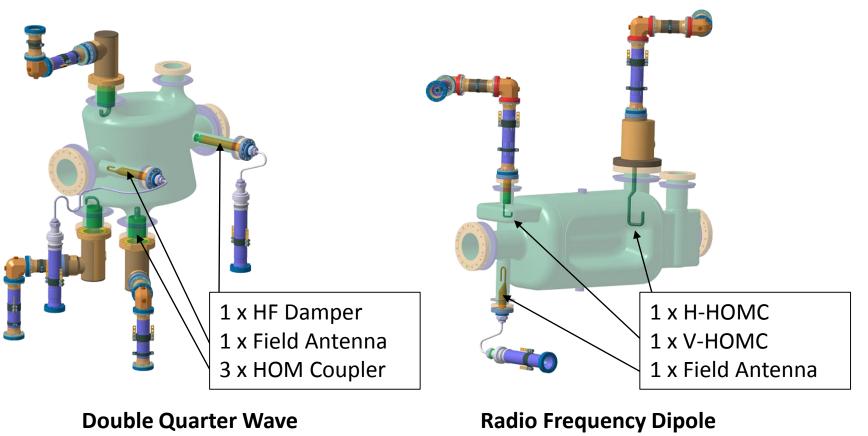


HOM couplers for crab cavities and challenges

James Mitchell

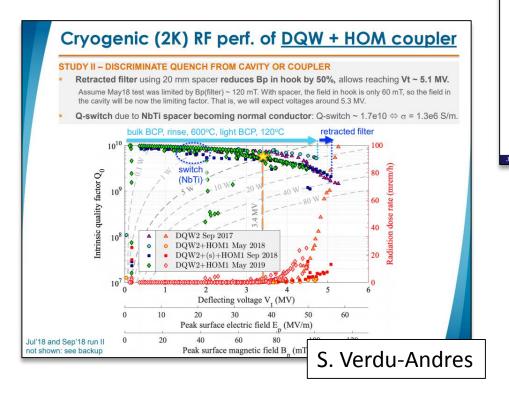
CERN, BE-RF-PM



Damping requirements:

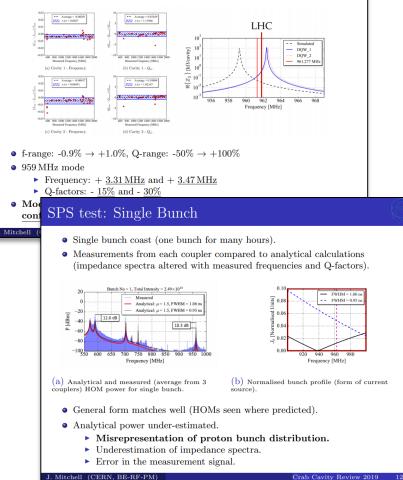
 $Z_{\parallel} < 200 \ k\Omega$ $Z_{\perp(x,y)} < 1 \ M\Omega/m$

Crab cavity damping



(DQW)

Radio Frequency Dipole (RFD)


Crab cavity damping

- Dressed cavities tested without beam.
- Dressed DQW tested with beam!

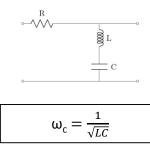
SPS Measurements: Pre-Installation

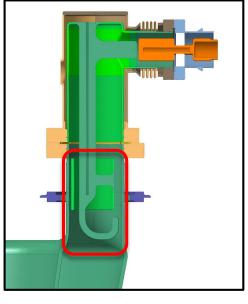
• Measured mode parameter deviation from simulations.

Topics

1. Dynamic heat loads (gasket heating)

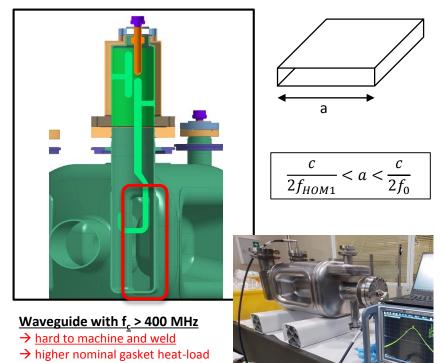
2. Change of characteristic impedance (Z_0)





Dynamic Heat Loads

• Dynamic heat load on gaskets reduced by:

