DE LA RECHERCHE À L'INDUSTRIE

Correlations between Tunneling Spectroscopy and SRF cavity perfomances

Thomas Proslier

TTC - CERN - 05/02/220

Team:

Technician: A. Four, E. Fayet, G. Jullien, C. Servouin

Scientist: S. Berry, C. Antoine, E. Cenni, G. Devanz, F. Eozenou, T. Proslier

Ph.D.: Sarra Bira (IPNO/CEA), Y. Kalboussi (CEA)

Internship: R. Dubroeucq, S. Habhab

Collaborations:

KEK: T. Saeki, T. kubo, Marui. (thin films, theory, electropolishing)

IPNO: D. Longuevergne, M. Fouaidy, T. Pépin-donat

HZB: O. Kugeler (characterization, thin films)

DESY: M. Wenskat (characterization, thin films)

CERN: G. Rosaz, S. Calatroni (thin films)

STFC: R. Valizadeh (thin films, Nb3Sn)

INFN: C. Pira (thin films)

JLAB: A-M. Valente, G. Ciovati, D. Patshupati (Bulk Nb, thin films)

FNAL: S. Posen, A. Romanenko, A. Grassellino, M. Chechin (Bulk Nb, Nb3Sn)

ANL: A. Glatz – Theory (theory simulations)

IIT: J. Zasadzinski

TRIUMPH: T. Junginger (characterization)

Cornell: D. Hall, M. Liepe (Nb3Sn)

- Point Contact Tunneling spectroscopy
- Bulk Nb treatments
- Nb3Sn/Nb
- Summary and future

- Point Contact Tunneling spectroscopy
- Bulk Nb treatments
- Nb3Sn/Nb
- Summary and future

Tunneling spectroscopy: what do we measure and why?

Measure the fundamental superconducting parameters:

$$\Delta$$
, T_C , H_{C2}

- Measure non-ideal signature: Γ.
- Shape of the DOS give clues to microscopic origins: Proximity effect, magnetic impurties, deleterious phases.
- Direct correlation to SRF cavity performances.
- Cartography.

The Point Contact system at CEA

Temp: 1,4 K

Magnetic field: 6 T

Cartography: 10 µm – 1 mm

Sample size: 10x10 mm

- Fast measurements: 100-300 jonctions/5hrs
- Transport (RRR, Tc vs H applied...)
- Hall Effect

Used for Nb/Cu, bulk Nb doping, Nb3Sn, mutlilayers etc...

- Point Contact Tunneling spectroscopy
- Bulk Nb treatments
- Nb3Sn/Nb
- Summary and future

Tunneling spectroscopy: Bulk Nb HFQS

- Hot Spots:
- spread of gap values as low as 1 meV
- Inelastic scattering parameters Γ
- Zero Bias Peaks

- Cold Spots:
- Narrow gap distibution 1.6 meV
- Lower Inelastic scattering parameters Γ
- No zero bias peaks

Tunneling spectroscopy: bulk Nb - Why small gaps?

Presence of normal metal regions: 10 nm < d_N < 15 nm -> reduce the quench field of SRF cavities: H_B ~ Φ₀ / (6 λ_N d_N) Onset at 100 mT -> d_N ≤ 20 nm consistent with PTC.

Transparent at low fields (Q0) but revealed at « higher » accelerating gradients.

Candidates: Nb Hydride phases at the surface (XRD at 90 K no sign of NbH_X phases)

Tunneling spectroscopy: Nb Doping: N and Ti

- N / Ti Doping:
- Narrow gap distribution
- Very low Inelastic scattering Γ values
- Near ideal DOS
- No Zero Bias Peaks

- But:
- Gap values a bit lower (1.48 meV) than bulk
 Nb (1.6 meV)
- Tc (8.7 K) < Bulk Nb Tc (9.2)
- Ratio $2\Delta/kTc = 4$ (similar to this cavity)

