

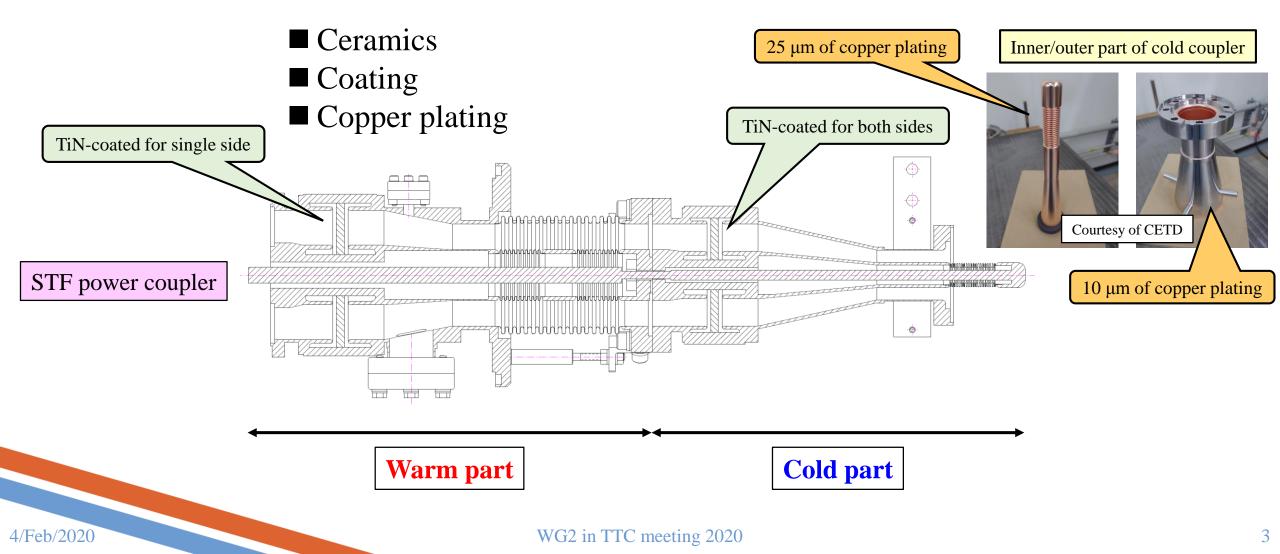
Kirl

Fundamental studies for power coupler in KEK

TTC meeting 2020 @CERN 4/Feb/2020

Yasuchika Yamamoto (KEK, CASA), on behalf of power coupler R&D group

WG2 in TTC meeting 2020


Outline

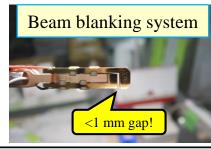
- Motivation
- Research on ceramic
- Research on copper plating
- Summary & Future prospect

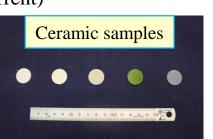
Motivation

KEK has investigated ceramics including coating and copper plating used for STF power coupler since 2016. The goal is to search **"optimum choice (including cost)**" in them.

Research on ceramics

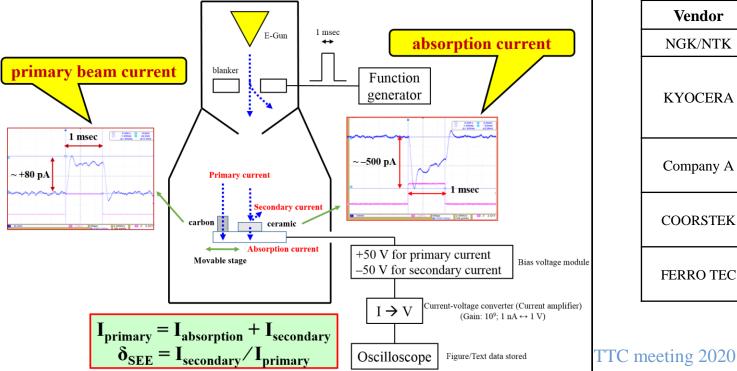
Secondary electron emission (δ_{SEE})
 Loss tangent, Relative permittivity (tanδ, ε)
 Surface resistivity, Volume resistivity (ρ_S, ρ_V)


KEK has investigated these parameters for various ceramics, and the result was summarized in the following paper.