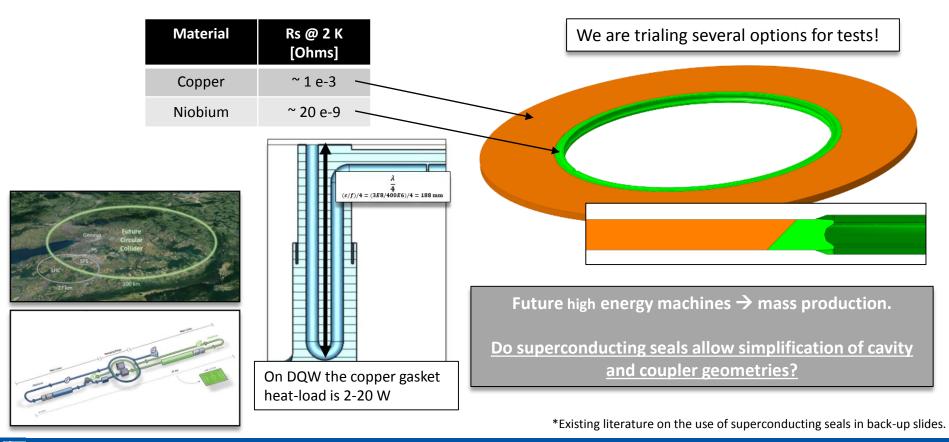


Rejection filter before the gasket.

- \rightarrow complicated geometry
- \rightarrow high fields on hook
- \rightarrow broad notch (mW level heat-load)

 \rightarrow less sensitive to tolerances

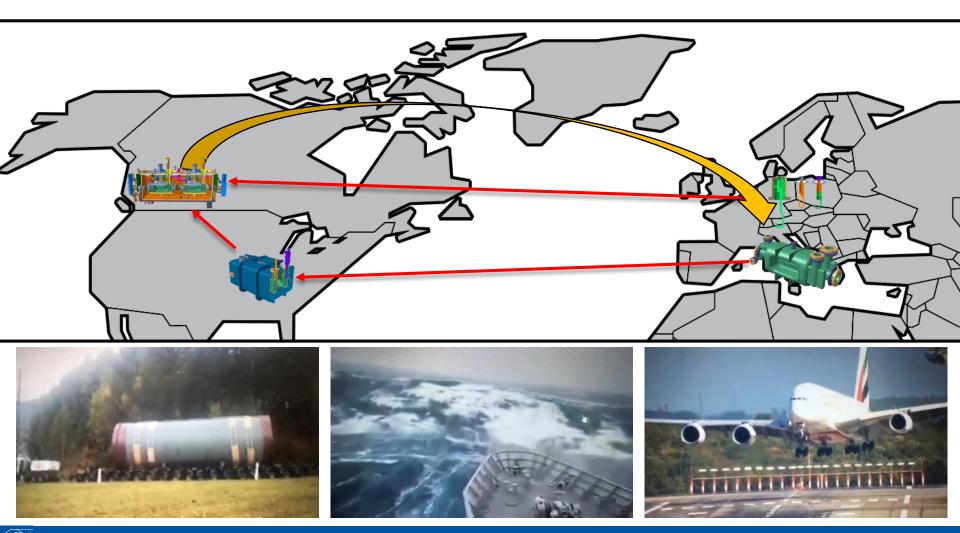
Could complex couplers and cavity shapes could be avoided with SC seals?


james.mitchell@cern.ch

 $H^2 R_s dA$

Dynamic Heat Loads

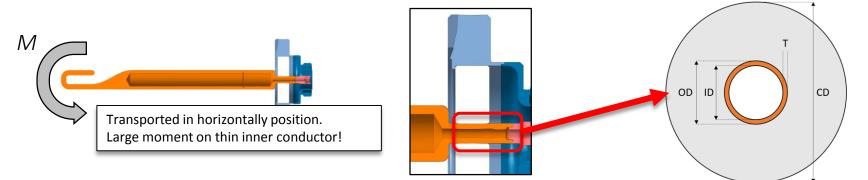
- Dynamic heat load on gaskets <u>could</u> be reduced by: <u>Superconducting seals*</u>.
- Resulting in more 'manufacturable' cavities and couplers.


