
Nb₃Sn: Lab to Machine ?

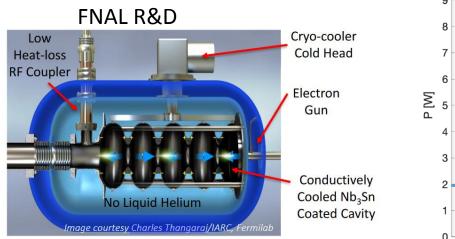
R. Calaga, CERN Feb 4-7, 2020

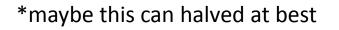
Note: Some qualitative thoughts to trigger ideas

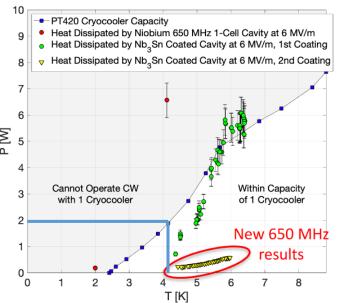
Standard Mantra: Nb3Sn

- Potential for low R_s at 4.5K (and 2K)
- Potential for high gradient 100 MV/m ?

SRF Accelerator "Landscape"


	Some Examples	Frequencies [MHz]	Voltage [MV/m]	?
Circular colliders & storage rings	LHC, FCC, KEKB, CESR, Light sources	350-500, 800	5 – 15	
Linear Colliders & FELs	XFEL, LCLS2, ILC	1300, 3900	20-35	
High Intensity	SNS, ESS, PIPII	650-800	7 – 20	
Nuclear Physics	FRIB, HIE-ISOLDE, ATLAS	~100-400	6 – 10, 20	
ERLs & RLs	CEBAF, Test facilities, e-cooling	700, 1300	15-20	
Special Applications	Crab/Deflecting cavities, Medical	400, 3900	~25	
Compact/cheap e-accelerators	Studies	600-800, 1300?	~10	


**Note: By no mean comprehensive but some qualitative examples


3

Cheap/Compact Accelerators

- <u>Idea is great</u> but in real world best cryomodules have a static load of $\sim 10W^*$. Dynamic load at real cavities at operating gradients are perhaps $\sim 10W^*$
- Present cryo-coolers is at best 2W. Not extremely scalable & conducting cooling requires better adaptation.

4

Storage rings & Colliders

- Typically needs a few MV/m. 4.5K operation of Nb-films on Cu already a success story at LEP & LHC
- Limitation not really from Q0 but from RF power 100's kW due to high beam current
 - With the exception of electron-positron colliders needing 10 GV (FCC)
- Another limitation is HOM couplers reaching higher & higher powers
 - Future path could be additive manufacturing. Nb3Sn coating on ingot-Nb-antennas (or better yet Cu/Al-antennas)

Linear SC-Linacs

- Reference today: 35 MV/m with bulk-Nb at 1.3 GHz
 - Is it worth all the trouble to go for Nb3Sn for saving just cryogenic power - yes
- One breakthrough <u>could</u> come if
 - Coat Nb3Sn on Cu-or-Al conductively cooled for high- Q_L operation (low beam loading, pulsed)
 - Keep 2K (or 4.5K) operation but at higher frequencies & gradients: ~3-4 GHz* → machined or 3D printed cavities
 - Smaller RF waveguides, compact cryostats
 - Make Nb3Sn film "magnetically insensitive"

 Or in combination with 1.3 GHz in double harmonic acceleration. Also high s/c-band cavities can be realized into mobile applications

Proton (HI) Linacs

- Today's limit in proton linacs is not necessarily gradient or Q_0 . Mostly RF power limited.
- For low-velocity cavities (TEM-like), there is already Nb-Cu technology close to bulk-Nb cavities (HIE-ISOLDE). Added benefit from Nb3Sn not critical
- Also no axial symmetry may require special coating R&D – similar to deflecting/crab cavities. Try Nb3Sn on HL-LHC crab cavity prototypes
- Can you double the quench limit at lower frequencies (~100-400 MHz) ?

ERLs & Special Applications

- The main mantra: medium gradient, CW, high current with low beam loading
 - Nb-Cu at 15-20 MV/m ~800 MHz is already interesting
- High current –CW implies lower frequencies. The main benefit of Nb3Sn could be operation at 4.5K. This implies a strong control of microphonics for high-Q_L(conductive cooling)
 - Since "zero beam-loading", Nb3Sn can push the CW-gradient closer to a pulsed machine for a large scale ERL (ex: LHeC at 60 GeV)
- Medical accelerators (ex: ADAM) use 20-30 m of Cu linac (s/c-band) for ~250 MeV. Reduce this to few-meters
- Deflecting cavities (non-axial) are typically at lower frequencies. Nb3Sn on Cu could significantly help to improve field evolution during quench – machine protection
- Other applications such as axion-like searches or quantumrelated experiments

General Comments

- Accelerator compatibility requires dealing with real world mess. So Nb3Sn needs an "industrialization" break-through
- Its applications could/should be decoupled from bulk-Nb (starting with the substrate)
- Think special applications
 - Higher frequencies (s/c-band), higher quench fields, HOM couplers
- Think cheap fabrication techniques
 - Machining/3D printing of cheaper-Nb, Cu, Al....
- One day in the far future, we might even dream of in-situ coating of Nb3Sn inside existing SCaccelerators