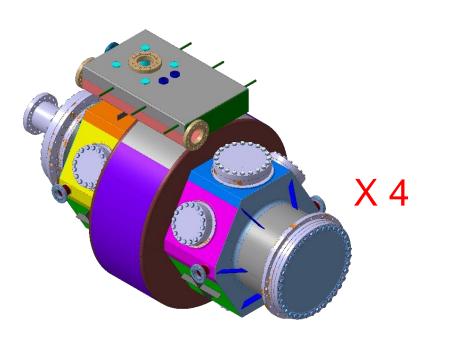


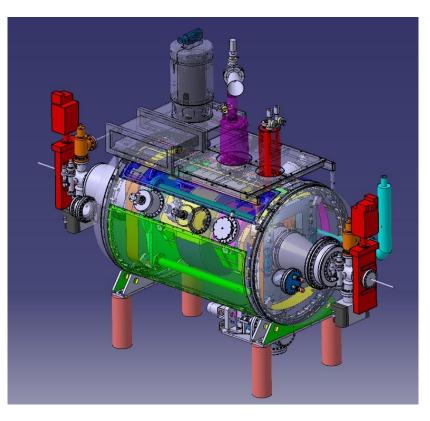


* : Average values from measurements of LHC cavities in the 90's, and post-processed by A. Miyazaki (presented at the CERN SRF2018 workshop)

LHC accelerating cavity technological parameters

- OFE copper plate shaped by electrohydroforming or spinning
- Electron beam welding and vacuum brazing (flanges)
- Nb-coated on Cu-cavity:
 - 2 x SUBU (100 μm) chemical polishing before Nbcoating
 - 150 °C 48 h bake-out before coating
 - Magnetron sputtering of Nb
 - sputter gas pressure Kr = 1e-3 mbar
 - cathode voltage = 400 V
 - 1-5 um thickness
- Stainless steel flanges and helium tank (no bellows)
- 1 variable FPC, 4 x HOM couplers, 3 pick-up antenna (2 spares)

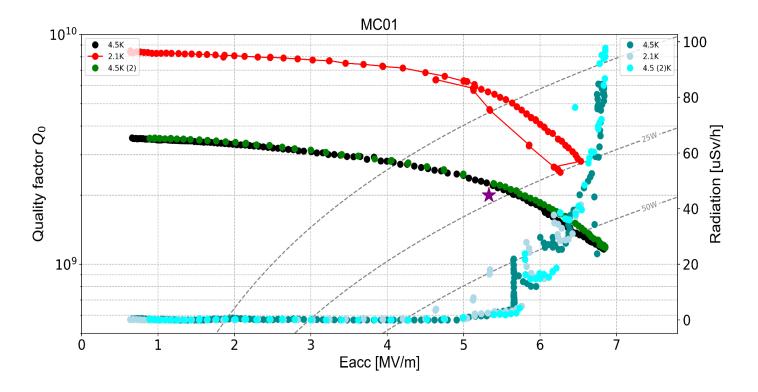




Motivation and scope of the project

- Only one spare dressed cavity and one spare cryomodule available
- New project started in 2015 to re-build and qualify <u>four cavities</u> and <u>one quarter cryomodule*</u>

* Original scope was a full cryomodule, but was re-scoped to a 1/4-CM as a first step and training object