james.mitchell@cern.ch

 $H^2 R_s dA$

P =

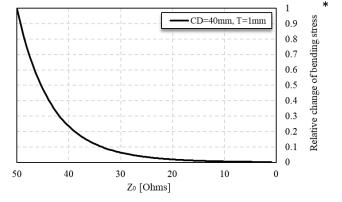
Changing Z₀: Manufacture and Transport


TTC 2020

Changing $Z_0: 50 \Omega \rightarrow 25 \Omega$

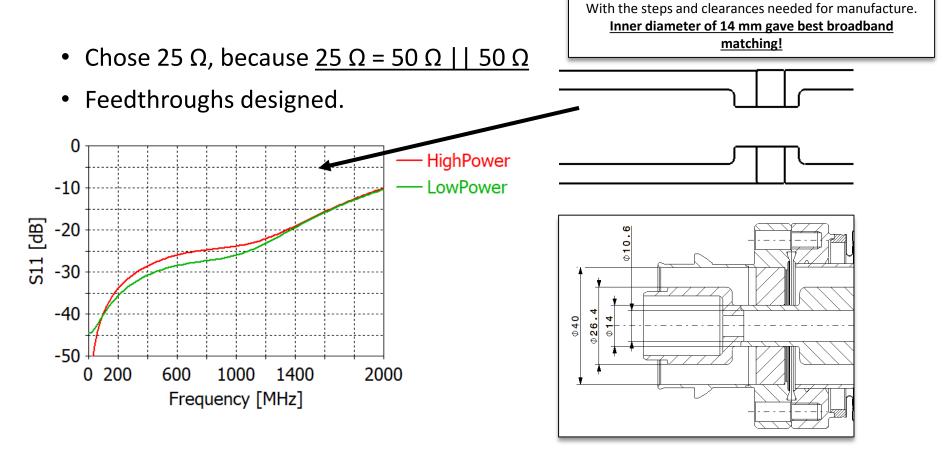
$$MI = \frac{\pi (OD^4 - ID^4)}{64}$$

Deflection = $\frac{L^3 F}{3E \cdot MI}$
Bending Stress = $\frac{FL}{MI/(0.5h)}$


- ... concerns over thin diameter in feedthrough.
- Changed to $Z_0 = 25 \Omega$.

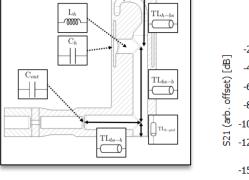
Since $Z \propto log(OD/ID)$, diameter increases by factor of <u>3.7</u> if we move to <u>25 Ω</u> .

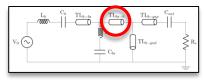
Bending stress reduces by at least factor of <u>30</u>.

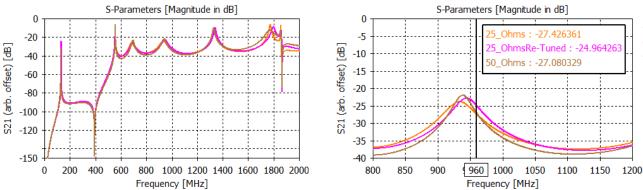

Ζο [Ω]	ID [mm]
75	0.78
50	2.90
<u>25</u>	<u>10.77</u>

* Approximation without taking into account the boundary conditions of the ceramic

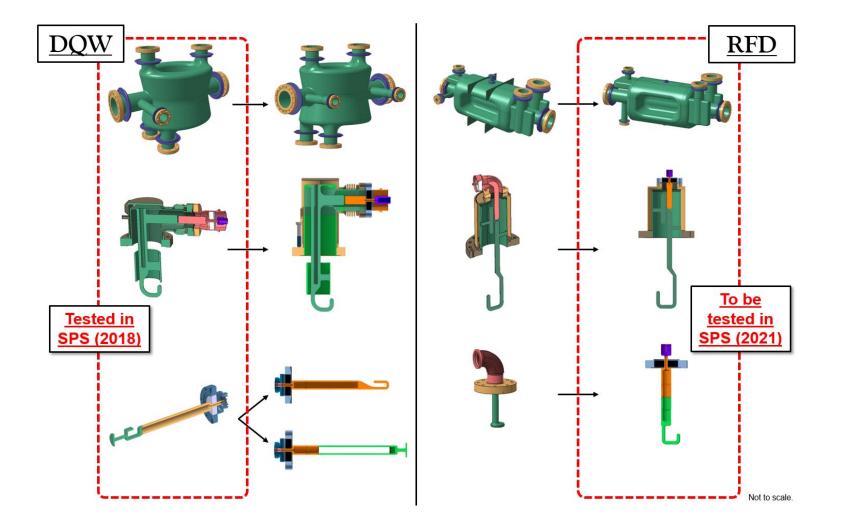
Shock test results and videos in back-up slides!