Please check "MOP077" in SRF2019

Measurement of secondary electron emission

- \checkmark SEM with beam blanking system
- ✓ Pulsed beam (width of 1 msec)
- ✓ Sample shape: 19 (dia.) x 1~3 (thick.) [mm]
- ✓ Target: carbon (primary beam current) ceramics (absorption current)



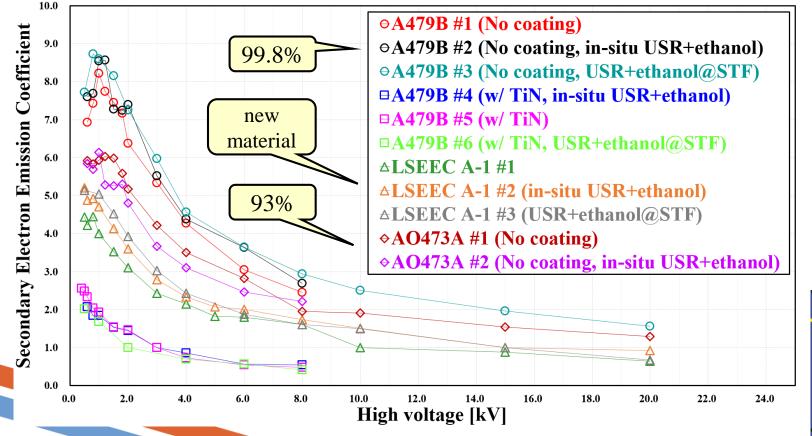
Center for

Vendor	Ceramic name	Coating	# of sample	
NGK/NTK	HA95	TiN / Free	20 (=18 + 2)	
KYOCERA	LSEEC	Free	10 (= 3 x 3 + 1)	
	A479B	TiN / Free	6 (= 3 + 3)	
	AO473A	Free	2	
Company A	Sample A	TiN / Free / Cr ₂ O ₃	45 (=18 + 7 + 20)	
	Sample B	TiN / Free / Cr ₂ O ₃	45 (=18 + 7 + 20)	
COODSTEV	AD-995-LT	TiN / Free	20 (=18 + 2)	
COORSTEK		TiN (by different cond.)	4	
FERRO TEC	AM997Q	Free	12	
	AM997	Free	12	

※HA95 was standard ceramic in KEK (production discontinued in 2016)※Sample B has higher purity than Sample A

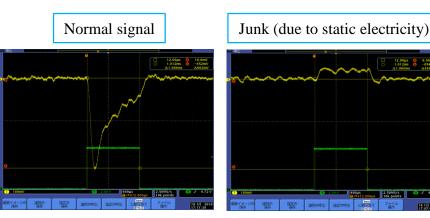
Comparison of different ceramics (typical results of the superconduction of the superconduc

WG2 in TTC meeting 2020



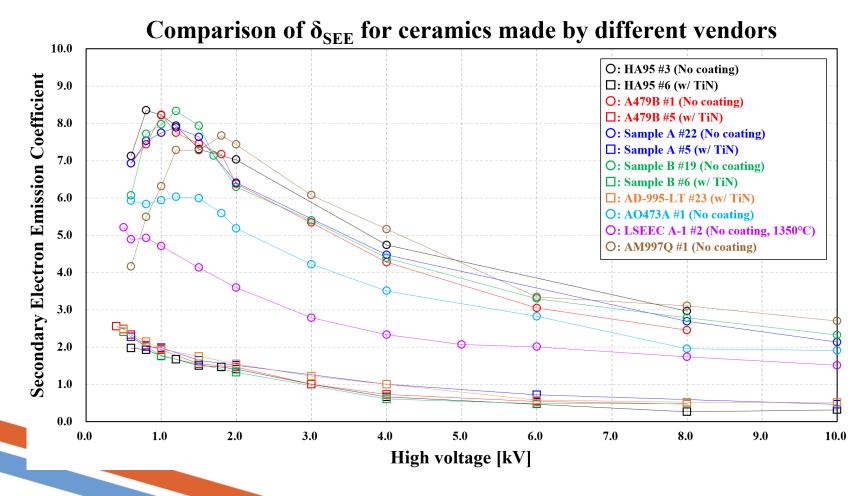
KYOCERA provided A479B incl. TiN coating, AO473A, and LSEEC.