Status

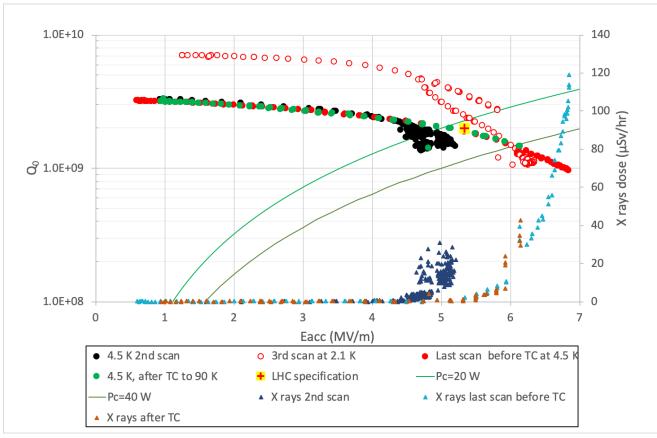
ID	Half-cells, Cut-offs, He-tank	Comment	Cold test
PC01.1	2 nd gen. Bonitempo (old design), full cut-offs		Aug-16
PC02.1	2 nd gen. Bonitempo (old design), full cut-offs	Weld projections	Oct-16
PC02.2	Old cavity cell design systematically 700 kHz off frequency	Contamination before coating	n/a
PC02.3	The cell design was modified (overlength added at the equator)		Nov-17
LHC19	1 st gen. Bonitempo (old design)	Original dressed spare cavity	Dec-17 & Jan 18
PC05.1	Spun and machined RF surface by Heggli (new design), simplified cut-off	Manually polished welds	Feb-18
PC03.1	1 st gen. EHF by BMAX (new design), simplified cut-off,	Manually polished RF-surface, welds not polished	Apr-18
PC02.3	Dressed cavity, updated He-tank design		Jul-18
PC03.2		Manually polished welds	Nov-18
MC01	Spun and machined RF surface by Heggli (new design), Full cut-off		Mar-19
NC01	Spun and machined RF surface by Heggli, full cut-off	HPWR (100 bar) in SM-18 (condensation issues)	Jul-19
PC04	2nd gen. EHF by BMAX, simplified cut-off	HPWR (50 bar) in SM-18	Aug-19 & Jan-20 on V3
NC02	Spun and machined RF surface by Heggli, full cut-off	HPWR (100 bar) in SM-18 (hole repaired by welding a Cu-piece)	Nov-19 & TBD with Nb coated flanges
NC01.2		Manual polish of defects, HPWR	TBD
\checkmark			

/

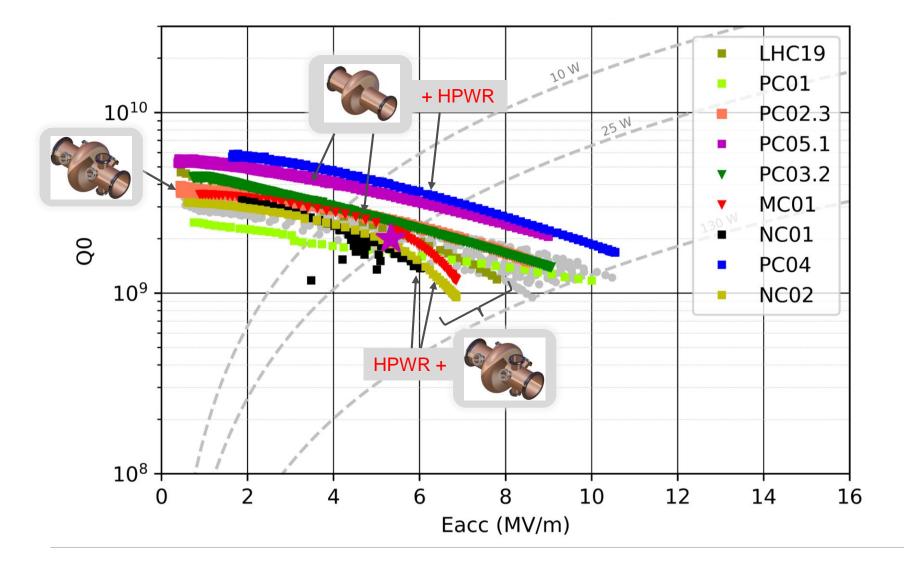
Bare cavity MC01 test results

- Initial limitation around 4 MV/m due to FE and Q-drops at 4.5 K
- Meets the spec after RF-conditioning
- Q-drop above 5.2 MV/m at 4.5 K
- Q-drops and hysteresis above 6.5 MV/m at 2.1 K, cause not clear
- Now integrated in its helium tank and mounted in the 1/4 cryomodule