TTC 2020

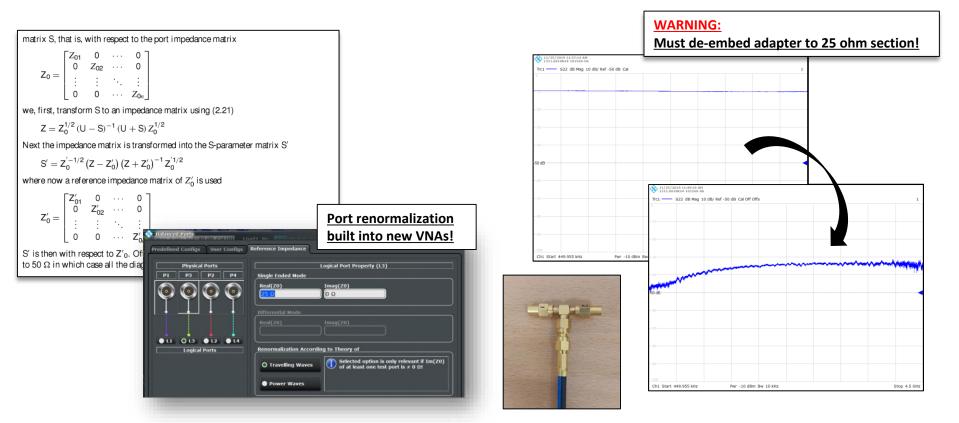



There is now a common 25 Ω feedthough validated with thermal shock and 'drop test'.

- DQW HOM coupler
 - Decrease in transmission at high power mode frequency (960 MHz).
 - Re-tuned now impedance for this mode is the lowest it has been!



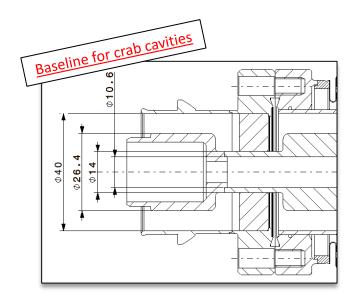
Design thresholds are met with 25 Ohm matching for both cavities! *Cavity impedances in back-up slides.*



BE-RF-PM

TTC 2020

- Infrastructure and measurement challenges.
 - 25 ohm cables and loads are not standard: Make cables of match in parallel?
 - Using a 50 Ω VNA: **port re-normalization**, **de-embedding**, 50 $\Omega \rightarrow$ 25 Ω **adapters**.



Conclusions and Discussion points

Dynamic heat loads

- We have reduced H-field.
- Could reduce Rs.
- Could this lead to simpler structures?
- Is there a want for this in the accelerator community?

<u>Z0 = 25 Ω</u>

- Inner conductor is too thin for transport.
- 25 Ohm infrastructure designed.
- Impedance thresholds met.
- Challenges: infrastructure and measurements.

Thank you for listening!

Thanks to BE-RF-PM and HL-LHC WP4 for the contribution and support.