Tunneling spectroscopy: Nb

- Undoped: reduced barrier height and thickness
- Doped (Ti or N): higher barrier height and thickness Points towards defects in the oxide mitigated by addition of dopants:
- TLS Hydrogen relationship and ZBP as signature
- Qbits: magnetic impurities, H + O(?) as a source of it
- Low fields measurements

- Point Contact Tunneling spectroscopy
- Bulk Nb treatments
- Nb3Sn/Nb
- Summary and future

Nb₃Sn/Nb (Cornell)

- Wupperthal method: diffusion of Sn in a Nb cavity
- $Nb_3Sn Q_0$ at $4.2K \sim Nb Q_0$ at 2K
- Moderate increase of Q_0 between 4K to 2K -> Non-BCS
- Q_0 decrease at ~ 6 K

Have we reached the limits of Nb₃Sn?

Nb₃Sn/Nb (Cornell) - PCT

• $\Delta > \text{Nb}$ and Γ/Δ is small

e at 2.0 k (n)()

-> Quality factor @ 4K is ~ Nb @ 2K

- But pockets of Nb rich phases:
- Lower Tc and Δ
- Carbon contamination

Nb₃Sn/Nb (Cornell) - TEM (a) 500 nm 500 nm 500 nm 100 nm ERL1-4 Jan (b) 500 nm 500 nm 100 nm 24.4 CERES (c) Nb₃Sn Nb 100 nm 1 µm 1 µm 100 nm TE1-7 1 µm

phase riche Nb ~ 17.5 - 23%

- Interface Nb-Nb₃Sn, grain boundaries
- Pockets near the surface

Crystallites ~ 100 - 200 nm (XRD)

Nb₃Sn/Nb (Cornell - FNAL) - PCT

Quench field vs Average Gap

- Linear dependence of Emax on the average surface gap (~300x300 μm)
- ➤ H_{SH}~3.5 times the H_{C1} but why this gap dependence? Roughness, effective penetration depth?
- \triangleright A15 compounds (V₃Si, Nb₃Sn, Nb₃Al...) are good for Q₀ and higher operation temp. (4,2 K)
- \triangleright But what about E_{MAX} ? How to increase E_{MAX} ?

- Point Contact Tunneling spectroscopy
- Bulk Nb treatments
- Nb3Sn/Nb
- Summary and future

Summary:

- > Enable testing surface treatments/heterostructures on coupons prior to cavity tests
- Faster turner over and phase space exploration of growth parameters etc...
- Measurement of Nb₃Sn sample from FNAL
- ➤ Nb3Sn: linear dependence of Emax and the superconducting gap.
- > Nb: à déterminer.

<u>Future</u>:

- ➤ Faraday Cage to improve noise (ordered) ~ 3 months.
- ➤ Measure of infusion in bulk Nb and Nb3Sn thin films from DESY, Jlab, STFC.
- > Bulk Nb: Correlation between inhomogeneous properties and samples measurements
- Smaller scan areas < 1 μm.</p>

Thanks you

The END

Summary

Funding Sources

Tunneling spectroscopy: Nb

Cartography

- N doping: Homogeneous bulk Nb gap values on the surface
- Hot spot: Regions with low superconducting gap values that can be fitted with normal metal regions on the surface (presumably hydrides)

Tunneling spectroscopy: what do we measure and why?

■ Rs depends on DOS(E_F). DOS(E_F) (B, T, Δ, r)

• Higher Gap (Δ) -> Higher Q

- DOS (E_F) ≠ 0 -> dissipation @ T=0 K
- DOS(E_F) (B, T, Δ , r), R_S = <DOS(E_F) (B, T, Δ)>_r
- Saturation mechanisms of the DOS? -> Inelastic scattering (Γ)

Nb₃Sn/Nb (Cornell) - Magnetometry

• The critical field measured by Magnetometry correlates with RF tests Quench fields

Nb₃Sn/Nb

Comparaison Theory - experiments

- Qualitative agreement between GL simul and PCT data
- To be continued

Nb₃Sn/Nb - simulation

Case of surface layer Low Tc 6K + lower bulk Tc 14K

Lower bulk Tc also lead to lower penetration field.