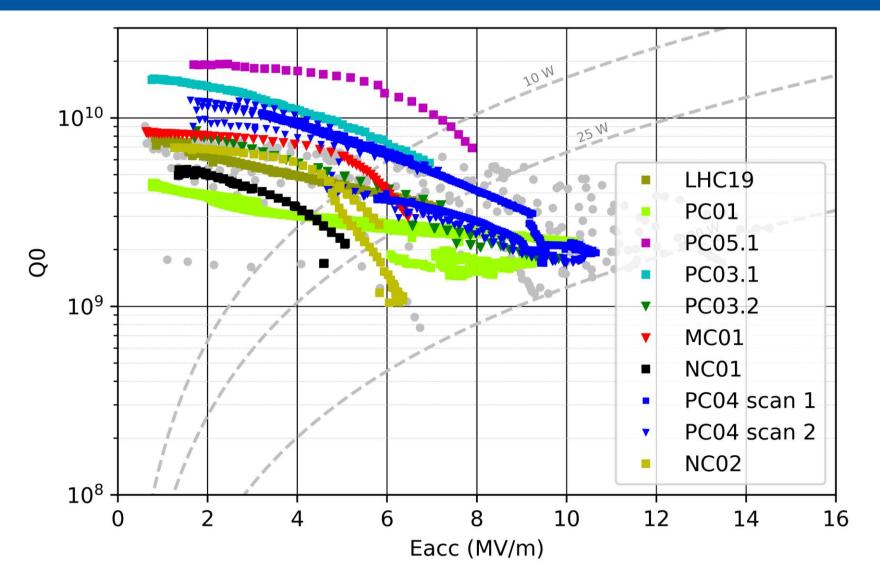
Bare cavity NC01 test results



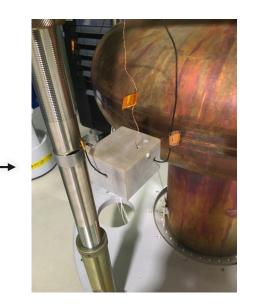
- FE at 3-4.5 MV/m after He- and RF-processing and 2 thermal cycles to 90 K and 123 K
- Performance limited by FE and did not meet the spec
- Re-coated after stripping, manual polishing of surface defects + SUBU => NC01.2
- Cold test of NC01.2 early 2020


Bare cavity NC02 test results

- FE initially 4-4.5 MV/m, quickly suppressed by RF-conditioning
- Performance similar to NC01.1 and slightly below the spec (1.96E+09)
- Assemble with PC03 antenna flanges and Nb-coated DN100/150 to test "full vs simplified"
- Eventually, strip, manual polish of surface defects + SUBU => NC02.2 (TBC)

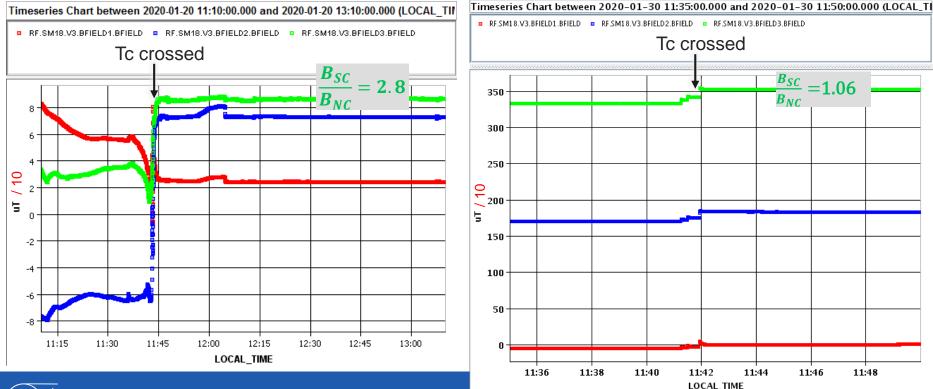

All test results at 4.5 K

In average, we notice a decrease by a factor of 2 in Q0 between simplified cavity and cavity with ports. This could be achieved by increasing the surface resistance on the Nb film inside the ports cylinders (4 HOM ports, 2 pickup ports and 1 FPC port) from **40 n** Ω to **90** $\mu\Omega$! Can a tilted growth induce such high Rs?