Back-up slides

Fundamental mode RF parameters

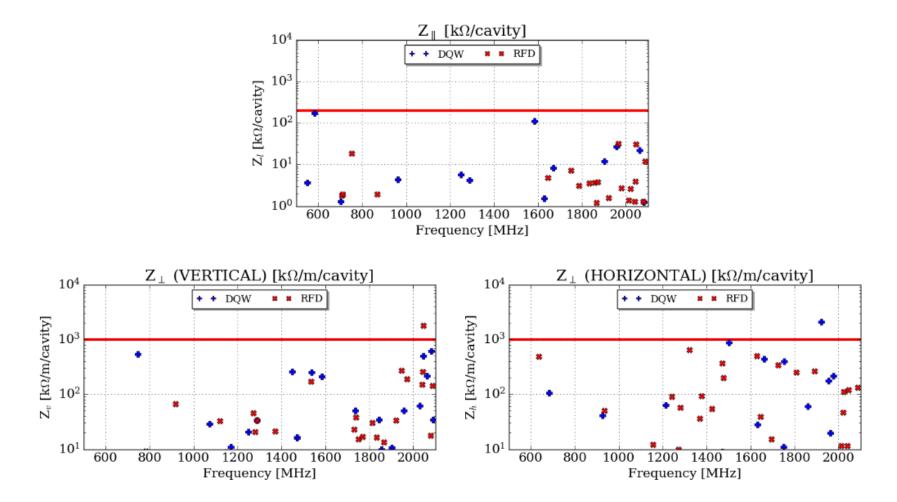
Parameter	Unit	DQWCC	RFDCC
		•	
Frequency, f_0	MHz	400.44	400.75
Loaded Quality Factor, Q_l	-		
r/Q_{\perp} †	$\Omega/{ m m}$	429	432
Deflecting Voltage, V_{\perp}	MV	3.4	3.4
E_{pk}	MV/m	38	35
B_{pk}	mT	73	60
Accelerating Voltage, V_{\parallel}	kV	13.9	1.9
Stored Energy	J	10.72	10.62
$\Re\{b_3\}$	$ m mT/m^2$		

[†]Accelerator definition.

Ancillary	P (Coax) @ VT = 3.4 MV [W]			
DQW HOMC(1,2,3)	< 0.01 < 0.01 < 0.01			
DQW HF-Damper	0.16			
DQW FA	1.02			
RFD H-HOMC	0.13			
RFD V-HOMC	0.42			
RFD FA	0.97			

Fundamental mode heat loads

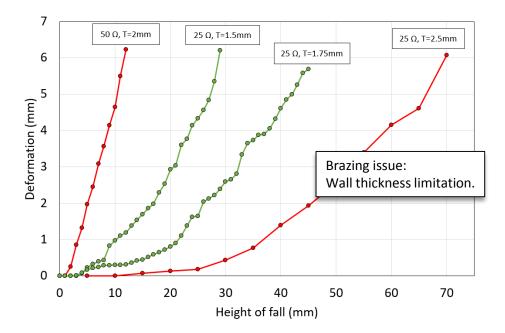
Component		U = 1J			VT = 3.4 MV	VT = 5.0 MV
	Material	Ploss [W]	Q0	Ploss [mW]	Ploss [W]	Ploss [W]
Cavity body	Nb	0.59	4.26E+09	592.34	6.35	13.73
HOMC1	Nb	0.00	1.35E+12	1.86	0.02	0.04
HOMC1 gasket	Cu	0.00	3.67E+12	0.69	0.01	0.02
HOMC2	Nb	0.00	1.11E+12	2.26	0.02	0.05
HOMC2 gasket	Cu	0.00	3.07E+12	0.82	0.01	0.02
НОМС3	Nb	0.00	1.12E+12	2.26	0.02	0.05
HOMC3 gasket	Cu	0.00	2.92E+12	0.86	0.01	0.02
FA	Cu	0.00	3.14E+12	0.80	0.01	0.02
FA gasket	Cu	0.00	6.18E+16	0.00	0.00	0.00
HF-Damper (Nb)	Nb	0.00	7.51E+14	0.00	0.00	0.00
HF-Damper (Cu)	Cu	0.00	6.94E+13	0.04	0.00	0.00
HF-Damper gasket	Cu	0.00	4.16E+17	0.00	0.00	0.00
Total [W]					6.45	<u>13.95</u>