 $\square \ \delta_{SEE} \ depends \ on \ purity \ of \ ceramics \\ \square \ TiN \ coating \ reduces \ \delta_{SEE} \ drastically$


new material based on AH100A

Comparison of Secondary Electron Emission Coefficient on KYOCERA ceramic

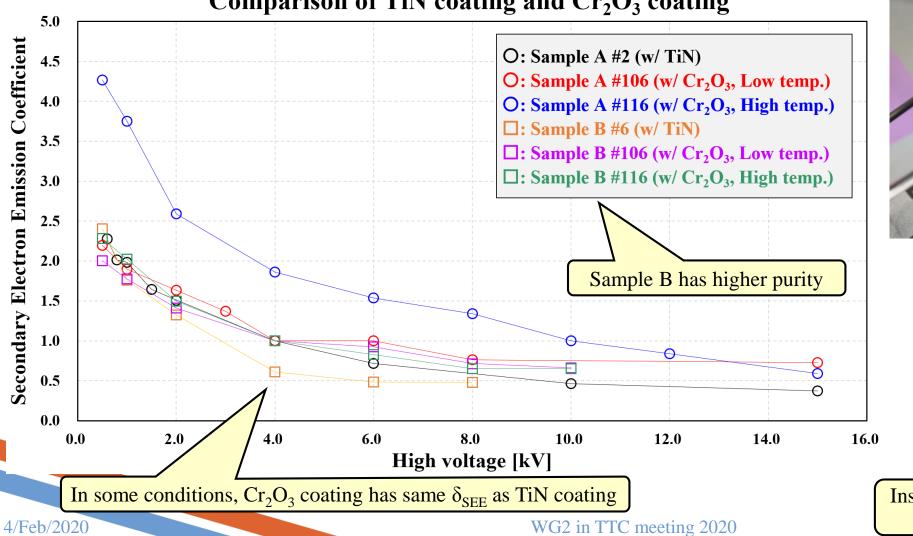
In-situ USR with ethanol



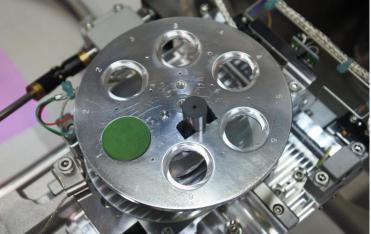
4/Feb/2020

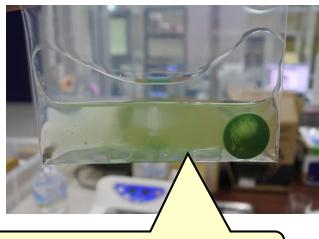
Comparison of different vendors

No coating samples: Good consistency for HA95, A479B, Sample A and Sample B
 TiN coating samples: Good consistency for every sample



Systematic error is under investigation, roughly 10% at each point.