All test results at 2 K

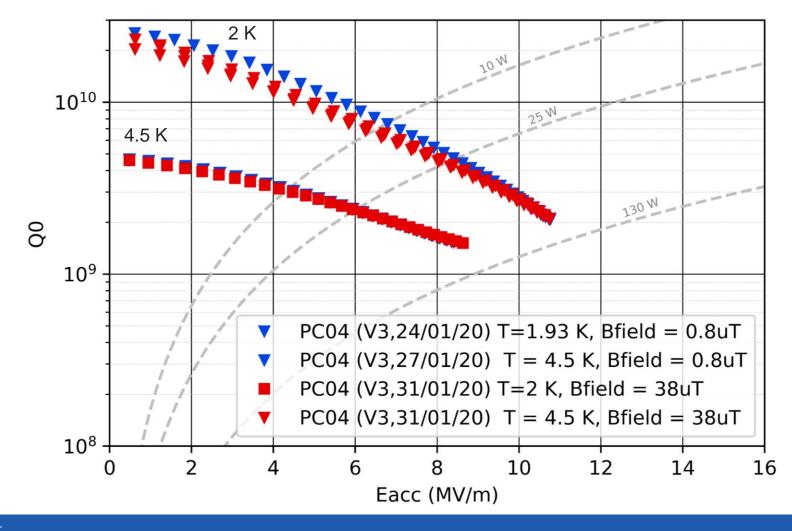
Re-test of PC04 cavity

- Main idea: re-test PC04 cavity in different environmental conditions:
 - V3 cryostat (instead of V6 cryostat usually used for LHC cavities)
 - Better operation at 2 K and below
 - Possibility to compensate earth magnetic field
 - Digital SEL RF system
 - Advanced instrumentation

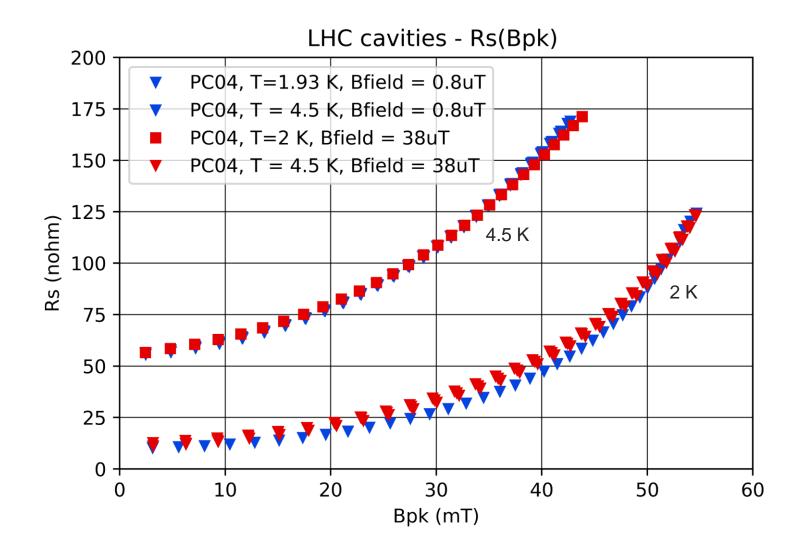

B3 = Bz

Flux expulsion

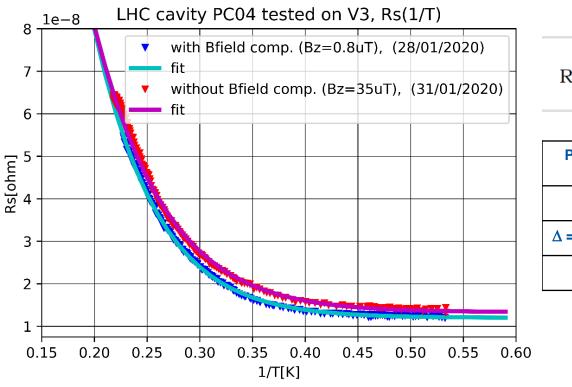
- Two sets of ambiant B field values were tested with the following sequence:
 - Cooldown from RT to 4.5 K, with Bz = 0.3 0.8 uT and cooldown speed of -0.9 K/min
 - RF measurement
 - Warm-up to 15 K
 - Cooldown from 15 K to 4.5 K with Bz = 33-35 uT and cooldown speed of -0.4 K/min
 - RF measurement