DQW

RFD

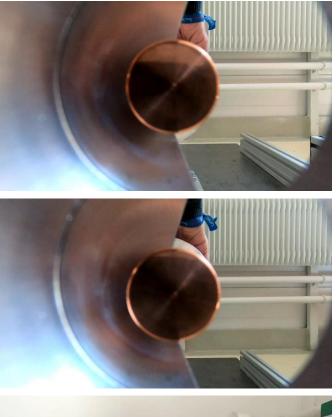
C	Material	U = 1J			VT = 3.4 MV	VT = 5.0 MV
Component		Ploss [W]	Q0	Ploss [mW]	Ploss [W]	Ploss [W]
Cavity body	Nb	0.50	5.02E+09	501.07	5.32	11.52
H-HOMC (Nb)	Nb	0.00	2.48E+16	0.00	0.00	0.00
H-HOMC (Cu)	Cu	0.00	6.37E+14	0.00	0.00	0.00
H-HOMC gasket 1	Cu	0.02	1.53E+11	16.41	0.17	0.38
H-HOMC gasket 2	Cu	0.00	2.39E+15	0.00	0.00	0.00
V-HOMC (Nb)	Nb	0.00	1.04E+13	0.24	0.00	0.01
V-HOMC (Cu)	Cu	0.00	1.57E+12	1.61	0.02	0.04
V-HOM gasket	Cu	0.00	5.99E+16	0.00	0.00	0.00
Field Antenna	Cu	0.00	1.14E+13	0.22	0.00	0.01
Field Antenna gasket	Cu	0.00	2.69E+16	0.00	0.00	0.00
Total [W]					<u>5.52</u>	<u>11.94</u>

Impedance spectra


P. Kneisel *et al.*, "Development of a Superconducting Connection for Niobium Cavities," in *PAC'07*, Albuquerque, New Mexico, USA, 2007, pp. 2484–2486. [Online]. Available: https://ieeexplore.ieee.org/document/4441291 [157]

—, "Progress on the Development of a Superconducting Connection for Niobium Cavities," *IEEE Trans. Appl. Supercond.*, vol. 19, no. 3, pp. 1416–1418, 2008. [Online]. Available: https://ieeexplore.ieee.org/document/5109618

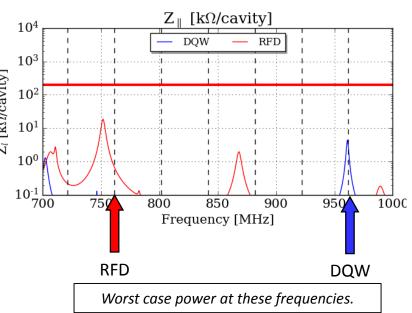
R. Sundelin *et al.*, "Application of Superconducting RF Accelerating Sections to an Electron Synchrotron - A Progress Report," Tech. Rep., 1974. [Online]. Available: http://inspirehep.net/record/94004/files/HEACC74{_}149-153.pdf


K. Saito, "Application of Mo Sealing for SRF Cavities," in *IPAC'10*, Kyoto, Japan, 2010, pp. 3359–3361. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ IPAC10/papers/wepe009.pdf 157

• 'Shock tests' on-going.

25 ohm feedthrough was shown to be more resistant to a shock!

TTC 2020

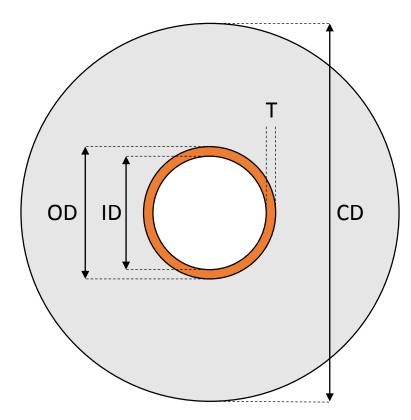

High Power HOMs

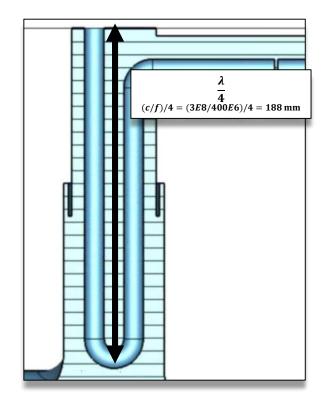
• Coaxial line power is becoming comparable to FPC power.

Using HL-LHC beam parameters:

		P _{worst-case} (P _{average}) [kW]				
4		Gaussian bunch	Binomial bunch	[kΩ/cavity]		
	DQW	1.0 (0.2)	0.5 (0.1)	Z _l [k		
sing [RFD	7.4 (0.8)	5.9 (0.7)			
	HOM pov	ver from 10,000 stoch	nastic simulations.			

Parameters: bunch length, bunch form coefficient, mode frequencies and mode Q-factors.




- Infrastructure for HOM couplers is becoming <u>larger</u> and <u>more difficult to</u> <u>assemble/replace</u>.
- What will be the best damping method for future machines?

TTC 2020

ImageGen

CERN