Cr₂O₃ (chrome-oxide) coating

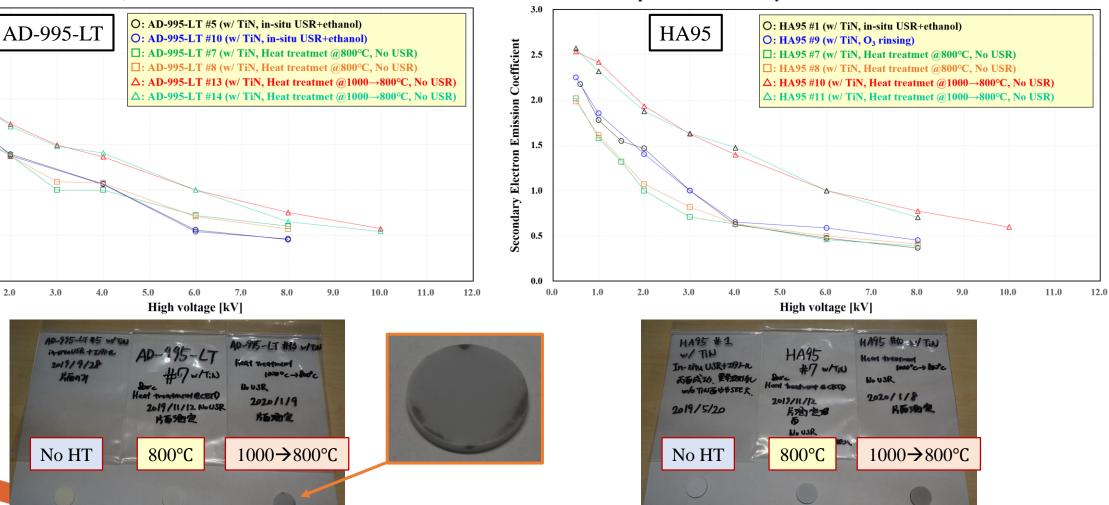


Company A provided two samples (Sample A and B) with Cr_2O_3 coating done by four conditions. (Four conditions: High/Low temperature, Thick/Thin coating)

Comparison of TiN coating and Cr₂O₃ coating

Insufficient adhesion at low temp. (after in-situ USR)

Effect of heat treatment (brazing process)


Ceramic experiences gold/silver brazing processes at 1000°C /800°C. After HT, ceramic occasionally has higher secondary electron emission. And also, the color changes to gray and dark.

Reduction action by hydrogen?

Comparison of secondary electron emsision coefficient on HA95

Comparison of secondary electron emsision coefficient on AD-995-LT

*Collaboration between CETD and KEK

4/Feb/2020

3.0

2.5

1.5

0.0

0.0

1.0

2.0

3.0

Emission Coefficient

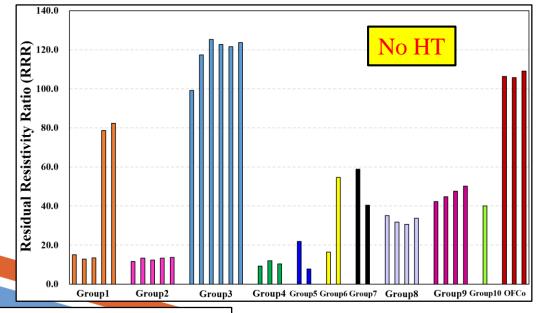
Electron

Secondary

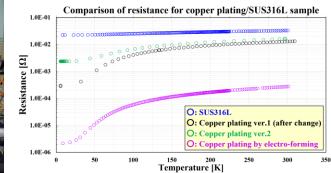
Research on copper plating

•RRR measurement

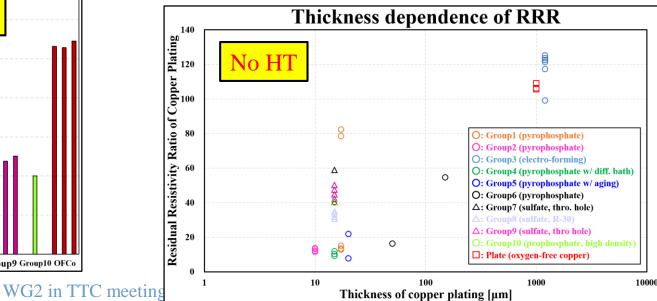
- Microstructure observation
- **◆**Effect of heat treatment (brazing process)


Please check "MOP083" in SRF2019

RRR measurement


Sample size: 150 x 5 x 0.5 mm

Group 1	pyrophosphate	17.2 μm	
Group 2	pyrophosphate	10 µm	
Group 3	pyrophosphate (electro-forming)	1200 µm	
Group 4	pyrophosphate (w/ different bath)	15 µm	
Group 5	pyrophosphate (w/ aging process)	20 µm	
Group 6	pyrophosphate	50, 200 μm	
Group 7	sulfate (through hole w/ brighter)	17 µm	
Group 8	sulfate (R-30)	15 µm	
Group 9	sulfate (through hole)	15 µm	
Group 10	pyrophosphate (high elec. density)	15 µm	
OFCo	Oxygen-free copper	1000 µm	