Bz = 0.3 – 0.8 uT

Bz = 33-35 uT



Rs(Bpk) sensitivity to ambient B field



Rs(1/T) sensitivity to B field

- Measured at 1 MV/m
- Fit with BCS theory

$$R_{s}(T) = A(\lambda,\xi,l,v_{F})\frac{\omega^{2}}{T}exp\left(-\frac{\Delta(0)}{k_{B}T}\right) + R_{res}$$

Parameters	With B field compensation	Without Bfield compensation
A [nΩK]	3900.8	2638.0 (-32%)
$\Delta = \Delta(0)/k_{\rm B}$ [K]	21.43	19.52 (-9%)
R _{res} [nΩ]	12.01	13.32 (+10%)

- Sensitivity for Rres: <u>3.8 nohm/gauss</u>
- The A factor is quite sensitive to flux trapping

Conclusion

- 8 cavities have been fabricated and tested in vertical cryostat over the last 5 years (14 tests in total, (4 tests in 2019))
- 3 cavities have been re-coated, and some cavities needed to be manually polished (welds)
- Good performances achieved for simplified cavities, but less obvious for cavities with RF ports
- □ HPWR introduced recently
- Different Q0 behavior (Q0 at low field, Q slopes) between simplified cavities and cavities with RF ports <u>still not understood</u>
- **Confirmation that V6 test stand is limited at 2 K**
- Magnetic flux trapping : low sensitivity on residual resistance experimentally confirmed

Acknowledgments

BE-RF:

S. Bizzaglia, J. Biessy, O. Brunner, Y. Cuvet, M. Gourragne, M. Karppinen, A. Macpherson, P. Maesen, A. Miyazaki, F. Peauger, G. Pechaud, E. Sancho Cabrera, K. Schirm, N. Schwerg, D. Smekens, N. Stapley, M. Therasse, K. Turaj, N. Valverde, W. Venturini, A. Xydou

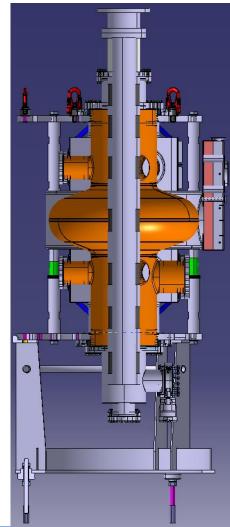
EN-MME:

C. Abajo Clemente, S. Atieh, E. Cantergiani, O. Capatina, A. Cherif, R. Claret, L. Dassa, G. Favre, JM. Geisser, T. Mikkola, L. Mettler, F. Motschmann, P. Naisson, F. Pillon, T. Tardy, P. Trubacova

TE-VSC:

S. Calatroni, L. Ferreira, S. Forel, P. Maurin, G. Rosaz, M. Taborelli, M. Thiebert, L. Viezzi

> HSE: C. Arregui


Courtesy of G. Rosaz TE-VSC

DC Magnetron sputtering

100

100

Courtesy of G. Rosaz TE-VSC

Coating Parameters

 $|H_2|$ P<5.10⁻⁹ mbar Bakeout: 150C for 48h 1E-10 Typical gas composition before coating: ۲ H_2O Current (A) High quality vacuum 1E-11 $H_2O << H_2$ No amu > 50 O_2 Coating procedure CO_2 1E-12 Upper cut-off / Lower cut-off (3 positions) 40 **amu** 60 20 80 $P_{Kr} = 4.10^{-3} \text{ mbar}$ $P_{kr} = 4.10^{-3} \, \text{mbar}$ 400V / 7A ٠ Average temperature ~ 70C 1E-9 ~ 40 min per cut-off Current (A) Cell 1E-10 $P_{Kr} = 1.10^{-3} \text{ mbar}$ 400V / 15A 1E-11 $T_{max} = 150C$ 65 min 1E-12 Identical parameters for PC01.1 and PC02.1 20 60 40 80 amu

- Calatroni:
- <u>http://inspirehep.net/record/788517/files/jp</u>
 <u>cs_114_1_012006.pdf</u>
- "As an order of magnitude the effect is 100 nΩ/Gauss of external magnetic field for bulk Nb, and only 1 nΩ/Gauss for films. "