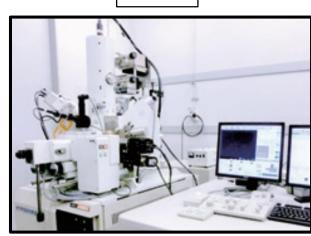

Copper-sulfate has higher RRR
RRR of copper-pyrophosphate depends on thickness

Center for Applied

CASA

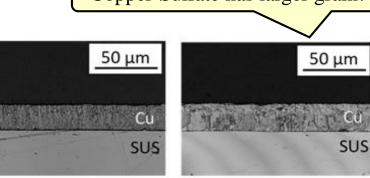
11

Microstructure observation on grain boundary


Three samples were investigated by laser microscope and EBSD. Copper-Sulfate has larger grain! 50 µm Copper-sulfate has larger grain size

Grain size of copper-pyrophosphate depends on thickness

Choice of copper-sulfate in fabrication of power coupler



4/Feb/2020

EBSD

*Collaboration between Nomura and KEK.

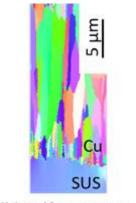
(a) Pyrophosphate, 20μm

(a) Pyrophosphate, 20µm

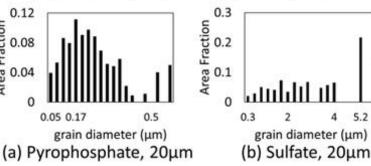
0.5

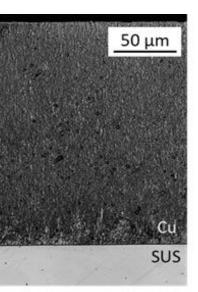
grain diameter (um)

0.12

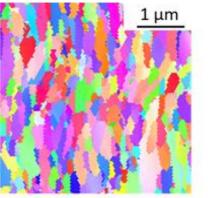

0.08

· 0.04

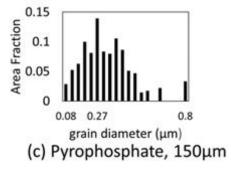

WG2 in TTC


0.05 0.17

(b) Sulfate, 20µm



(b) Sulfate, 20µm



(c) Pyrophosphate, 150µm

(c) Pyrophosphate, 150µm

Effect of heat treatment (brazing process)

Copper plating experiences silver brazing process at 800°C.

Group	Sample	Bath	additives	Thickness	before HT	after HT
Group 5	#1	pyrophosphate	Silicon oil @200°C	20 µm	21.9	12.8
	#2		Silicon oil @100°C	20 µm	7.8	16.8
Group 6	#1	pyrophosphate		50 µm	16.4	256
	#2			100 µm	54.7	480
Group 7	#1	sulfate	w/ brighter	17 µm	58.9	111
	#2			17 µm	40.4	1.9
Group 8	#1	sulfate (R-30)		15 μm	35.1	5.6
	#2			15 μm	31.8	4.5
Group 9	#1	sulfate		15 μm	42.3	4.2
	#2			15 µm	44.8	4.3
Group 10	#1	pyrophosphate (higher electric current density)		15 μm	40.0	159.5

Heat treatment generates lower RRR in some cases, but higher RRR in the other cases! (W. Singer already pointed out this effect in SRF1995)

We are investigating thickness dependence in copper-sulfate samples.

4/Feb/2020

WG2 in TTC meeting 2020

Summary & Future prospect

4/Feb/2020

- •Good consistency in δ_{SEE} of no-coating/TiN-coated ceramics
- •Good consistency in δ_{SEE} between TiN-coating and Cr_2O_3 -coating
- Copper-sulfate has larger grain size than copper-pyrophosphate
- Copper-sulfate has higher RRR than copper-pyrophosphate at same thickness
- •Heat treatment generates lower/higher RRR of copper plating

Cr₂O₃-coating will be more investigated by new collaborative research
 The thickness dependence of copper-sulfate will be investigated
 STF power coupler (only cold part) will be high-power-tested
 Some new attempts in the fabrication process were tested

THANK YOU VERY MUCH FOR YOUR ATTENTION

Y. Yamamoto, E. Kako, S. Michizono (KEK)

H. Takahashi, H. Kanasaki, K. Tetsuka, H. Yasutake, H. Oikawa (CETD)

J. Taguchi, Y. Mochida (Nomura plating Co., Ltd.)

Special thanks to E. Cenni, C. Arcambal, Okii-san, Sakusabe-san, Ando-san, Yoshino-san, Sakai-san

(R)株式会社野村 鍍金